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GLM: Application situation

• 2 categories of individuals  in a population

• The variable we wish to model is the proportion of 

one of these two types 

• Example: population of horses in Senegal

Proportion of individuals with 

West Nile (WN) virus antibodies = Seroprevalence

Sign of current or 

past infection





The data

prevchev<-read.table ("prechev.csv",header=TRUE,sep=",",dec=".")

Read the data 

summary(prevchev)

Look the data

AGE              REGION      SALINITE               VILLAGE           POS              TOT        
Min.   : 2.000   DJO:32   Min.   :- 0.170000   Nguith       : 13   Min.   : 0.000   Min.   : 1.000  
1st Qu.: 6.000   NGT:38   1st Qu.:-0.150000   Ross- bethio  : 13   1st Qu.: 1.000   1st Qu.: 1.000  
Median : 8.000   RIT:43   Median :- 0.090000   Tiguette     : 13   Median : 1.000   Median : 1.000  
Mean   : 8.611   ROB:46   Mean   :- 0.005657   Débi         : 12   Mean   : 1.586   Mean   : 1.854  
3rd Qu.:10.000   STL:39   3rd Qu.:- 0.040000   Gohou Mbathie: 12   3rd Qu.: 2.000   3rd Qu.: 2.000  
Max.   :24.000            Max.   : 0.450000   Mbodiene     :  9   Max.   :12.000   Max.   :13.000  

(Other)      :126 

One sample of horses from that population (Senegal). 

On each sampled horse, blood sample has been taken and WN antibodies 

have been searched for

132 villages



Data presentation

head(prevchev,10)

Look at the first 10 lines

AGE REGION SALINITE     VILLAGE POS TOT
1    6    NGT    -0.15 Belel mbaye   1   1
2   11    NGT    -0.15 Belli bamdi   1   1
3    4    ROB    -0.17  Bissette 1   1   1
4   10    RIT    -0.09   Campement   1   1
5    7    NGT    -0.15 Darou salam   1   1
6    8    NGT    -0.15 Darou salam   1   1
7   10    NGT    -0.15 Darou salam   2   2
8    2    DJO    -0.04        Débi   2   4
9    3    DJO    -0.04        Débi   2   3
10   4    DJO    -0.04        Débi   4   8

One statistical unit per age*village class(132 villages)

dim(prevchev)

198   6 6 variables

Dimensions of the data table



Description of the data: number of individuals sampled

TOTDIST<- tapply(prevchev$TOT,prevchev$VILLAGE,sum)

Distribution of the number of horses sampled in a village

! Sometimes, more than one stat unit in a village (age classes)

Generates a table that contains the sum of the 

variable  TOT for the  each modality of the 

variable VILLAGE

hist(TOTDIST,50)

Histogram of TOTDIST

TOTDIST

F
re

qu
en

cy

0 10 20 30 40

0
5

10
15

20
25

30
35



Distribution of the number of horses sampled in each 

region

REGDISTCHEV<-tapply(prevchev$TOT,prevchev$REGION,sum)

barplot(REGDISTCHEV)
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Description of the data: distribution / age

AGEDIST<- tapply(prevchev$TOT,prevchev$AGE,sum)

Distribution of the age of sampled horses
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Aims of the study

• Estimate the proportion of horses with antibodies

• Determine the influence on the response variable 
(proportion of seropositive horses) of the 
explanatory variables:

– Age

– Region

– Salinity



Type of model depend on types of response and 

explanatory variables

Response Explanatory Statistical model

Continuous All continuous Linear regression

Continuous All categorical
Analysis of variance 
(ANOVA)

Continuous
Continuous and 
categorical

Analysis of 
covariance 
(ANCOVA)

Continuous
Any combination of 
continuous and/or 
categorical variables

Linear model (LM)

Categorical, Count, 
Probability, 
Proportion 

Any combination of 
continuous and/or 
categorical variables

Generalized linear 
models (GLM)



What type of model shall we use?

• A generalized linear model (GLM) characterized by : 

– A link function

– A distribution law



Which link function ?

