Agronomic linked data (AgroLD): A knowledge-based system to enable integrative biology in agronomy

Venkatesan Aravind, Tagny Ngompé Gildas, El Hassouni Nordine, Chentli Imene, Guignon Valentin, Jonquet Clément, Ruiz Manuel, Larmande Pierre. 2018. Agronomic linked data (AgroLD): A knowledge-based system to enable integrative biology in agronomy. PloS One, 13 (11):e0198270, 17 p.

Journal article ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (2MB) | Preview


Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps

Abstract : Recent advances in high-throughput technologies have resulted in a tremendous increase in the amount of omics data produced in plant science. This increase, in conjunction with the heterogeneity and variability of the data, presents a major challenge to adopt an integrative research approach. We are facing an urgent need to effectively integrate and assimilate complementary datasets to understand the biological system as a whole. The Semantic Web offers technologies for the integration of heterogeneous data and their transformation into explicit knowledge thanks to ontologies. We have developed the Agronomic Linked Data (AgroLD–, a knowledge-based system relying on Semantic Web technologies and exploiting standard domain ontologies, to integrate data about plant species of high interest for the plant science community e.g., rice, wheat, arabidopsis. We present some integration results of the project, which initially focused on genomics, proteomics and phenomics. AgroLD is now an RDF (Resource Description Format) knowledge base of 100M triples created by annotating and integrating more than 50 datasets coming from 10 data sources–such as and TropGeneDB–with 10 ontologies–such as the Gene Ontology and Plant Trait Ontology. Our evaluation results show users appreciate the multiple query modes which support different use cases. AgroLD's objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to the implication of genes/proteins in, for instances, plant disease resistance or high yield traits. We expect the resolution of these questions to facilitate the formulation of new scientific hypotheses to be validated with a knowledge-oriented approach.

Mots-clés Agrovoc : ontologie de domaine, Génétique, Agronomie, Biologie, Logiciel, Recherche de l'information, céréale

Classification Agris : C30 - Documentation and information
F30 - Plant genetics and breeding

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Venkatesan Aravind, Institut de Biologie Computationnelle (FRA)
  • Tagny Ngompé Gildas, Institut de Biologie Computationnelle (FRA)
  • El Hassouni Nordine, Institut de Biologie Computationnelle (FRA)
  • Chentli Imene, Institut de Biologie Computationnelle (FRA)
  • Guignon Valentin, Bioversity International (FRA)
  • Jonquet Clément, LIRMM (FRA)
  • Ruiz Manuel, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-8153-276X
  • Larmande Pierre, CNRS (FRA) - auteur correspondant

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-01 ]