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Abstract

Cocoa quality depends on several parameters, suclo@a variety, environmental growth
conditions, cultivation technique, and post-hartesatments applied to coca beans. In this
work, we studied the impact of cocoa post-harvestgssing on both microbial communities
structure and volatile composition. Cocoa beanspsesnwere fermented in wooden boxes in
Ivory Coast at different time intervals with turgimand without turning, and derived from
pods stored for two different duration times. Cobeans were analyzed using a molecular
fingerprinting method (PCR-DGGE) in order to deteatiations in microbial communities’
structure; this global analysis was coupled to SRMEMS for assessing cocoa volatile
profiles. The results showed that the main parantbtg influenced microbial communities
structure was fermentation time, followed by tugjinvhereas, pods storage duration had a
minor impact. Similar results were obtained forraatic profile, except for pods storage
duration that significantly affected volatile conyoal production. Global statistical analysis
using Canonical Correspondence Analysis (CCA), ®ibthe relationship between microbial
communities and volatile composition. Furthermdhes study allowed the identification of

discriminating microbial and chemical markefsocoa post-harvest processing.
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1. Introduction

Cocoa is ranked among the most traded agriculjpradlucts in the world. Cocoa beans
production is estimated to 4,552,000 tons in 200672 73% of which is produced by Africa,
mainly by Ivory Coast, which is the cocoa first gueer, followed by Ghana, Cameroon and

Nigeria (ICCO, 2017).

Cocoa has an intrinsic quality potential that dejsenon several parameters, such as cocoa
variety, age of the cocoa tree, soil chemical casitpm, post-harvest treatments, and
industrial process (Kongor et al., 2016). In paite, postharvest processing applied on beans
can enhance or degrade the sanitary and/or orgaimlgualities of cocoa (Saltini et al.,
2013). The transformation of cocoa goes througreeghmain stages (pods opening,
fermentation, and drying). The crucial step is femtation, which is a spontaneous process
involving microbial flora succession responsible &moma precursor’s production inside the
beans through biochemical reactions. Fermentatists lusually between 5 to 7 days. Yeasts
are the first type of microorganism involved follesv by Lactic Acid Bacteria (LAB), and
then Acetic Acid Bacteria (AAB) (Schwan and Whe&804). Several recent studies tried to
understand the role of these microorganism gronpcoa fermentation and to control this
phenomenon by inoculating selected strains prelyasgslated from cocoa (Lefeber et al.,
2012, Crafack et al., 2013). The major resultsheke works showed that yeast strains have a
greater impact on the improvement of cocoa aromguility when compared to bacterial
strains (Crafack et al., 2013; 2014; Ho et al.,208oné et al.,, 2016; Hamdouche et al.,

2017).

Several studies on the impact of postharvest tresatisnon cocoa beans composition showed
that fermentation types (Papalexandratou et all120/isintin et al., 2016) and times

(Hamdouche et al., 2015) significantly affected thierobiota associated with cocoa beans,
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while pods storage (pulp preconditioning) and tagnaffected chemical composition and

physical appearance of cocoa (Nazaruddin et &806;2Guehi et al., 2010).

Aroma profile significantly contributes to cocoa adity and thus is crucial for the
acceptability of chocolate. This profile varied migi with fermentation and drying time
(Rodriguez-Campos et al.,, 2011; 2012). Aroma pansr previously formed during
fermentation and drying steps were highly develogeding roasting. Roasting reduces
acidity by volatile acids evaporation and removigeh acidic and astringent flavors (Beckett
2000, Ramli et al., 2006). Maillard reactions gemera valuable source of aromatic
compounds as pyrazines, pyrroles, furans and tleisz(Belitz et al., 2009). The 2-
methylpyrazine and 2, 3, 5, 6 tetramethylpyrazireethe main volatile compounds present in
roasted cocoa. Both are responsible for the swedt strong cocoa flavor respectively

(Lefeber et al., 2012).

The most used techniques for volatile compoundsaetion are distillation, direct solvent
extraction, solid phase extraction (SPE), headspstbods and solid phase micro-extraction
(SPME). After concentration, gas chromatographyhis most suitable analytical method.
This technique allows the separation of a verydargmber of compounds on a fused silica
capillary column. Different detection methods cadplwith gas chromatography allow
volatile compounds detection and identificatiomnfle ionization, flame photometry, atomic
emission, and mass spectrometry. SPME-GC-MS for badspace analysis of volatile
compounds allowed sensitive and representativeysisalof cocoa products with high

reproducibility (Ducki et al., 2008).