• The logit function
– p is outcome proportion

– Logit(p) = log(p/(1-p))

p=seq(0,1,0.01)
plot(log(p/(1-p)),p)
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Interpretation of logit

• Logit(p) = log(p/(1-p))

– Logit is the log of odd

– Way of expressing probabilities originating from gambling vocabulary

– A horse with an odd of 25 against 1 = 25 times more likely to loose the race 
than to win it

– Scientists use p, gamblers p/(1-p)

– With the logit function think in terms of log(p/(1-p)



What underlying distribution ?

• The binomial distribution
– Classical example : numbers of 3s for 6 dice draws: B(6, 1/6)

– Describe a number of events given:

• The probability of the event 

• The number of trials (draws)

– For modelling a proportion:

• The data include the number of  events

• The data include the number of trials

• We want to estimate the  probability of an event

Number of WN posi<ve → B(Number tested, p )

Data Data Outcome variable



prevchev$VARAEX<-cbind(prevchev$POS,prevchev$TOT-prevchev$POS)

Outcome variable for a proportion

Outcome variable has 2 components: 

•number of positive 

•number of négatifs

Number of positive Number of negatives

The outcome variable



Model syntax in R

~ separates response and explanatory variables

+ addition of an explanatory variable  and b

a:b interaction between a and b

a*b equivalent to a+b+a:b

a/b b is nest in a

In R the model is usually defined with a function including a formula as one argument

lm(formula,options)
glm(formula,options)

aov(formula,options) Analysis of variance and covariance (ANOVA, ANCOVA)
Regressions and linear models
Generalized linear models

Formula syntax



mod0<-glm(VARAEX~1, family=binomial, data=prevchev)

First model: the null model

The null model is the simplest one can build: it 

considers the proportion as homogeneous

Glm function

Dependent variable

Explanatory variables 

(=constant term) Type of distribution 

choosed



summary(mod0)

Interpretation of the outputs

Call:
glm(formula = VARAEX ~ 1, family = binomial, data = prevchev)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-2.3744   0.5585   0.5585   0.5585   1.4777  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   1.7791     0.1485   11.98   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 151.35  on 197  degrees of freedom
AIC: 207.93

Number of Fisher Scoring iterations: 4

Model description

Estimation (logit scale) and 

test of H0: estimation = 0

Not important

Model fit:

Deviance should 

not exceed the d° of 

freedom



How is the model fitted ?

Maximum likelihood method:

•Determine the value of the parameter that maximises the 

probability of the data

•Given the structure of the model (i.e. considering that the 

proportion WN positive individuals is homogeneous) 



summary(mod0)

Interpretation of the outputs

Call:
glm(formula = VARAEX ~ 1, family = binomial, data = prevchev)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-2.3744   0.5585   0.5585   0.5585   1.4777  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   1.7791     0.1485   11.98   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 151.35  on 197  degrees of freedom
AIC: 207.93

Number of Fisher Scoring iterations: 4

Model description

Estimation (logit scale) and 

test of H0: estimation = 0

Not important

Model fit



Interpretation of the parameter estimation

The estimation obtained is 1.7791

•It is the logit of the estimation of the proportion of WN positive individuals in 

a village under the hypothesis that this proportion is homogenous

•To obtain the proportion estimation, 

one has to apply the inverse logit function

exp(1.7791)/(1+exp(1.7791))

0.8555857

fit<-fitted.values(mod0)
head(fit,5)

or
computes the value predicted by the 

model for each statistical unit (line) in 

the data table

What about the confidence interval !!!!!!!

