Plant-pathogenic bacteria cause destructive diseases that limit crop production worldwide. Many Gram-negative phytopathogenic bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. These generally modulate host immunity and physiology for pathogenesis (1–4). Individual effectors rarely contribute measurably to virulence but rather function as a consortium (5). Because of their redundancy and subtle biological activities, the functions of individual type III (T3) effectors remain largely unknown.

Plant immune systems have evolved complex signaling responses to defend against microbial invasion. Plants use specific protein receptors to detect conserved features of pathogen products such as flagellin, chitin, lipopolysaccharide, and elongation factor Tu (EF-Tu); perception of these microbe-associated molecular patterns (MAMPs) triggers basal immunity (1). In addition, plant R genes specifically recognize pathogen effectors. The plant hormone salicylic acid (SA) is a major defense signal molecule (6), and upon recognition of a pathogen, SA production induces basal immune responses such as callose deposition (7, 8). Accumulation of SA in plants also induces expression of pathogenesis-related (PR) defense genes to resist microbial infection and some-pathogen responses to defend against microbial invasion. Plants use specific protein receptors to detect conserved features of pathogen products such as flagellin, chitin, lipopolysaccharide, and elongation factor Tu (EF-Tu); perception of these microbe-associated molecular patterns (MAMPs) triggers basal immunity (1). In addition, plant R genes specifically recognize pathogen effectors. The plant hormone salicylic acid (SA) is a major defense signal molecule (6), and upon recognition of a pathogen, SA production induces basal immune responses such as callose deposition (7, 8). Accumulation of SA in plants also induces expression of pathogenesis-related (PR) defense genes to resist microbial infection and sometimes triggers rapid host cell death (9, 10). Studies of a few genera in the gammaproteobacteria have revealed how pathogen T3 effectors disrupt immune signaling and suppress SA-mediated defenses (5, 11, 12).

The AvrE family of effectors is well conserved across agricul-
PopS, an ancient core T3 effector in plant-pathogenic Ralstonia species, forms a distinct clade of the AvrE/DspE/HopR effector family. Phylogenetic trees were based on comparative analysis of whole genomes of 11 representative sequenced strains. (A) PopS, HopR (XopAM) from Xanthomonas spp. and Pseudomonas syringae suppress defense signaling (12–14). AvrE from which includes AvrE, DspE, and WtsE, induce host cell death and Ralstonia pseudomonads, and pseudomonads (gammaproteobacteria) and naturally important phytobacteria, including enterobacteria, xanthomonads, and pseudomonads (gammaproteobacteria) and Ralstonia spp. (betaproteobacteria) (13). Effectors in this family, which includes AvrE, DspE, and WtsE, induce host cell death and suppress defense signaling (12–14). AvrE from Pseudomonas syringae pv. tomato DC3000 and its ortholog DspE_{Pa} from Erwinia amylovora promote pathogen growth and overcome plant immunity by inhibiting SA-mediated defense responses (12). Despite their broad relevance to the interactions of plant-pathogenic bacteria with their hosts (13), little is known about AvrE-like effectors outside plant-pathogenic gammaproteobacteria.

The bacterial wilt pathogen R. solanacearum is responsible for diseases of many crops in tropical and subtropical climates worldwide. This bacterium enters plant roots from the soil and colonizes the host vasculature, which eventually leads to wilt and plant death (15). R. solanacearum requires a T3SS for root and stem invasion and colonization (16), and T3SS-deficient strains are essentially unable to wilt host plants (16). The R. solanacearum genome encodes an extensive effector repertoire (2, 17). Mutants lacking individual effectors generally do not have virulence defects (18), likely because the effectors have redundant functions (3, 5). The defense-suppressing functions of the individual effectors during the infection cycle remain unknown.

We previously used gene expression analysis to define the R. solanacearum in planta transcriptome, the set of bacterial genes expressed during growth in wilting tomato plant stems (19). An orthologous gene encoding an AvrE-family effector was expressed in planta in two ecologically and phylogenetically distinct strains. This locus (RRSL_03375 in strain UW551 and RSp1281 in strain GMI1000) encodes a secreted T3 effector in the AvrE/DspE/HopR protein family (20), herein named PopS. Relative to expression in rich culture medium, UW551 and GMI1000 upregulate popS in planta 14- and 8-fold, respectively (19). Expression of popS is dependent on HrpB, the transcriptional activator of the T3SS and its effectors (21–23). Most effector genes are upregulated in planta via HrpB (19, 21, 24).

This study characterizes the role of PopS throughout the tomato infection process. We determined that this effector, which has ancient roots in the R. solanacearum species complex, is required for normal host colonization and virulence on multiple Solanum spp. crop hosts. PopS was dispensable for virulence on a weed, Solanum dulcamara, suggesting that it has species-specific virulence activity within the genus Solanum. PopS forms a unique clade in the AvrE family of effectors. Although it is highly divergent from its closest orthologs, we found that PopS retains the function of suppressing SA-mediated plant defenses. In contrast, PopS did not cause plant cell death or necrosis as do the AvrE-family proteins of necrosis-causing pathogens, such as DspE_{Pcc} and WtsE from Pectobacterium carotovorum subsp. carotovorum and Pantoea stewartii subsp. stewartii. Together, our phylogenetic, virulence, and gene expression data suggest that PopS suppresses SA-mediated host defenses but lacks the ability to cause cell death, which may have helped this pathogen adapt to its nonnecrotic lifestyle.

