Agritrop
Home

Towards a model of wheat leaf morphogenesis at plant scale driven by organ-level metabolites

Gauthier M., Barillot Romain, Schneider Anne, Fournier Christian, Pradal Christophe, Pinet Amélie, Andrieu Bruno. 2018. Towards a model of wheat leaf morphogenesis at plant scale driven by organ-level metabolites. In : Electronic proceedings of 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). Anhui Agricultural University, INRA. Hefei : IEEE, pp. 94-101. ISBN 978-1-5386-7817-6 International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA18). 6, Hefei, Chine, 4 November 2018/8 November 2018.

Paper with proceedings
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
AS7172316589137921548012761403_content_1.pdf

Télécharger (556kB) | Request a copy

Url - éditeur : https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8608168

Abstract : Leaf dimensions, specific mass and composition are traits of interest, as leaves constitute the main exchange surface with the aboveground environment. These variables arise from the interplay between many processes, and vary with growth conditions. Models of plant growth are useful tools to explore a wide range of climatic scenarios, management practices and genotypes. However, most models lacks process-based formalisms allowing simulating shoot architecture plasticity. We propose a functional-structural wheat model that couples carbon and nitrogen metabolism with leaf morphogenesis during the vegetative stage. The originality of our model relies on the interaction between leaf growth and the metabolism of carbon and nitrogen in the growing zone, which is possible thanks to an explicit and detailed formalism of the processes at organ level. The model simulates the appearance of successive leaves using coordination rules instead of a constant phyllochron as a driving mechanism. As a first step, main modules were evaluated separately: the coordination model and the metabolism model of a single growing leaf. The model shows interesting emergent properties: phyllochron stability, pattern of mature leaf length along the culm and realistic kinetics of length, dry mass and concentrations in both growing and mature zones. A qualitative evaluation strategy of the completely integrated model at plant scale is then proposed. As a conclusion, the model appears to be a useful concept, which could be transposed to other grasses.

Mots-clés libres : Plant architecture, FSPM, Leaf growth, OpenAlea, Carbon, Nitrogen

Auteurs et affiliations

  • Gauthier M.
  • Barillot Romain, INRA (FRA)
  • Schneider Anne
  • Fournier Christian, INRA (FRA)
  • Pradal Christophe, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-2555-761X
  • Pinet Amélie, AgroParisTech (FRA)
  • Andrieu Bruno, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/590825/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-14 ]