1         2         3         4         5 
0.8555858 0.8555858 0.8555858 0.8555858 0.8555858

Directly in proportion and not 

any more in Logit



preval<-predict(mod0,newdata=NULL,type="link",se.fit=TRUE)

Estimation of logit(p) with confidence interval

Name of the model used for 

computing the estimations

Table listing the combinations 

of the explanatory variables 

for which estimations are 

required. If NULL, the data 

table is used

Scale of estimationEstimation 

logi(p): « link »

or p: « response »

Erreurs standards des 

estimations

1.779101 1.779101 1.779101 1.779101 1.779101

head(preval$fit,5)

Generates a 3 components list: $fit, $se.fit, $residual scale

0.1485006 0.1485006 0.1485006 0.1485006 0.1485006

head(preval$se.fit,5)

logit (p) is estimated at 1.7791 with a standard error of 0.1485



Estimation of p with confidence interval

logit (p) is estimated at 1.7791 with a standard error of 0.1485

•The 95% confidence interval of logit(p) can be build

•Lower limit: 1.7791-1.96*0.1485 1.488

•Upper limit: 1.7791+1.96*0.1485 2.07

To compute the confidence interval of the estimation of p

•The inverse logit function is applied to the limits of the logit(p) IC

•Estimation of p: exp(1.7791)/(1+exp(1.7791)) 0.856

•lower limit: exp(1.488)/(1+exp(1.488)) 0.816

•upper limit: exp(2.07)/(1+exp(2.07)) 0.888

p is estimated at 0.856 with a 95% IC = [0.816; 0.888]



summary(mod0)

Interpretation of the outputs

Call:
glm(formula = VARAEX ~ 1, family = binomial, data = prevchev)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-2.3744   0.5585   0.5585   0.5585   1.4777  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   1.7791     0.1485   11.98   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 151.35  on 197  degrees of freedom
AIC: 207.93

Number of Fisher Scoring iterations: 4

Model description

Estimation (logit scale) and 

test of H0: estimation = 0

Not important

Model fit



Null deviance:     151.35  on 197  degrees of freedom
Residual deviance: 151.35  on 197  degrees of freedom
AIC:               207.93

The deviance: Quantity of variation in the data unexplained by the model

•The larger is the deviance, the larger is the quantity of unexplained variation

•Null deviance: the deviance of null model (the model in which the response variable 

is considered as homogeneous)

•Residual deviance: deviance of the current model (note that here null deviance = 

residual deviance because the current model is the null model) 

•The degrees of freedom

= number of statistical units –number of parameters in the model

Model fit: residual deviance ≈ number of degrees of freedom

•If residual deviance >> residual ddl

•The model doesn’t  contain any important explanatory variable

•La chosen distribution (binomial) is not adapted



AIC: is a measure of model quality in terms of quantity of explained 

variation and parameter number

•For a given deviance, AIC selects the model with the lower 

number of parameters

•For a given number of parameters, AIC selects the model of 

lowest deviance

•The smaller the AIC, the best is the model

•A difference of 2 AIC points between 2 models is significant (the 

model with the lowest  AIC is significantly better)

Null deviance:     151.35  on 197  degrees of freedom
Residual deviance: 151.35  on 197  degrees of freedom
AIC:               207.93



mod1<-glm(VARAEX~1+AGE, family=binomial, data=prevchev)

A model to test the effect of a continuous explanatory variable : age

Now we add the effect of age in the model

mod1<-update(mod0,~.+AGE)
Or

Call:
glm(formula = VARAEX ~ AGE, family = binomial, data = prevchev)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-2.8685   0.2642   0.4970   0.6448   1.5660  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.33691    0.39309   0.857 0.391390    
AGE          0.18804    0.05155   3.647 0.000265 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 136.18  on 196  degrees of freedom
AIC: 194.75

Estimation of the effect 

of age. The proportion of 

WN positives increases 

with age.

The addition of the age 

affect results in a 

decrease of the deviance



deviance(mod0)-deviance(mod1)

Test of the effect of age

•Z-test on the coefficient: test of H0 : coef(AGE)=0

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.33691    0.39309   0.857 0.391390    
AGE          0.18804    0.05155   3.647 0.000265 ** *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 

•Test of the likelihood ratio between mod0 and mod1
The deviance difference between two nested models ~ a χ² distribution 

with nb of df = difference between the residual degrees of freedom of the two models

df.residual(mod0)-df.residual(mod1)

1-pchisq(15.7,1)

15.17363

1

9.825205e-05

•Comparaison of the AIC of mod1 and mod0

AIC(mod1)

AIC(mod0)

194.75

207.93
The model with age has a lower AIC. The age effect is 

significant

P-value <0.05 . 