RESULTS

PopS is a conserved, vertically inherited T3 effector in the R. solanacearum species complex. The AvrE effector family is widely present among plant-pathogenic bacteria (13). PopS most closely resembles HopR in Pseudomonas spp. and Xanthomonas spp. (also known as XopAM; http://www.xanthomonas.org/t3e.html) (13), which were, respectively, 25 to 26% and 27 to 28% identical to PopS at the amino acid level. To understand the phylogenetic relationships among these proteins, we developed a maximum-likelihood phylogenetic tree in MEGA5 based on protein sequences of available PopS, AvrE, DspE, and HopR effector or-
Virulence Factor PopS Suppresses SA Defenses

R. solanacearum T3 effector PopS is required for full virulence on several hosts. To study the virulence function of this effector, we disrupted *popS* in strain UW551 (phylogroup II, sequivar 1) via allelic exchange to create strain UW551 *popS::Km*′ (referred to here as the *popS* mutant). This mutant grew indistinguishably from the wild type (WT) in culture medium (data not shown), indicating that *popS* is not required for *in vitro* growth. The *popS* mutant retained wild-type ability to grow on sucrose as the sole carbon source, indicating that insertion of the Km′ cassette did not disrupt expression of the *scrK* sucrose kinase gene (RRSL_03374) immediately downstream of *popS*. Quantitative reverse transcriptase PCR (qRT-PCR) analysis revealed that UW551 WT, but not the *popS* mutant, accumulates *popS* transcript when grown in minimal medium, confirming that *popS* is not expressed in the mutant strain (data not shown). To test the hypothesis that PopS contributes to bacterial wilt virulence, we used a naturalistic soil soak virulence assay to compare wilt disease progress of UW551 WT and the *popS* mutant on susceptible and moderately resistant tomato (*Solanum lycopersicum* cv. Bonny Best and H7996, respectively), susceptible potato (*S. tuberosum* cv. Russet Norkotah), and a natural weed host, *S. dulcamara* (bittersweet nightshade) (19). Briefly, pots containing unwounded plants were soaked with bacterial suspensions, and disease progress was rated daily. The *popS* mutant was delayed in virulence on potato (*P < 0.05; repeated-measures ANOVA) and on both susceptible and resistant tomato (*P < 0.05 and *P < 0.005*, respectively; repeated-measures analysis of variance) and on both susceptible and resistant tomato (*P < 0.05 and *P < 0.005*, respectively; repeated-measures ANOVA) (Fig. 2A, B, and C). The *popS* mutant had a larger virulence defect on the moderately resistant H7996, suggesting that PopS plays a larger role in virulence on resistant plants (Fig. 2A and B).

In contrast, loss of *popS* did not affect *R. solanacearum* virulence on *S. dulcamara*, an epidemiologically important weed host (35) (*P = 0.2; repeated-measures ANOVA*) (Fig. 2D). Lowering the assay temperature from a tropical 28°C to 24°C, which might favor this temperate host plant, did not change this result (data not shown), further evidence that *popS* is dispensable for wilt on *S. dulcamara*. Thus, this effector has species-specific activity, since it was necessary for wild-type disease progress on crop hosts but not on a related weed host.

PopS contributes to colonization of susceptible and resistant tomato stems. To dissect the mechanisms by which PopS contributes to *R. solanacearum* virulence, we compared the rates at which strain UW551 WT and the *popS* mutant wilted and colonized the stems of wilt-resistant tomato plants. Virulence and colonization rates for a completely T3SS-deficient *hrcC* mutant were also measured. To distinguish the stem colonization process from root invasion, tomato stems were directly inoculated through a cut...
petiole with WT UW551, the popS mutant, or the hrcC mutant, and bacterial colonization was quantified over time.

After direct petiole inoculation, the popS mutant was slightly delayed in virulence compared to WT UW551 (Fig. 3A) \((P < 0.001; \text{repeated-measures ANOVA})\). The popS mutant also colonized resistant H7996 tomato stems significantly more slowly than its wild-type parent \((P < 0.03; \text{Mann-Whitney test})\), although its population size reached wild-type levels by 96 h postinoculation (Fig. 3). Complementing the popS mutant by adding a single copy of popS under the control of its native promoter restored the ability of the popS mutant to both wilt and colonize tomato stems \((P < 0.05; \text{Mann-Whitney test})\) (Fig. 3). These results suggest that PopS is required for bacterial success in planta after the early stages of root infection. This result is congruent with a previous observation that a popS mutant of phytophysis I strain GM11000 had reduced fitness in eggplant leaves \((36)\), although there are significant biological differences between the apoplast and xylem tissue.

As expected \((16)\), the T3SS-deficient hrcC mutant was avirulent and did not effectively colonize either susceptible or resistant tomato stems (Fig. 3). The hrcC mutant never reached population sizes greater than \(1.5 \times 10^7\) CFU/g stem on either host. Population sizes of the hrcC mutant declined gradually over the 4 days of the assay to \(1.6 \times 10^6\) CFU/g stem.

The popS mutant induced higher SA defenses in plant roots.

Following infection by pathogens, plant tissues accumulate SA, which induces expression of several PR defense genes \((6, 9)\). Specifically, tomato plants upregulate the SA-mediated PR genes \(PR-1a\) and \(PR-1b\) in response to infection by \(R. solanacearum\) \((37)\). Effectors AvrE in \(P. syringae pv. tomato\) DC3000 and DspE\(_{Ea}\) in \(E. amylovora\) both suppress plant defenses mediated by SA \((12)\). Because UW551 PopS shares 23% amino acid identity with DspE\(_{Ea}\) and AvrE, we tested the hypothesis that it similarly suppresses SA-mediated host defense gene expression.