A recent work revealed that cocoa aroma compouodsposition varied according to cocoa
variety (Menezes et al., 2016), but no study shothedmpact of pod storage and turning on
microbial ecology and the associated impact on arprofiles The main aims of this original

study were: (i) to measure the impact of the vemmbf three parameters (pod storage,

4
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fermentation time and turning) during cocoa positst processing on microbial and volatile
profiles; (ii) to identify discriminating microbiand/or aroma markers of each process; (iii) to
establish relationship between microbial commusitessociated with cocoa beans and

volatile compounds produced.

2. Material and Methods

2. 1. Cocoa beans sampling

Four hundred cocoa pods were harvested in Nove2ibt in Akoupé (lvory Coast). The
number of harvested pods was divided in two bat¢B66 pods each), the first batch was
stored during 2 days and the other one during &.dajter storage, all pods were opened
using a machete. For each pods opening delay, apmtely 30 kg of pulp-bean mass were
extracted manually, recovered and distributed im Wwooden boxes for fermentation during 7
days. Two types of processing were applied on tlees®a beans: fermentation with and
without turning. The turning was done at 2 and dnfntation days, this choice was made
following the artisanal practices applied. One diieom of cocoa beans was collected at 2, 4,
5, 6 and 7 days of fermentation and sun dried durfimlayson wooden drying racks. During
drying step, no turning was done. The sampling pexormed in sterile conditions by using
sterile gloves and plastic bags. Samples werelseptane to Cirad laboratory, Montpellier,
France and stored at room temperature. The midrabéhchemical analyses were carried out

immediately.

2. 2. Microbial ecology analysis

2.2.1. Microbial DNA extraction

Microbial DNA was extracted from 10 g of ferment@ud dried cocoa beans. Two technical
repetitions were assessed for each sample. Thactgtr was performed according to the

method described previously by Hamdouche et all320The quantity and purity of

5
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extracted DNA were measured by a UV spectrophoteméBiospec-Nano), and by
electrophoresis through a 0.8% agarose gel in 1) DBaffer (containing 40 mM Tris-HCI,
pH 7.4, 20 mM sodium acetate, 1.0 mM NEDTA; Eppendorf) with a 1 Kb molecular
weight ladder (Promega). The agarose gels weratrd®0 V for 30 min and stained for 15
min in Gel Red solution (50 mg.ntt Biotium), then observed and photographed on a UV
transilluminator, using a black and white CCD camgcion Company) and Gel Smart 7.3

system software (Clara Vision).
2. 2. 2. PCR amplification of extracted DNA

For bacterial communities analyses: A 160 bp fragnué the V3 variable region of 16S
rDNA was amplified using gc-338f (5-GCG CCG CCG C&CG GCG GGC GGG GCG
GGG GCA CGG GGG GCA TCC TAC GGG AGG CAG CAG-3', Big) and 518r (5'-ATT
ACC GCG GCT GCT GG-3', Sigma) DNA primers (Leesi@§05; Hamdouche et al., 2015;
2016). A 40-bp GC-clamp (Sigma) was added to tinvdad primer in order to ensure that the
DNA fragment will remain partially double strandadd that the region screened is in the
lowest melting domain (Sheffield et al., 1989). Eaaixture (final volume 50 pL) contained
about 100 ng of DNA template, DNA primers at 0.2 midoxyribonucleotide triphosphate
(dNTPs) at 200 uM, 1.5 mM Mggl5 pL of 10X of Taq reaction buffer Mg{iree and 1.25
unit of a-Taq polymerase (Promega). In order todase the specificity of amplification and
to reduce the formation of spurious by-products ADNas amplified by a “touchdown” PCR

previously described by Hamdouche et al. (2015).

For fungal communities analyses: a 250 bp fragmém1/D2 region of the 26S rDNA was
amplified using universal DNA primers gc-NL1 (5'-@3CCG CCG CGC GCG GCG GGC
GGG GCG GGG GCC ATA TCA ATA AGC GGA GGA AAA G-3)ral LS2 (5'-ATT CCC

AAA CAA CTC GAC TC-3, Sigma) (Cocaolin et al., 20R0A 30-bp GC-clamp was added to



143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

the forward primer. PCR mixture performed as presip described for bacterial DNA

analyses. The amplification program was descrilvegipusly by Hamdouche et al. (2015).

Electrophoresis in 2% (w/v) agarose gel with TAE bMffer stained with Gel Red (as
described above) was used to verify and quantifiR P@&ducts using a standard (DNA mass

ladder 100 bp, Promega). The migration lasted aB@umin at 100 V.

2. 2. 3. Denaturing gradient gel electrophoresis (DGGE) analysis

PCR products were separated by DGGE, using a BibBR@&de universal mutation detection
system (Bio-Rad Laboratories, USA) according to phecedure described by Muyzer et al.
(21993) and improved by Leesing (2005). Forty miteo (uL) of each PCR product were
loaded onto 8% (w/v) polyacrylamide gels (acrylaidiN'- methylene bisacrylamide,

37.5/1, Promega) in 1X TAE.

