Cyanide content and distribution in cassava plants, in association with physiological age

Monica Pizarro¹, María Alejandra Ospina¹, Jorge Luna¹, John Belalcazar¹, Sandra Salazar¹, Thierry Tran^{1,2}, Luis Augusto Becerra López-Lavalle¹, Dominique Dufour².

¹CIAT, Cassava Program, CGIAR Research Program on Roots Tubers and Bananas (RTB), Palmira, Colombia. m. ²CIRAD, UMR Qualisud, Montpellier, France.

Introduction

Cassava is a key staple food crop in tropical parts of the world. However, the presence of cyanogenic glucosides limits its consumption, in particular in leaves. Root parenchyma is mainly consumed by humans, and the root cortex is used for animal feed. Leaves are mostly considered as a byproduct, however their high protein, vitamin and mineral content have potential nutritional benefits. This study evaluates the concentration of HCN at different physiological ages and distribution in different parts of the plant for 50 genotypes, in order to clarify the risk posed by cyanogens.

Materials and methods

Cassava genotypes from the Cassava diversity Collection at the International Center of Tropical Agriculture (CIAT) were planted and harvested in Palmira, Colombia. Cyanide content in root parenchyma, peels and leaves of 50 landraces was analyzed at 11 months (Essers et al., 1993 with modifications). In addition, the effect physiological age (3, 6 and 11 months) on cyanide content in cassava leaves was assessed, using 11 genotypes with contrasting cyanide contents. The selected genotypes were for representativeness of the genus Manihot in Latin America and Asia.

Results and conclusion

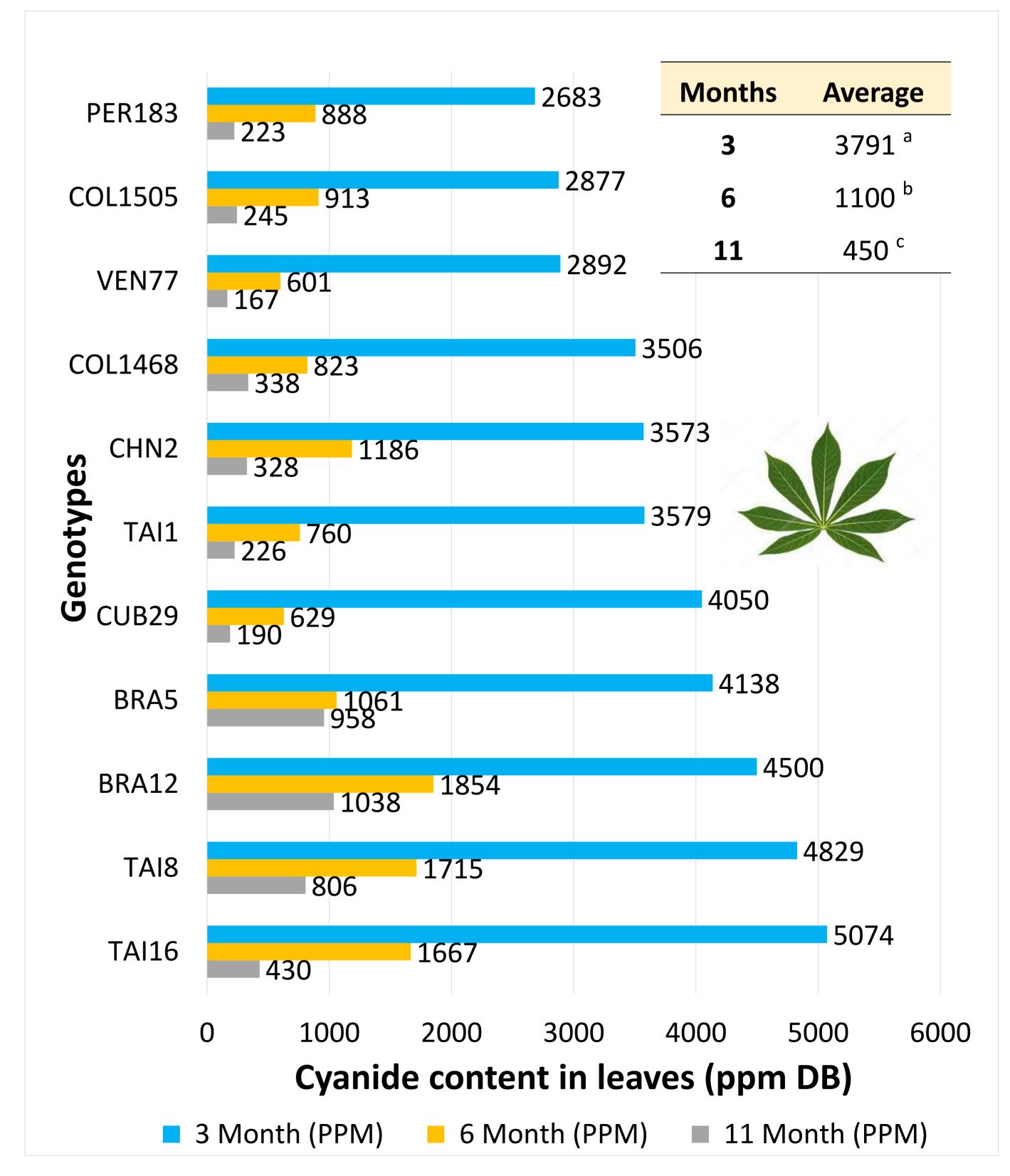
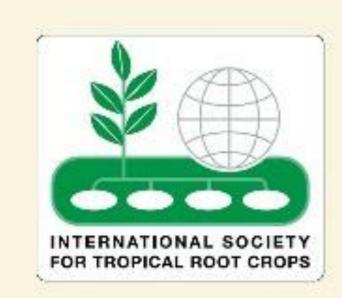

The Mesoamerica Caribbean, Amazon and Humid Atlantic forest groups were associated with higher cyanide in the leaves (average 1092 ppm, 886 ppm and 754 ppm DB, repectively) (Table 1); while South American rainforest, Humid Atlantic forest and Mesoamerica Caribbean groups were associated with higher cyanide in peels (average 1137 ppm, 885 ppm and 893 ppm DB, repectively). The Andean group was associated with low to moderate cyanide contents in all parts of the plant. In young cassava leaves (figure 1) cyanide content was high (3791) ppm DB), and decreased markedly with time until harvest (1100 and 450 ppm DB at 6 and 11 months, respectively). These findings on cyanide content in a large number of genotypes and its relation with physiological age are important to identify genotypes with attractive attributes for increased utilization of cassava leaves.

Table 1. Average cyanide content (HCN in ppm, DB) in various parts of cassava plants (leaves, peels and parenchyma) in seven genetic diversity groups of Latin America (50 genotypes).

Diversity Group	Parenchyma	a Peel	Leaves
Amazon	639 a	683 ab	886 ab
Andean	185 ^b	483 ^b	335 ^d
Dry Atlantic Fore	st 192 ^b	551 ^b	736 abcd
Humid Atlantic For	est 628 ^a	885 ^{ab}	754 abc
MesoAmerica Carib	bean 239 ^b	893 ab	1092 a
Savanna	195 ^b	788 ab	511 bcd
South American Rain	Forest 202 b	1137 ^a	472 cd
Average	305	804	655
S. Dev.	240	492	416


Sources of variation (probability > F) from ANOVA

Diversity Group <0.0001 0.1399 0.0112

Figure 1. Cyanide content of cassava leaves at 3, 6 and 11 months physiological age.

Correspondence author: m.pizarro@cigar.org