We measured expression of \(PR-1a\) and \(PR-1b\) in roots of moderately resistant H7996 tomato inoculated with GM11000, UW551, the UW551 popS mutant, or a water control. Twenty-four hours postinoculation, plants inoculated with wild-type strains GM11000 or UW551, respectively, increased expression of \(PR-1a\) by 2.4- and 4.9-fold and \(PR-1b\) by 2.5- and 3.2-fold (Fig. 4A and B). This is consistent with our previous finding that UW551 triggers a faster response in H7996 than GM11000 \((37)\). Plants inoculated with the UW551 popS mutant had much higher levels of \(PR-1a\) (15.8-fold increase) and \(PR-1b\) (13.3-fold increase) than those inoculated with WT (Fig. 4A and B). This result indicates that PopS functions to suppress expression of host plant SA-mediated defense genes. Complementation of the popS mutant with the wild-type popS locus restored the ability of the mutant to suppress tomato SA-mediated defenses (see Fig. S1 in the supplemental material).

SA-treated tomato plants have increased resistance to a popS mutant. Because roots upregulated \(PR-1a\) and \(PR-1b\) in response to the UW551 popS mutant and SA induces tomato \(PR\) defense gene expression \((6, 38, 39)\), we predicted that pretreating tomato plants with SA would specifically increase their resistance to the UW551 popS mutant. We primed the SA defenses by soaking the soil of unwounded susceptible tomato plants \((cv. \text{Bonny Best})\) with 7.5 mM sodium salicylate \((\text{for an estimated soil concentration of 0.75 mM SA/g soil})\) 6 h before inoculating the plants with either UW551 WT or the popS mutant. As predicted, plants pretreated with 7.5 mM sodium salicylate upregulated the SA-triggered defense genes \(PR-1a\) and \(PR-1b\) relative to water-treated control plants (Fig. 4C). SA treatment did not trigger expression of ethylene- or jasmonic acid-dependent defense genes \(ACO5\) or \(pin2\), respectively (Fig. 4C), suggesting that \(PR-1a\) and \(PR-1b\) induction is specific to SA.

SA treatment delayed wilt symptom development in plants inoculated with UW551 WT by 2 days compared to water-treated controls (Fig. 4D and E). By the end of the assay, SA-treated tomato plants inoculated with WT UW551 wilted all tomato plants (Fig. 4E). This demonstrates that SA triggers defenses that increase plant resistance to \(R. solanacearum\).
PopS is required to overcome SA-mediated defense induction. (A and B) Expression of tomato SA-induced PR defense genes increases in response to a \textit{popS} mutant of \textit{R. solanacearum}. Quantitative reverse transcriptase PCR was used to measure expression of plant defense genes in roots of the resistant tomato strain H7996 24 h after inoculation with \textit{R. solanacearum} phytophyle I strain GMI1000, phytophyle II strain UW551 (WT), or the UW551 \textit{popS} mutant. Expression of PR-1a (A) and PR-1b (B) was normalized to that of the tomato \textit{GAPDH} gene, and the change in expression was determined using the $\Delta \Delta C_T$ method comparing pathogen-treated plants to water-inoculated control plants. Results reflect two replicates, each including 10 to 13 pooled roots per treatment; error bars indicate standard errors. (C) Expression of tomato defense genes PR-1a, PR-1b, ACO5, and pin2 was measured by qRT-PCR 6 h after soil soak treatment of Money-maker tomato plants with 0.75 mM SA; RNA was extracted from midstem tissue, and expression levels are shown relative to those of water-treated controls. Results shown are the averages of two replicates, each including 5 pooled stem samples per treatment; bars indicate standard errors. (D and E) Treating plants with SA exacerbates the virulence delay of the \textit{popS} mutant. Average symptom development of susceptible tomato plants (cv. Bonny Best) that were soil soak inoculated with approximately 1×10^8 CFU/g soil of \textit{R. solanacearum} strain UW551 (WT) (open bars) or the UW551 \textit{popS} mutant (filled bars). Six hours preinoculation, roots of the plants were drenched with either water (D) or 0.75 mM sodium salicylate (E) (10 plants per strain per treatment). A representative of two replicates is shown. By the end of the assay, all plants treated with water and WT UW551 or the \textit{popS} mutant or with SA and WT UW551 were completely wilted, and 40% of plants treated with SA and the UW551 \textit{popS} mutant were asymptomatic ($P = 0.0336$; Student’s t test). Of these, 75% were colonized with $>10^{10}$ CFU/g and 25% contained no detectable bacteria. (F and G) Stems of susceptible cv. Money Maker (F) or a SA-deficient NahG transgenic derivative of Money-Maker (G) were inoculated through cut petioles with 40,000 cells of wild-type \textit{R. solanacearum} strain UW551 (white), a \textit{popS} effector mutant (gray), or a T3SS-deficient \textit{hrcC} mutant (black). Columns represent the average bacterial population sizes (CFU/g stem) of 5 plants per treatment per time point, determined by dilution plating ground stem tissue 24 and 48 hpi; error bars indicate standard errors. Asterisks represent statistically significant differences between wild-type UW551 and the \textit{popS} mutant or wild-type UW551 and the \textit{hrcC} mutant (Mann-Whitney test).
Interestingly, pretreatment with SA significantly exacerbated the popS mutant virulence defect. SA-treated plants that were inoculated with the popS mutant never reached WT levels of disease (P = 0.0336; Student’s t test) (Fig. 4E). In fact, 40% of SA-treated tomato plants inoculated with the UW551 popS mutant remained asymptomatic. Quantification of bacterial populations in these plants showed that three of the four asymptomatic plants harbored large R. solanacearum populations (average, 10^{10} CFU/g stem) but the remaining plant contained no detectable R. solanacearum cells. This observation was consistent across replicates (data not shown). In response to the popS mutant, SA-primated roots had decreased rates of initial stem infection and also delayed symptom development. These SA treatment experiments offer further evidence that R. solanacearum uses PopS to overcome SA-induced defenses.