Significant age effect

P-value <0.05 

Significant age effect



plot(prevchev$AGE, fitted.values(mod1))

Representation of the age effect

Age
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•Non-linearity: the 

relationship is linear on the 

logit scale but not on the 

proportion scale

•With the logit link, the 

predicted values are not 

above 1



mod2<-glm(VARAEX~1+REGION, family=binomial, data=prevchev)

A model to assess the effect of a categorical variable : region

mod2<-update(mod0,~.+REGION)
Or

The region of DJO is 

used as a reference

Coefs quantify the 

difference in logit(p) 

between the focal region 

and the reference region. 

The test is H0: no 

difference.

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   1.5353     0.2946   5.211 1.88e-07 ** *
REGIONNGT     1.1214     0.5953   1.884   0.0596 .  
REGIONRIT     0.9634     0.5169   1.864   0.0624 .  
REGIONROB     0.4796     0.4780   1.003   0.3157    
REGIONSTL    -0.5023     0.3891  -1.291   0.1967

mod2<-update(mod0,~.-1+REGION)

Estimate Std. Error z value Pr(>|z|)    
REGIONDJO   1.5353     0.2946   5.211 1.88e-07 ***
REGIONNGT   2.6568     0.5172   5.136 2.80e-07 ***
REGIONRIT   2.4987     0.4247   5.884 4.02e-09 ***
REGIONROB   2.0149     0.3764   5.353 8.64e-08 ***
REGIONSTL   1.0330     0.2541   4.065 4.80e-05 ***

Coefs give logit(p) for the 

focal region. 

Test H0 : logit(p)= 0

it means p=0.5

Usually not interesting

mod2<-glm(VARAEX~REGION-1, family=binomial, data=prevchev)

Or



Which link function ?

• The logit function
– p is outcome proportion

– Logit(p) = log(p/(1-p))

p=seq(0,1,0.01)
plot(log(p/(1-p)),p)
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deviance(mod0)-deviance(mod2)

Test of the region effect

•Z-test on the coefficient: not very usefull
•Either a test of the difference with an arbitrarily determined reference region

•Or a test of H0 p=0.5 

•Test of the likelihood ratio between mod0 and mod2
The deviance difference between two nested models ~ a χ² distribution 

with nb of df = difference between the residual degrees of freedom of the two models

df.residual(mod0)-df.residual(mod2)

1-pchisq(15.8985,4)

15.89853

4

0.003

•Comparaison of the AIC of mod2 and mod0

AIC(mod1)

AIC(mod0)

200.03

207.93
AIC of the model including region is smaller. Region has 

a significant effect on the proportion of WN positive

P-value <0.05 

Significant region 

effect 



plot(previnddjo$REGION, fitted.values(mod2))

Representation of the region effect
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Modelling principles

We want to identify the model built with the available 

explanatory variables that provides the best possible 

description of the data



Modelling principles

Model Interpretation

Saturated model •Includes one parameter by data point. 

•Describe perfectly the data but is useless for inferring the 

mechanisms that generate variation in the response 

variable.

Maximal model •Includes the effects of all the potential explanatory

variables and all their interactions.

•Usually used as a starting point for the model selection 

process 

Minimal adequate model •Includes only the effects of the potential variables and of 

the interactions which removal results in a significant 

decrease in the fraction of explained variation

•The description of the response variable retained

Null model •Includes only one parameter which represent the 

estimation of the response variable under the hypothesis 

that it is homogeneous in the population (no variation).

•A kind of baseline model: models that do not explain more 

variation can be considered as irrelevant.



