Agritrop
Accueil

Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression

Ly Delphine, Huet Sylvie, Gauffreteau Arnaud, Rincent Renaud, Touzy Gaëtan, Mini Agathe, Jannink Jean-Luc, Cormier Fabien, Paux Etienne, Lafarge Stéphane, Le Gouis Jacques, Charmet Gilles. 2018. Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression. Field Crops Research, 216 : 32-41.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
1-s2.0-S0378429016308401-main.pdf

Télécharger (974kB) | Demander une copie

Quartile : Q1, Sujet : AGRONOMY

Résumé : Plant breeding has always sought to develop crops able to withstand environmental stresses, but this is all the more urgent now as climate change is affecting the agricultural regions of the world. It is currently difficult to screen genetic material to determine how well a crop will tolerate various stresses. Multi-environment trials (MET) which include a particular stress condition could be used to train a genomic selection model thanks to molecular marker information that is now readily available. Our study focuses on understanding how and predicting whether a plant is adapted to a particular environmental stress. We propose a way to use genomic random regression, an extension of factorial regression, to model the reaction norms of a genotype to an environmental stress: the factorial regression genomic best linear unbiased predictor (FR-gBLUP). Twenty-eight wheat trials in France (3 years, 12 locations, nitrogen or water stress treatments) were split into two METs where different stresses limited grain number and yield. In MET1, drought at flowering was responsible for 46.7% of the genotype-by-environment (G × E) interactions for yield while in MET2, heat stress during booting was identified as the main factor responsible for G × E interactions, but that explained less of the interaction variance (33.6%). Since drought at flowering explained a fairly large variance in G × E in MET1, the FR-gBLUP model was more accurate than the additive gBLUP across all types of cross validation. Accuracy gains varied from 2.4% to 12.9% for the genomic regression to drought. In MET2 accuracy gains were modest, varying from −5.7% to 2.4%. When a major stress influencing G × E is identified, the FR-gBLUP strategy makes it possible to predict the level of adaptation of genotyped individuals to varying stress intensities, and thus to select them in silico. Our study demonstrates how genome-wide selection can facilitate breeding for adaptation.

Mots-clés Agrovoc : amélioration des plantes, changement climatique, génome, génomique, Triticum, stress dû à la sécheresse, Triticum aestivum, amélioration génétique, résistance à la sécheresse, marqueur génétique, adaptation, développement agricole

Mots-clés géographiques Agrovoc : France

Classification Agris : F30 - Génétique et amélioration des plantes

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Ly Delphine, INRA (FRA)
  • Huet Sylvie, INRA (FRA)
  • Gauffreteau Arnaud, INRA (FRA)
  • Rincent Renaud, INRA (FRA)
  • Touzy Gaëtan, Biogemma (FRA)
  • Mini Agathe, Biogemma (FRA)
  • Jannink Jean-Luc, USDA (USA)
  • Cormier Fabien, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-7283-4616
  • Paux Etienne, CNRS (FRA)
  • Lafarge Stéphane, Biogemma (FRA)
  • Le Gouis Jacques, INRA (FRA)
  • Charmet Gilles, INRA (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/587029/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-06 ]