SA-deficient NahG tomato plants restore the colonization defect of the popS mutant. If the function of PopS is to repress SA-mediated defenses, then reduced levels of SA in planta should allow a popS mutant to be more successful. We tested this hypothesis using transgenic Money-maker tomato plants expressing nahG, which encodes a bacterial salicylate hydroxylase that degrades salicylic acid and reduces SA-mediated defenses (40–42). We measured growth of WT UW551, the popS mutant, and the T3 secretion-deficient hrcC mutant in petiole-inoculated stems of wilt-susceptible cv. Money-maker and an isogenic SA-deficient NahG transgenic line. Both the popS and hrcC mutants were significantly delayed in colonization of nontransgenic Money-maker (P < 0.05 and P = 0.004, respectively; Mann-Whitney test) (Fig. 4F); after 48 h, the popS mutant grew to 5.6 × 10^{9} CFU/g stem, compared to 1.5 × 10^{9} CFU/g stem for the wild-type strain (Fig. 4F). These results demonstrated that Money-maker and the susceptible cultivar Bonny Best respond similarly to these R. solanacearum strains (Fig. 3C). The hrcC mutant grew equally poorly in both tomato lines, indicating that absence of SA alone is not enough to restore the stem growth defect of a completely T3SS-deficient strain (Fig. 4F and G). However, the UW551 popS mutant grew as well as its wild-type parent in the NahG tomato plant stems (Fig. 4G). Thus, an SA-deficient plant host could re-store the popS mutant’s colonization rate to wild-type levels, offering independent evidence that a direct or indirect function of PopS is to suppress SA-mediated plant defenses.

PopS does not elicit cell death in Nicotiana benthamiana. Some AvrE orthologs possess not only the ability to suppress SAMediated defenses but also to cause cell death when they are expressed transiently in leaf tissue of Nicotiana benthamiana (14, 43). AvrE-like proteins contain conserved WXXXE motifs; at least two of these motifs are required to trigger cell death or for virulence (14, 43). A multiple alignment of PopS and other AvrE orthologs revealed that PopS contains all conserved tryptophans shown to be important for function in other AvrE family members (Fig. 5A) (14, 43). To determine if R. solanacearum PopS elicits plant cell death, we transiently expressed a C-terminally hemagglutinin (HA)-tagged PopS (PopS-HA), A. tumefaciens pGWBI4::popS (PopS-HA), A. tumefaciens pGWBI2::DspE (DspE from P. carotovorum subsp. carotovorum [Pcc] WPP14) as a positive control, or buffer as a negative control (neg.). Plant symptoms were imaged 48 h postinoculation. In panel C, trypan blue staining shows cell death caused by DspE. Each infiltration was repeated for at least three biological replicates. (E) Western blot analysis of PopS-HA (pGWBI4::popS) or negative control (pGWBI4; empty) from N. benthamiana leaf tissue.

![Figure 5](mbio.asm.org)
throughout the *R. solanacearum* species complex. This effector family is widely conserved among plant-pathogenic bacteria, but its members make various contributions to pathogenesis (12–14, 45). In enteric plant pathogens such as *E. amylovora* and *P. carotovorum*, disrupting *dsP* renders the pathogen completely avirulent (44–46). In contrast, *avrE* mutants of *P. syringae* pv. *tomoato* have no detectable colonization or virulence defects, although *AvrE* apparently works with other effectors, such as HopM1, to suppress host immunity and facilitate pathogenesis (12). *PopS* falls in the middle of this functional spectrum, because *popS* mutants are significantly delayed in virulence and plant colonization but can still cause bacterial wilt disease. The virulence and colonization defects of the *popS* mutant suggest that none of *R. solanacearum*'s more than 70 putative effectors is fully redundant with *PopS* activity (2, 22, 47). Nonetheless, a completely T3SS-deficient *hrcC* mutant was much less able to colonize plants than the *popS* mutant, confirming that additional T3-secreted effectors contribute to this process. As shown for *P. syringae* pv. *tomoato*, multiple effector polymutants may identify those effectors that promote colonization and wilt in the absence of *PopS* (5, 13). Overall, the *AvrE* family's wide conservation and consistent role in virulence suggest that this effector has ancient origins in the evolutionary history of bacterial plant pathogens.

We determined that *PopS* contributes measurably to *R. solanacearum* virulence on several different hosts in the genus *Solanum*. Most strains of this broad-host-range pathogen have multiple effector families (e.g., GALA and AWR), whose homologs together potentiate virulence on solanaceous crop hosts such as tomato and eggplant (48–50). For example, individual GALA-family effectors are not required for full virulence on solanaceous hosts, but deleting three or more GALA effector genes delays wilt on tomato and eggplant (48, 49). *PopS* is a single-copy effector present in all members of the species complex, and our data indicate that it is needed for success on two agriculturally important *Solanum* hosts. Notably, *PopS* was dispensable for virulence on *S. dulcamara*, a common weed that can shelter and disseminate *R. solanacearum* (51). This difference suggests that *PopS* can have plant species-specific activity. As a result of selection pressures in natural ecosystems, wild hosts like *S. dulcamara* may have evolved to avoid *PopS* activity by modifying or eliminating the *PopS* target. Further studies are needed to define the specific mechanisms that permit *S. dulcamara* to resist *PopS*.