Electrophoresis experiments were performed at 6@SiAg a denaturing gradient ranging
from 30 to 60% (100% corresponded to 7 M urea &t 4v/v) formamide, Promega). The
migration was carried out at 20 V for 10 min andrthat 80 V for 12 h. Then the gel was
stained for 30 min with Gel Red solution and théotpgraphed as described above in 2.2.1

section.

2. 2. 4. Purification and identification of DGGE bands

Detected DNA bands were cut from the DGGE gel witsterile scalpel. The DNA of each
band was then eluted in 100 pL TE buffer (10 mMs-HICI; pH 8.0, Promega) at 4°C
overnight. The DNA purification was carried out aating to the protocol described by
Hamdouche et al. (2015; 2016). Bacterial and furmalfied DNA bands were amplified
using 338f and NL-1 (without GC clamp) and 518r drfst2 primers respectively. PCR

amplicons were sent for sequencing to GATC Biotgarmany).
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The raw sequences data were edited using Bioefliv&® and compared to the GenBank
database using the BLAST program (Altschul et aB97) (http://www.ncbi.nlm.nih.
goVv/BLAST/). Sequences having a percentage of iyeot 97% or greater were considered

to belong to the same species (Palys et al., 1997).

2. 2. 5. Image and statistical analysis

In each lane, banding patterns were standardizédtwb bacterial reference DNA patterns
(Lactobacillus plantarum and Escherichia coli DNAs) for bacteria and two yeast DNA
reference patterns of yeastsodderomyces elongisporus and Candida apicola DNAs). Each

band relative positions to reference DNA were messand recorded.

The images of DGGE gels were analyzed using ImageQUL software V. 2003
(Amersham Biosciences, USA). In DGGE analysis réwealed banding pattern is considered
as an image of all the major microbial populatioAs. individual band refers to a unique
‘sequence type’ or phytotype (Kowalchuk et al., 79D GGE fingerprinting was marked by
the presence and absence of co-migrating bandstheid intensity using ImagQuant TL

software V. 2003.

Pair wise community similarities were quantifiedings Dice similarity coefficient

(Heyndrickx et al., 1996), then generated data wexploited by Principal Component
Analysis (PCA) and Canonical analysis of corresgomng (CAC) using XLSTAT (V. 2014).
The bands intensities (or volume as expressed iiay“devel x pixel” unit) measured by

ImageQuant were statistically compared using ANOVA.

CAC is a method that encompasses several stakiatiadyses; Ter Braak (1986) developed it
for the first time. In our case, it was used toctié® the linear relationships that exist between
two groups of variables measured on the same oha$. The first group represents the

variables to be explained (pod storage duratiaméatation time and turning) and the second
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group shows the explanatory variables that are niierobial communities (DNA bands

identified by PCR-DGGE).

2. 3. Volatile compound analysis

2. 3. 1. Sample preparation and SPME-HS conditions

The shell and the bean were both analysed, bethesjective of the work was to evaluate
the volatile composition of exported merchant co¢feemented and dried beans). In food
industry, before the shelling, fermented and dbedns are roasted in order to develop the
chocolate aromas, these aromas depend essentiallyth® precursors born during

fermentation.

Two hundred grams of unshelled dried cocoa beaos fivory Coast were put in liquid
nitrogen and ground using a waring blender (SEBn€&e), to obtain cocoa flour, which was
stored at - 80°C until analysis. Three grams ofoeopowder were introduced into vial (10
mL), 30 uL of internal standard of 1-butanol (202.5 mg/L)g{8a) were added, and the vial
was sealed with a septum cap. The extraction @ethechnical repetitions was performed
using a 50/3Qum divinylbenzene/carboxene/polydimethylsiloxanesfifDVB/CAR/PDMS,
Supelco), and using the technique of solid phasgas@xtraction in the headspace (SPME-
HS) previously described by Rodriguez-Campos ef(2012) and modified in our lab by
Koné et al. (2016). These authors had conditiohediber at 250°C for 3 min then exposed it

to the sample headspace at 50°C for 45 min.