Modelling principles

We want to identify the model built with the available 

explanatory variable that provides the best possible 

description of the data

If we consider only AGE and REGION as potential explanatory variables, 

The maximal model contains the effect of 

•AGE

•REGION 

•And the interaction AGE*REGION

The effect of age differs among regions



Modelling: building the maximal model

mod3<-glm(VARAEX~REGION+AGE+AGE*REGION, family=bino mial, data=prevchev)

Maximal model

Coefficients:
Estimate Std. Error z value Pr(>|z|)   

(Intercept)   -0.37072    0.67514  -0.549  0.58294   
AGE            0.29696    0.11079   2.680  0.00735 **
REGIONNGT      0.11548    1.57426   0.073  0.94152   
REGIONRIT      1.91226    1.47469   1.297  0.19473   
REGIONROB      0.74785    1.12760   0.663  0.50719   
REGIONSTL      1.17632    1.12666   1.044  0.29645   
AGE:REGIONNGT  0.10675    0.24481   0.436  0.66280   
AGE:REGIONRIT -0.17889    0.19490  -0.918  0.35871   
AGE:REGIONROB -0.08362    0.16524  -0.506  0.61283   
AGE:REGIONSTL -0.26914    0.15357  -1.753  0.07968 . 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 116.52  on 188  degrees of freed om
AIC: 191.1

Number of Fisher Scoring iterations: 6

Interaction Coefficients

Region Coefficients

Age coefficient
Reference coefficient



Modelling: reaching the minimum adequate model

library(MASS)
stepAIC(mod3)

We start from the maximal model and remove non significant effects

Start:  AIC=191.1
VARAEX ~ AGE + REGION + AGE * REGION

Df Deviance    AIC
- AGE:REGION  4   121.17 187.75
<none>            116.53 191.10

Step:  AIC=187.75
VARAEX ~ AGE + REGION

Df Deviance    AIC
<none>        121.17 187.75
- REGION  4   136.18 194.75
- AGE     1   135.45 200.03

•One can use Likelihood Ratio Tests to remove the non significant effects

•Start by trying to remove the interactions

•Do not remove a main effect when it is involved in an interaction

•One can use an automatic removal procedure based on AIC comparisons

The minimum adequate model includes 

the effects of AGE and REGION but not 

their interaction



Minimum adequate model = final model

modfin<-glm(VARAEX~AGE+REGION, family=binomial, dat a=prevchev)

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.22085    0.44961   0.491 0.623276    
AGE          0.19282    0.05513   3.498 0.000469 ** *
REGIONNGT    0.91045    0.60840   1.496 0.134534    
REGIONRIT    0.75867    0.53074   1.429 0.152871    
REGIONROB    0.29442    0.49332   0.597 0.550636    
REGIONSTL   -0.72290    0.41095  -1.759 0.078560 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 151.35  on 197  degrees of freedom
Residual deviance: 121.17  on 192  degrees of freed om
AIC: 187.75



Obtaining the estimations from the final model

newdata<-
expand.grid(AGE=seq(2,24,1),REGION=levels(prevchev$REGION))

newdata

Create a data frame including the combinations of levels of the explanatory 
variables for which we want to get an estimations of prevalence

AGE REGION
1     2    DJO
2     3    DJO
3     4    DJO
4     5    DJO
5     6    DJO
6     7    DJO
7     8    DJO
8     9    DJO
9    10    DJO
10   11    DJO
11 12    DJO
12 ……………



Display the results of the final model

preval<-predict(modfin,newdata=newdata,type="link",se.fit=TRUE)

•Use the predict() function to obtain estimations from the final model for the 
combinations of levels of the explanatory variables

The model from 
which the 
estimations are 
required

The table 
including the 
combinations of 
levels of the 
explanatory 
variables

The predictions 
will be given on 
the logit scale

You want the 
standard 
errors of the 
estimations

str(preval)

List of 3
$ fit           : Named num [1:115] 0.607 0.799 0.99 2 1.185 1.378 

...
..- attr(*, "names")= chr [1:115] "1" "2" "3" "4" ...

$ se.fit : Named num [1:115] 0.376 0.346 0.324 0.309 0.304 
...