The *popS* mutant had the largest virulence defect on moderately wilt-resistant *H7996* tomato, which upregulated its SA-induced *PR* defense genes to a greater degree in response to the *popS* mutant than in response to wild-type UW551. No such difference was observed in the response of roots of susceptible cv. Bonny Best (data not shown). We previously found that after infection by UW551, *H7996* upregulates SA-mediated defense gene expression faster than Bonny Best (37). Consistent with this previous observation, we detected no differences in expression of *PR-1a* and *PR-1b* in Bonny Best roots inoculated with wild-type UW551 or the *popS* mutant (data not shown). We suspect that the larger virulence defect of the *popS* mutant on *H7996* is directly correlated to the magnitude and timing of the defense signaling in *H7996*. This hypothesis was supported by our finding that susceptible tomato plants were more resistant to infection by the *popS* mutant when roots were pretreated with SA, which induces *PR* gene expression. It seems likely that *PopS*, like other *AvrE*-like effectors (12–14), also suppresses SA-induced immune responses, such as callose deposition, that are triggered by recognition of MAMPs. The specific *R. solanacearum* MAMPs are undetermined, but purified *R. solanacearum* exopolysaccharide (EPS), a conserved and essential virulence factor, triggers increased *PR* gene expression in quantitatively resistant *H7996* but not in susceptible Bonny Best (37). Further studies are needed to determine how *R. solanacearum*’s T3 effectors suppress MAMP- and EPS-triggered plant defenses.

The tomato pathogenesis-related protein *PR-1a* is triggered by SA (52). *PR-1b* has been described in the literature as ethylene responsive (53–55). Based on this, we previously used *PR-1b* as a marker of ethylene pathway activation (37). However, *PR-1b* has also been described as SA responsive (56, 57) and there is some evidence that it is upregulated under both conditions (52, 58, 59). We therefore directly tested the effect of SA exposure on expression of this gene in *H7996* tomato. This experiment revealed that under our conditions, both *PR-1a* and *PR-1b* are upregulated around 35-fold in response to SA treatment (Fig. 4C).

The importance of *PopS* for tomato plant stem colonization and wilt is consistent with our previous observation that many *R. solanacearum* T3SS genes are highly expressed at midstage disease in planta (19). Further, SA-induced defenses are not expressed in tomato stems until *R. solanacearum* reaches 10⁶ CFU/g (37). Together these results affirm that T3 effectors are active not only at low pathogen cell densities early in colonization, as previously suggested (60, 61), but also at a later stage in the disease cycle. Between initial root infection and the end-stage collapse and death of the plant, *R. solanacearum* primarily inhabits the xylem elements, which are composed of nonliving tracheids; this raises the question of where T3SS effectors might act during midstage wilt disease. It has been suggested that bacteria in xylem elements inject effectors into the living xylem parenchyma cells that are adjacent to tracheids and accessible through the pits in xylem cell walls (19).

As expected (16), the T3SS-deficient UW551 *hrcC* mutant could not reach the 10⁶-CFU/g cell densities in stems required for bacterial wilt symptom development (62) and *hrcC* populations declined in tomato stems over time. This suggests that the T3SS is important not only for growth but also for persistence in planta. Both animal- and plant-pathogenic *Pseudomonas* spp. use the T3SS to persist in host tissue (63–66). Unlike the *popS* mutant, growth of the *hrcC* mutant was not restored in SA-deficient plants. We suspect that the constraints that limit success of the *hrcC* mutant include an inability to overcome basal immunity (1) or manipulate host physiology (4).

To the best of our knowledge, this is the first study to explore the defense-suppressing functions of an *R. solanacearum* effector in roots and stems, which are the important niches for *R. solanacearum* during natural pathogenesis. Using *PopS* as an example, we propose a model for effector functions during the bacterial wilt disease cycle where *R. solanacearum* uses T3 effectors for (i) root invasion and colonization, (ii) suppression of root defenses, (iii) stem colonization and growth, and (iv) induction of wilt symptoms. Further studies using adjustable promoters or inducible deletion mutations could reveal when these virulence traits are required during the disease process.

