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₪ Stagnation of 
maize yields

₪ Socio-economic x 
biophysical
limitations

DECLINE IN PER CAPITA FOOD
PRODUCTION [RAY ET AL., 2013]

Timely and reliable information on maize crop yields is needed to provide
timely estimates of food shortage and support decision-making
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FIELD-BASED SURVEY
• Expensive (time & labor)
• Sampling methods
• Inaccessibility
• Difficulties to upscale to large areas

CROP GROWTH MODEL

LACK OF GROUND DATA OR
UNRELIABLE DATA

• Approximation of the reality on the 
ground

• Potential yields under water or 
nutrient limitation

REMOTE SENSING • Timely and exhaustive 
information on vegetation cover

• Biomass=f(Vegetation Indices)
• Empirical model calibrated with 

agricultural statistics BUT
available ~ 3 months after the 
end of the cropping season



OBJECTIVES

IMPROVE MAIZE YIELDS ESTIMATION USING A CROP MODEL TO GENERATE
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INDEPENDENT DATASET TO TEST THE
ROBUSTNESS OF THE APPROACH
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• Sarra-H, a crop model for maize
• Daily time step
• Attainable biomass and yields

under climatic constraints

• Implementation under the Ocelet
Modelling Plateform

• ECMWF agrometeorological data
• TAMSAT rainfall data

• Validated for the Tuy province 
[Akakpo 2017]

Aboveground
biomass at 
flowering
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Crop Water stress 
from flowering to 

maturation
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Attainable maize
final yield

2011-2015
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validation

• Cv-R²,cv-RMSE …

IMPORTANCE VARIABLES

• LMG method
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Final maize yield AGB-F x Cstr Phase 4-5

Final maize yield
MLR

RF

Vegetation and 
drougth indices –
Vegetative period

ESTIMATION

FORECASTING

VALIDATION
• Yield from field

survey
• Village scale
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• Overestimation of low values and underestimation of high values
• RF model significantly better than the MLR model (57% of the AGB-F 

variability)
• Importance variable for RF = TCI and NDVI (57%) 
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• Temperature Condition Index is the most important driver 
• Impact of heat stress on maize : grain number [Eyshi Rezaei et al., 2015]

EVALUATION OF CSTR PHASE 4-5 ESTIMATION
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EVALUATION OF MAIZE YIELDS ESTIMATION AT THE END OF THE SEASON

• = − ,   −
• Good potential for maize yield estimation (RMSE<300 kg/ha)
• Good fitting of probability distribution curves :

• Median SARRA-O : 3634 kg/ha
• Median MLR : 3648 kg/ha
• Median RF : 3659 kg/ha
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EVALUATION OF EARLY ASSESSMENT OF MAIZE YIELDS

• =   −  
• Good potential for maize yield forcasting (RMSE<300 kg/ha)
• ~50% of maize yield variability can be explained ~2 months before harvest
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VALIDATION OF MAIZE YIELDS WITH GROUND DATA

*Independent dataset*
*2014, 2015 and 2016*

• RF outperforms MLR:
• Estimation : R²=0.60
• Forecasting : R²=0.46

• High overestimation in 
forecasting

• MLR : 2016 not accuratly
estimated
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LOOK-BACK ON THE STUDY OBJECTIVES

₪ Linear vs NonLinear models:
₪ Higher performance of RF models both for estimation and early assessment
₪ Complex interaction among biophysical, ecological, physiological and 

management practices

₪ Estimation vs Early assessment:
₪ Early assessment of maize yields ~ 2 months before harvesting (RF)
₪ Complementary of approaches :

₪ In-season forecasting : food aids strategies or market and trade 
information

₪ After harvesting : agricultural statistics
₪ Both + outputs of crop model : ‘convergence of evidence’ in EWS  

A GOOD AND EFFECTIVE POTENTIAL OF ‘UNCALIBRATED APPROACH’ TO
ESTIMATE MAIZE YIELD IN SCARCE DATA ENVIRONMENT
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