Development of molecular markers against endogenous banana streak virus sequences (eBSV) to secure both banana germplasm exchange and the use of M. Balbisiana genome in banana and plantain breeding programs.

Matthieu CHABANNES 1, Serge GALZI1, Nathalie LABOUREAU1, Philippe GAYRAL1,2, Guy NOUMBISSE1, Pierre Olivier DUROY1,3 and Marie Line ISKRA-CARUANA1

Contact: matthieu.chabannes@cirad.fr

1Unr BGP1, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
2Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
3Université de Lausanne, Institut de biotechnologie, EPFL FSB – LBTM, CH 831-390 (Bâtiment CH), Station 6, CH-1015 Lausanne, Switzerland

Introduction

Infections of banana and plantain by banana streak viruses (BSV) can occur in the absence of vector-mediated transmission, through the activation of infective endogenous BSV sequences (eBSVs). Such eBSVs are present in the Musa balbisiana (B) genome. Once activated by biotic or abiotic stresses, these viral integrants cause spontaneous infection in both natural and synthetic interspecific hybrids harbouring one copy of the B genome. We realised an in-depth characterisation of markers for genotyping eBSVs.

In collaboration with colleagues from CIRAD Guadeloupe, l’Ewai (eBSOLV). Based on their sequences and their structures we developed several PCR and Derived Cleaved Amplified Polymorphic Sequences (dCAPS) specific markers for genotyping eBSVs.

Those markers enabled to propose a strategy for the distribution of germplasm containing eBSV alleles present in the B genome, while minimising any risks associated with the distribution of BSV to the recipient country. They were also used to genotype M. balbisiana germplasm, unveiling the presence of modified eBSV alleles in several accessions and finally were used as phylogenetic markers to shed light on Musa evolution. In breeding programs, and open new perspectives for breeding improved banana and plantain hybrid varieties.

Results

1) Molecular structure of eBSVs discovered in PKW genome for three BSV species; Goldfinger (eBSGFV) -Imove (eBSIMV), and Obino (eBSOLV). Based on their sequences and their structures we developed several PCR and Derived Cleaved Amplified Polymorphic Sequences (dCAPS) specific markers for genotyping eBSVs.

2) eBSV markers as a tool to shed light on Musa evolution

3) eBSV markers to assist the early selection of banana plants carrying non-infective eBSVs or eBSV-free banana plants

4) Decision tree for distributing germplasm with BSV and/or eBSV

Chabannes et al., 2013 - J. Viro. 87(15):8624-8637

Umbel et al., 2015 - Mol. Breeding 36:74

Chabannes et al., 2013 - J. Viro. 87(15):8624-8637

Duroy et al., 2016 - Ann Bot. 127 (6):625-644