Three independent lines of evidence supported our conclusion that *PopS* suppresses SA-mediated defenses. First, a *popS* mutant strain elicited 3- to 4-fold-higher expression of SA-triggered *PR* genes in tomato than WT UW551. Second, pretreating tomato...
plants with SA increased the magnitude of the popS mutant’s virulence defect, as would be expected if that defect resulted from an inability to modulate SA-triggered plant defenses. Third, PopS was dispensable for colonization of SA-defective NahG transgenic tomato, as would be predicted if the popS mutant’s colonization defect was caused by SA-mediated plant defenses. These results suggest that AvrE-family effectors generally function to suppress SA-mediated defenses, in beta- as well as gammaproteobacteria. Although PopS shares 23% amino acid sequence identity with its closest AvrE and DspE orthologs, protein sequence alignments revealed many scattered, moderately conserved regions, including the three conserved tryptophans important for the virulence activity in other gammaproteobacterial AvrE homologs (14, 43). Given the diversity of hosts that can be manipulated by AvrE-family proteins, it seems likely that this effector family interacts with a broadly conserved element of the plant defense system that indirectly or directly impacts SA-mediated responses. Most surprisingly, we determined that PopS does not elicit cell death when transiently expressed in leaf tissue, unlike other AvrE homologs from hemibiotrophic and necrotrophic pathogens. Of the many AvrE-containing plant pathogens studied to date, R. solanacearum is the only one that causes a nonnecrotic wilt. As a biotroph, it multiplies to high cell densities in the xylem without causing necrosis. We speculate that as AvrE, WtsE, DspE_{PopS}, and PopS diverged from a common ancestor, they adapted to the pathogenic lifestyles (necrotrophy, hemibiotrophy, and biotrophy) of each bacterium (Fig. 6). T3 effectors from hemibiotrophic <i>Pseudomonas</i> induce cell death in host tissue more often than effectors from biotrophic <i>R. solanacearum</i> (67), which suggests that in general, T3 effectors may function differently based on a pathogen’s lifestyle. Necrotrophs such as <i>P. carotovorum</i> subsp. <i>carotovorum</i> kill host tissue upon plant contact and during multiplication. <i>P. carotovorum</i> subsp. <i>carotovorum</i> DspE_{PopS} elicits cell death but does not suppress SA-mediated defenses (43, 44) (Fig. 6), which is consistent with the observation that SA is not a major signal associated with necrotroph infection. AvrE possessing hemibiotrophs (e.g., <i>P. syringae</i> pv. <i>tomato</i> and <i>P. syringae</i> subsp. <i>stewartii</i>) multiply in living host tissue but elicit necrosis during pathogenesis. Their AvrE homologs (AvrE and WtsE, respectively) not only elicit plant cell death when heterologously introduced into plant tissue but also indirectly or directly suppress SA-mediated defenses, which are known to defend plants against biotrophs and hemibiotrophs (Fig. 6) (12, 14; S. Y. He, personal communication). It remains to be determined if <i>P. syringae</i> HopR, the closest ortholog of PopS, causes cell death like AvrE, although it also suppresses SA-mediated defenses (13). <i>R. solanacearum</i> does not cause necrosis during infection and wilt, placing it on the biotrophic end of the spectrum. PopS does not elicit plant cell death but suppresses SA-mediated plant defenses, consistent with the biology of <i>R. solanacearum</i>. Functional studies of chimeric AvrE homologs and heterologous complementation across pathogens could reveal the specific domains that contribute to the distinct and common biological activities of this conserved effector.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are listed in Table 1. <i>Escherichia coli</i> was grown at 37°C in Luria-Bertani medium (68). <i>R. solanacearum</i> was cultivated at 28°C on rich Casamino Acids-peptone-glucose (CPG) medium (pH 7.0) (69). When required, media were supplemented with kanamycin (Km) (25 μg/ml), gentamicin (Gm) (15 μg/ml), tetracycline (Tc) (15 μg/ml), or rifampin (Rif) (25 μg/ml).

Recombinant DNA techniques and mutagenesis. Genomic and plasmid DNA was isolated by standard protocols (68). <i>E. coli</i> and <i>R. solanacearum</i> were transformed as previously described (68). PCR primer sequences are listed in Table S2 in the supplemental material. To disrupt the <i>R. solanacearum</i> UW551 locus RSSL_03375 (popS), flanking regions from <i>popS</i> and a kanamycin resistance (K^m)^r cassette were amplified from UW551 genomic DNA and pSTBlue-1, respectively, using Phusion high-fidelity DNA polymerase (Finnzymes, Vantaa, Finland). The K^m cassette was inserted between the popS-flanking fragments by splicing by overlap extension (SOE)-PCR (70). Similar methods were employed to create a hrcC mutant (hrcC:^{Gm})^r, except that a Gm^m cassette amplified from vector pUCGM was inserted in the regions flanking hrcC. The resulting SOE-PCR product was gel purified, phosphorylated with T4 polynucleotide kinase (Promega, Madison, WI), and ligated into the EcoRV site of cloning vector pSUP202-71 to create pSUP202-popS::K^m^r. Wild-type UW551 was transformed with pSUP202-popS::K^m^r, and double recombinant mutants were selected for Km^m but screened for Tc^r to ensure proper allelic exchange. To complement the <i>R. solanacearum</i> popS::K^m^r mutant, popS and its upstream native promoter were amplified from the UW551 genome and directly inserted into pENTR/D-TOPO (Life Technologies, Carlsbad, CA) following the manufacturer’s instructions. UW551 popS was transferred to complementation vector pUC18-miniTn7-T-Gm-GW via LR Gateway cloning as described by the manufacturer’s protocol (68). The resulting SOE-PCR product was gel purified, phosphorylated with T4 polynucleotide kinase (Promega, Madison, WI), and ligated into the EcoRV site of cloning vector pSUP202-71 to create pSUP202-popS::K^m^r. Wild-type UW551 was transformed with pSUP202-popS::K^m^r, and double recombinant mutants were selected for Km^m but screened for Tc^r to ensure proper allelic exchange. To complement the <i>R. solanacearum</i> popS::K^m^r mutant, popS and its upstream native promoter were amplified from the UW551 genome and directly inserted into pENTR/D-TOPO (Life Technologies, Carlsbad, CA) following the manufacturer’s instructions. UW551 popS was transferred to complementation vector pUC18-miniTn7-T-Gm-GW via LR Gateway cloning as described by the manufacturer’s protocol (Life Technologies, Carlsbad, CA). <i>R. solanacearum</i> popS::K^m^r mutant competent cells were transformed with pUC18-miniTn7-T-Gm-GW and Tn7 helper plasmid pTNS1 as previously described (72). Mutations were confirmed with PCR.

