Agritrop
Home

Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity

Nijmeijer Annemarijn, Lauri Pierre-Eric, Harmand Jean-Michel, Saj Stéphane. 2019. Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity. AgroForestry Systems, 93 (3) : pp. 851-868.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Version Online first - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
20 - 2018 - Nijmeijer et al - C dynamics afforestation cAFS.pdf

Télécharger (598kB) | Request a copy
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
2018_correction_AGF.pdf

Télécharger (319kB) | Request a copy
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Nijmeijer2019_Article_CarbonDynamicsInCocoaAgrofores.pdf

Télécharger (751kB) | Request a copy

Quartile : Q2, Sujet : AGRONOMY / Quartile : Q2, Sujet : FORESTRY

Additional Information : Corrigendum paru dans AgroForestry Systems, (2018)1 p. https://doi.org/10.1007%2Fs10457-018-0204-z

Abstract : Afforestation of savannah is suggested as an approach to help addressing climate change mitigation through increased carbon (C) storage. Previous studies in Central Cameroon evidenced farmers' ability to realize afforestation by establishing cocoa-based agroforestry systems (cAFS) on humid savannah. In this forest-savannah transition zone, we studied an 80 years chronosequence of cAFS to assess C dynamics. We selected cAFS established after forest or savannah, and we used local forest and savannah patches as controls. Aboveground carbon (AGC) was highest in the forests (118 Mg C ha−1) and lowest in the savannahs (8 Mg C ha−1). Systems established after forest (F-cAFS) revealed a mean AGC 40% lower than that of forests and did not evolve with time. The AGC of cAFS established after savannah (S-cAFS) increased with time and reached the mean AGC of F-cAFS (72 Mg C ha−1) after ca. 75 years. Soil organic carbon (SOC) concentration depended on clay content (R2 = 0.55, P < 0.001). The SOC concentration of F-cAFS did not evolve with time and revealed no difference with forest. In S-cAFS, considering a time of about 80 years after afforestation, the average annual increase in SOC concentration in the 0–15 cm layer ranged from 7.3‰ in soils with low clay content (10–15%) (R2 = 0.60, P < 0.01) to 9.5‰ in soils with higher clay content (20–25%). No significant change in SOC concentration was found for the 15–30 cm layer. Overall, S-cAFS revealed to store and maintain significant levels of C both in the aboveground biomass and in the soil. Such an afforestation thus appeared as a valuable local strategy to combine cocoa and other perennial plant productions with C storage while avoiding deforestation. (Résumé d'auteur)

Mots-clés Agrovoc : Theobroma cacao, Agroforesterie, Utilisation des terres, séquestration du carbone, atténuation des effets du changement climatique, Changement climatique, Extension forestière, Savane

Mots-clés géographiques Agrovoc : Cameroun

Mots-clés libres : Humid savannah, Carbon sequestration, Climate change mitigation, Land use change, Chronosequence

Classification Agris : F08 - Cropping patterns and systems
K10 - Forestry production
P40 - Meteorology and climatology
P01 - Nature conservation and land resources

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Auteurs et affiliations

  • Nijmeijer Annemarijn, CIRAD-PERSYST-UMR SYSTEM (FRA) - auteur correspondant
  • Lauri Pierre-Eric, INRA (FRA)
  • Harmand Jean-Michel, CIRAD-PERSYST-UMR Eco&Sols (CMR) ORCID: 0000-0002-8065-106X
  • Saj Stéphane, CIRAD-PERSYST-UMR SYSTEM (FRA) ORCID: 0000-0001-5856-5459 - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/586699/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-10 ]