What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes

Loubota Panzou Grace Jopaul, Fayolle Adeline, Feldpausch Ted R., Ligot Gauthier, Doucet Jean-Louis, Forni Eric, Zombo Isaac, Mazengue Mathurin, Loumeto Jean Joël, Gourlet-Fleury Sylvie. 2018. What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management, 429 : pp. 570-578.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (1MB) | Request a copy

Quartile : Q1, Sujet : FORESTRY

Abstract : Tropical forests play a key role in regulating the terrestrial carbon cycle and climate change by storing a large amount of carbon. Yet, there is considerable uncertainty about the amount and spatial variation of aboveground biomass (AGB), especially in the relatively less studied African tropical forests. In this study, we explore the local-scale variation and determinants of plot-level AGB, between and within two types of forests, the Celtis and Manilkara forests, growing under the same climate but on different geological substrates in the northern Republic of Congo. In each forest site, all trees ≥10 cm diameter were censured in 36 × 1-ha plots and we measured tree height and crown size using a subsample of 18 × 1-ha of these plots. We developed height-diameter and crown-diameter allometric relationships and tested whether they differed between the two sites. For each 1-ha plot, we further estimated the AGB and calculated structural attributes (stem density and basal area), composition attributes (wood density) and architectural attributes (tree height and crown size), the latter being derived from site-specific allometric relationships. We found strong between-site differences in height-diameter and crown-diameter allometries. For a given diameter, trees were taller in the Celtis forest while they had larger crown in the Manilkara forest. Similar trends were found for the sixteen species present in both forest sites, suggesting an environmental control of tree allometry. Although there were some between-site differences in forest structure, composition and architecture, we did not detect any significant difference in mean AGB between the Celtis and the Manilkara forests. The AGB variation was related to the heterogeneous distribution of large trees, and influenced by basal area, height and crown dimensions, and to a lesser extent wood density. These forest attributes have strong practical implications on emerging remote-sensing technologies for carbon monitoring in tropical forests.

Mots-clés Agrovoc : Forêt, Forêt tropicale humide, Biomasse, biomasse aérienne des arbres, Cycle du carbone, Caractéristique du peuplement, Hauteur, Houppier, Télédétection

Mots-clés géographiques Agrovoc : République démocratique du Congo, Afrique centrale

Mots-clés libres : Tree allometry, AGB estimation, Basal area, Wood density, Central Africa

Classification Agris : K01 - Forestry - General aspects
F40 - Plant ecology
P40 - Meteorology and climatology

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Loubota Panzou Grace Jopaul, GxABT (BEL) - auteur correspondant
  • Fayolle Adeline, GxABT (BEL)
  • Feldpausch Ted R., University of Exeter (GBR)
  • Ligot Gauthier, Université de Liège (BEL)
  • Doucet Jean-Louis, Université de Liège (BEL)
  • Forni Eric, CIRAD-ES-UPR BSef (COG)
  • Zombo Isaac, CIB [Congolaise industrielle des bois] (COG)
  • Mazengue Mathurin, Mokabi (COG)
  • Loumeto Jean Joël, Université Marien Ngouabi (COG)
  • Gourlet-Fleury Sylvie, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-1136-4307

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-03 ]