Phylogenetic analysis. Phylogenetic trees of PopS and AvrE/DspE/HopR orthologs were created with MEGA5 (25). The amino acid or gene sequences of PopS orthologs from NCBI or MAGE databases were aligned with CLUSTAL-W, from which a maximum-likelihood phylogenetic tree was created. The bacterial strains used in this analysis are listed in Table S2 in the supplemental material. The percentage of replicate trees in which individual orthologs clustered together in the bootstrap test (200 replicates) was calculated and noted at each branch. MUM index (MUMI)
distances for whole-genome analysis were computed for each pair of se-
quenced genomes of *R. solanacearum* using the web server (http://genome.
jouy.inra.fr/mumi/index.cgi). Briefly, the MUMi estimated the genomic
distances as well as a gain/loss of DNA segments (34). The *R. solanacearum*
complex tree was created from a MUMi distance matrix using neighbor-
joining cluster analysis.

Plant assays.
To evaluate pathogen virulence, pots containing individ-
ual unwounded plants were soaked with a water suspension of UW551 or
the *popS* mutant to create a final inoculum density of 1 × 10^6 CFU/g soil.
Hosts included 17-day-old susceptible tomato plants (cv. Bonny Best),
Money-maker expressing NahG (42). The experiment included five plants
per treatment in two biological replicates. To evaluate the impact of plant
salicylic acid levels on stem colonization, we measured bacterial coloniza-
tion, seeds were stored at 4°C overnight in the dark in water and then
germinated on 1% water agar for 48 h at room temperature in the dark.
Germinated seedlings were transferred to plates containing 1% agar and
0.5× Murashige and Skoog basal salts medium plus Gambourg’s vitamins
(MS medium) (MP Biomedicals, Santa Ana, CA) and incubated for 2 days
at 28°C with a 12-h light cycle. Root tips were inoculated with 2 × 10^6 CFU/ml of either GMI1000, WT UW551, or the *popS*
mutant. Plant root tissue was harvested 2.54 cm from the inoculation
point 24 hpi, immediately frozen in liquid nitrogen, and stored at −80°C.
Results are averages of data from 7 to 12 plants per treatment.

Plant defense gene expression. Seeds of Bonny Best or H7996 tomato
were surface sterilized with 50 ml 10% bleach for 10 min, followed by an
ethanol wash in 50 ml 70% ethanol for 5 min. Ethanol and bleach washes
were performed in 50-ml conical tubes, and seeds were incubated on a
shaker at 200 rpm at room temperature. Seeds were then rinsed 5 to 7
times with sterile water to remove residual ethanol. For uniform germi-
nation, seeds were stored at 4°C overnight in the dark in water and then
germinated on 1% water agar for 48 h at room temperature in the dark.

TABLE 1 Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype and characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli Top10</td>
<td>F- Δ(mrr-ksdRMS-merC) galU lacZΔZ35 recA</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens GV3101</td>
<td>Gm’ Rif’</td>
<td>75</td>
</tr>
<tr>
<td>Ralstonia solanacearum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW551</td>
<td>Wild-type geranium isolate; phytophore II, sequence 1</td>
<td>76</td>
</tr>
<tr>
<td>RSW19</td>
<td>UW551 popS::Km’</td>
<td>This study</td>
</tr>
<tr>
<td>RSW35</td>
<td>UW551 popS::Km’ pUC18-miniTn7-Gm::pop5::Km’</td>
<td>This study</td>
</tr>
<tr>
<td>RSW36</td>
<td>UW551 hrcC::Gm’, type III secretion deficient, Gm’</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSTBlue-1</td>
<td>Cloning vector, Ap’ Km’</td>
<td>EMD Bioscience</td>
</tr>
<tr>
<td>pSUP202</td>
<td>Cloning vector, Ap’ Km’</td>
<td>71</td>
</tr>
<tr>
<td>pUCGM</td>
<td>Ap’ Gm’</td>
<td>77</td>
</tr>
<tr>
<td>pENTR/D-TOPO</td>
<td>Cloning vector, Km’; Gateway (Life Technologies)</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>pGW2B</td>
<td>Expression vector, 35S promoter, Km’</td>
<td>78</td>
</tr>
<tr>
<td>pGBW14</td>
<td>Expression vector, 35S promoter, C-terminal HA, Km’</td>
<td>78</td>
</tr>
<tr>
<td>pUC18-miniTn7-Gm-GW</td>
<td>Complementation vector, Km’; Gateway (Life Technologies)</td>
<td>79</td>
</tr>
<tr>
<td>pTNS1</td>
<td>Helper plasmid for transposition; Ap’</td>
<td>79</td>
</tr>
<tr>
<td>ECW34</td>
<td>pSUP202::popS::Km’ Ap’ Km’</td>
<td>This study</td>
</tr>
<tr>
<td>ECW35</td>
<td>pSUP202::hrcC::Gm’ Ap’ Gm’</td>
<td>This study</td>
</tr>
<tr>
<td>pENTR/D-TOPO::popS</td>
<td>–6.5-kb fragment containing UW551 popS with its native promoter cloned into pENTR/D-TOPO; Km’</td>
<td>This study</td>
</tr>
<tr>
<td>pUC18-miniTn7-Gm-GW::popS</td>
<td>–6.5-kb fragment containing UW551 popS with its native promoter cloned into pUC18-miniTn7-Gm-GW; Gm’</td>
<td>This study</td>
</tr>
<tr>
<td>pGBW14::popS</td>
<td>–5.2-kb gene encoding UW551 PopS cloned into pGW14; Km’</td>
<td>This study</td>
</tr>
<tr>
<td>pGW2B::dspE</td>
<td>–4.9-kb gene encoding Pectobacterium carotovorum subsp. carotovorum DspE</td>
<td>43</td>
</tr>
</tbody>
</table>
rogram of total RNA per sample was reverse transcribed using Superc
script III reverse transcriptase first-strand synthesis Supermix (Life
Technologies, Carlsbad, CA) with oligo(dT) and random hexamer prim
ers, following the manufacturer’s protocol. qRT-PCR was performed in
duplicate with 1 × PowerSYBR green master mix (Life Technologies,
Carlsbad, CA), 400 nM forward and reverse primers, and 50 ng cDNA
-template for a final volume of 25 μL. The reaction conditions were
as follows: 10 min polymerase activation and 40 cycles of 95°C for 15 s and
57°C for 1 min. Relative gene expression was quantified for the tomato
defense genes PR-1a and PR-1b using previously described primers (52)
and normalized to that of a reference gene (GAPDH). Relative expression
of treatment compared to control was defined using the ΔΔCT method
(73).