..- attr(*, "names")= chr [1:115] "1" "2" "3" "4" ...
$ residual.scale: num 1



Display the results of the final model

newdata$pred <-exp(preval$fit)/(1+exp(preval$fit))
newdata$low <-exp(preval$fit-1.96*preval$se.fit)/(1+exp(preval$ fit-1.96*preval$se.fit))
newdata$hig <-exp(preval$fit+1.96*preval$se.fit)/(1+exp(preval$ fit+1.96*preval$se.fit))

•Add the predictions and confidence intervals in the newdata table

head(newdata)

AGE REGION      pred low       hig
1   2    DJO 0.6471421 0.4674587 0.7930405
2   3    DJO 0.6898298 0.5300237 0.8143319
3   4    DJO 0.7295117 0.5884477 0.8357227
4   5    DJO 0.7658401 0.6407583 0.8570843
5   6    DJO 0.7986362 0.6859485 0.8780763
6   7    DJO 0.8278712 0.7240064 0.8981474



Graphic
ibrary(ggplot2)
ggplot() + geom_line(data=newdata, aes(x=AGE,y=pred )) +

facet_grid(.~REGION)+
geom_line(data=newdata, aes(x=AGE,y=low),linetype=2 ) +
geom_line(data=newdata, aes(x=AGE,y=hig),linetype=2 ) + 
xlab("AGE") + ylab("PREVALENCE")

(http://www.cookbook-r.com/Graphs/)



Effect of salinity

boxplot(prevchev$SALINITE~prevchev$REGION)

Salinity provided at the regional scale, not at the village scale. 
Lower prevalence in the region with the highest salinity



Displaying the results of the final model

newdata<-as.data.frame(matrix(,nrow=5*23,ncol=2))
names(newdata)<-c("AGE","REGION")

newdata$AGE<-rep(seq(2,24,1),5)

newdata$REGION<-
c(rep("DJO",23),rep("NGT",23),rep("RIT",23),rep("RO B",23),rep("STL",23))

newdata

Create a table including the combinations of the levels of the explanatory variables for 

which we want estimations from the final model

AGE REGION
1     2    DJO
2     3    DJO
3     4    DJO
4     5    DJO
5     6    DJO
6     7    DJO
7     8    DJO
8     9    DJO
9    10    DJO
10   11    DJO
11 12    DJO
12 ……………



Displaying the results of the final model

preval<-predict(modfin,newdata=newdata,type="response")

•Use the predict function to obtain estimations model modfin for the combinations of 

the levels of the explanatory variables listed in newdata 

The model used to 

obtain the 

predictions

The table 

containing the 

combinaitions of 

explanatory 

variable levels

The predictions are 

required on the p, 

not the logit(p) 

scale

•The predictions are pasted in the newdata table 

newdata$pred<-preval



Displaying the results of the final model

newdata$regnum<-rep(1,115)
newdata$regnum<-replace(newdata$regnum,newdata$REGI ON=="NGT",2)
newdata$regnum<-replace(newdata$regnum,newdata$REGI ON=="RIT",3)
newdata$regnum<-replace(newdata$regnum,newdata$REGI ON=="ROB",4)
newdata$regnum<-replace(newdata$regnum,newdata$REGI ON=="STL",5)

•Crate an numeric equivalent of REGION (1 distinct digit for each region)

plot(newdata$AGE,newdata$pred,pch=newdata$regnum)
legend(15,0.7,c("DJO","NGT","RIT","ROB","STL"),cex=1.5,pch=1:5)

•The predictions (y-axis) are displayed as a function 

AGE (x-axis) et of REGION (symbol, coded by regnum)  
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Displaying the results of the final model

Additive effects of AGE and REGION

Les predicted lines are parallel on the logit(p) scale, 

but not on the p scale



Type of data GLM specifications

A number of events in a population of 

unknown size (number of cases of a 

disease) 

A number of events within a time period of 

a given length

Size of a group

Link Function=log

Distribution=Poisson

Be careful for the output interpretation the link 

function is log.

Otherwise, the same as for a proportion

A binary variable binaire (two possible 

outcomes) at the individual scale. Each line 

is an individual, the dependent variable can 

only take 2 values (coded 1 or 0)

Link function=logit

Distribution=binomial

Be careful: the outcome variable has only one 

component (not two components as when the 

outcome variable is a proportion)

Otherwise, the same as for a proportion

Other GLMs

glm(nbre~a+b+a*b, family=poisson, data=mydata)

glm(bin~a+b+a*b, family=binomial, data=mydata)