Transcien expression of PoPs in leaf tissue. The pop5 gene was am
plified as described above and inserted into Gateway vector pENTR/D
TOPO following the manufacturer’s instructions (Life Technologies,
Carlsbad, CA). The pop5 gene was inserted into expression vector
pGW141 for C-terminal HA fusion protein expression using LR cloning
(Life Technologies, Carlsbad, CA). The resulting plasmid, pGW8:14:
pop5, was confirmed with sequencing and transformed into Agrobacte
rium tumefaciens, followed by selection with the appropriate antibiotics.
Leaves from ~30-day-old N. benthamiana and N. tabacum plants were
infiltrated with either buffer control, A. tumefaciens pGW2:dpE’po
(pop5 gene from A. tumefaciens pGW14 (empty vector control),
or A. tumefaciens pGW141:pop5). Leaf symptoms were observed and cap
tured by scanning leaves at 48 h postinoculation. To verify the visible cell
death elicited by DspE, plant leaves were stained with trypan blue as pre
viously described (74). Each treatment was carried out in triplicate over
three independent experiments.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
Table S1, DOCX file, 0.1 MB.
Table S2, DOCX file, 0.1 MB.
Figure S1, DOCX file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Ting-Li Lin (University of Wisconsin Statistical Consulting
Service) for invaluable statistical advice and Gary Roberts and Yoaping
Zhang (University of Wisconsin) for cloning vector pSUP202. We are
grateful to Robyn Roberts and Alice Tellier (University of Wisconsin)
for technical assistance with Western blot analysis. We thank Emilia Kruzel
(SUNY-Buffalo), Tiffany Lowe (University of Wisconsin), and helpful
anonymous reviewers for critical reading of the manuscript. We thank
Herbert Schweizer (University of Colorado) for mini-Tn7 plasmid for complementation, and Greg Martin (Boyle Thomson Institute) for
Money-maker and NahG tomato seed.
This study was supported by R. J. Tarleton and Storkan-Hanes-
McCaslin Foundation Awards to J.M.J. and by the University of Wiscon
sin College of Agricultural and Life Sciences.

REFERENCES
323–329.
12:44–52.
type III secretion system effectors: repertoires in search of functions. Curr.
4. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo
WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G,
White FF, Somerville SC, Mudgett MB, Frommer WB. 2010. Sugar
transporters for intercellular exchange and nutrition of pathogens. Nature
468:527–332.
5. Cunncan, S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer
A. 2011. Genetic disassembly and combinatorial reassembly identify a
minimal functional repertoire of type III effectors in Pseudomonas syrin
7. Tsuda K, Glazerbrook J, Katagiri F. 2008. The interplay between MAMP
between MAMP-triggered and SA-mediated defense responses. Plant J.
53:763–775.
central role of salicylic acid in plant disease resistance. Science 266:
246–250.
11. Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT.
2007. A J domain virulence effector of Pseudomonas syringae remodels
of conserved bacterial effectors inhibits salicylic acid-mediated basal
13. Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB, Martin GB,
Schneider DJ, Collmer A. 2009. Deletions in the repertoire of Pseudo
monas syringae pv. tomato DC3000 type III secretion effector genes reveal
functional overlap among effectors. PLoS Pathog. 5:e1000386. doi:
10.1371/journal.ppat.1000386.
14. Ham JM, Majerczak DR, Nomura K, Mecce C, Uribe F, He SY, Mackey
D, Coplin DL. 2009. Multiple activities of the plant pathogen type III
effector proteins WtsE and AvrE require WxxxE motifs. Mol. Plant Mi
nanmanickam SS (ed), Plant-associated bacteria. Springer Verlag, New York,
NY.
regulatory genes of Ralstonia solanacearum are required for different
stages of the tomato root infection process. Mol. Plant Microbe Interact.
17. Remenant B, de Cambiaie JC, Cellier G, Jacobs JM, Mangenot S, Barbe
Ralstonia syzygii, the blood disease bacterium and some Asian R. sol
anacearum strains form a single genomic species despite divergent lif
tory and functional analysis of the large Hrp regulon in Ralstonia solanacear
transcription of two Ralstonia solanacearum strains: new insights into bacterial
wilt pathogenesis of tomato. mBio 3:e00114-12.
anacearum hrpB constitutive mutants and secretion analysis of hrpB-regu
lated gene products that share homology with known type III effec
hrpB gene encodes a positive regulator of pathogenicity genes from Pseu
anacearum type III effector proteins through translocation analysis of hrpB-regu
Genome-wide analysis of gene expression in Ralstonia solanacearum re
veals that the hrpB gene acts as a regulatory switch controlling multiple
eXsce active expression of Ralstonia solanacearum type III secretion
system genes throughout plant infection. Microbiology 158:2107–2116.
MEGA5: molecular evolutionary genetics analysis using maximum likeli