2. 3. 2. Gas Chromatogr aphy Analytical Conditions
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The analysis of the volatile compounds extractechfcocoa powder was performed using an
Agilent 6890N gas chromatography—mass spectrom@e€-MS) in automatic injection
mode, on a polar capillary column DBWAX, 30 m lemgt0.25 mm internal diameter x 0.25
um film thickness (Agilent, Palo Alto, CA, USA). Th&C-MS conditions have been
established in Cirad laboratory, the injection temapure was 250°C. The GC oven
temperature was initially set at 40°C for 5 mirgremsed to 140°C at a rate of 2°C/min and
then increased at a rate of 10°C/min to 250°C. ddreier gas was high purity Helium at 1
mL.min™. Splitless injection mode was used at 250°C famni@. The selective mass detector
was a quadrupole (Hewlett Packard, Model 5973)h veih electronic impact ionization

system at 70 eV and at the temperature source0aC23
2. 3. 3. Volatile compounds identification

For the identification of compounds, pure standavesre not used, this is why the
identification was just tentative. The identifieati was done: (i) by comparing the mass
spectra with commercial database Wiley275.L, HPdpcd no. G1035A); (i) and by

comparing of the linear retention index calculati@) with those found in the literature data.
Retention index (RI) was calculated in the samemiatographic conditions using series of n-
alkane C8-C20 (Supelco, Bellefonte, USA). Peaksamere used for relative quantification
of compounds using the MSD Chemstation softwarersjwe E.02.02.1431, Agilent

Technologies).
2. 3.4. Statistical analysis

The chromatographic data obtained by SPME-GC-MSewaatistically analyzed using
ANOVA and Principal Component Analysis (PCA). Assdebed previously, Canonical

analysis of correspondence (CAC) was applied to & and DGGE data, in order to
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describe relationship between microbial communi(esplanatory variables) and volatile

compounds produced (variables to be explained).
3. Non-volatile or ganic acids analysis
3.1. Organic acids extraction

The extraction was carried out according to thequa of Holm et al. (1993). Five grams of
cocoa powder were mixed with 50 mL of warm distilleater (75°C) in a 100 mL flask. The
resulting suspension was well mixed and then cotdetom temperature. The volume was
supplemented with distilled water up to 100 mL,rttigtered through a pleated filter paper
(Whatman) and a 0.4fpm filter (Sigma-Aldrich), then transferred to an I[P vial (1 mL)

(Thomson ).
3.2. Organic acids quantification by HPLC

Concentrations of acetic acid, citric acid, lagad, malic acid, oxalic acid and tartaric acid
were determined by a High Performance Liquid Chitmgraphy (HPLC) with conductivity
using AS11-HC column (Dionex). The mobile phase #iow rate of 0.6 mL.mif consisted
of ultrapure water (eluent A), NaOH 0.1 N (eluent &d NaOH 0.002 N (eluent C). A
volume of 0.02 mL for each sample was injected ramdtogether with external standards. All
samples were analyzed in triplicate and the datae wmntrolled and processed with

ClarityChrom software and analyzed using ANOVA.
3. Resultsand discussion

3. 1. Microbial community structures

3. 1. 1. Variation in bacterial community structures

Microbial DNA profiles were generated by DGGE frath cocoa fermentations carried out,
with and without turning, with a delay of pod braakof 2 and 8 days, respectively. Bacterial

11
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DNA profile bands diversity at different time int@its of fermentation (Fig. 1.a and b). After
two fermentation days, a few DNA bands (Y, B V, Wgre observed and identified by
sequencing as belonging Enterobacteriaceae, Lactobacillus fermentum, and Acetobacter
pasteurianus taxarespectively (Fig. 1.a,b ; Table 1). At days 4 &nédditional DNA bands
(A, E, F, J, L, M, N) were detected and identifiasl belonging td_actobacillus curvatus,
Bacillus megaterium, Bacillus sp, Acetobacter sp and Providencia sp species, respectively

All eight bacterial taxaremained detected until the last day of fermentatidhis is
concordant with previously reported data (Lefebeale 2011; Hamdouche et al., 2015),
which showed that bacterial communities of cocodengo drastic changes after 4 days of

fermentation and remain pretty similar throughdnet process length.

Moreover, at the shortest fermentation time, dnlyermentum, A. pasteurianus and species
belonging toEnterobacteriaceae taxa were detected and confirmed the presencéBfdnd
AAB in the initial phase of fermentation (SchwardaWheals, 2004; Papalexandratou et al.,

2013; Hamdouche et al., 2015).

Comparison of bacterial DNA profiles of fermenteacoa beans with and without turning
showed that the majority of revealed bands werensomin the two types of fermentation
processing whatever the pod storage time. Howesane bands (M, E, F) identified as
Bacillus genus were mainly revealed in DGGE profiles ob@iftem cocoa beans fermented
with turning (Fig. 1.a,b ; Table 1). Furthermore® bands (G, H) were detected only in
fermentation with turning and were identified aslobging to Acetobacter sp. These
observations were explained by the better developroé aerobic microorganisms due to
aeration obtained by turning. The abundanc8auillus genera populations seems to be the
consequence of temperature elevation after 2 dagsatthe turning time, which promoted
the development of thermophilic and aerobic speli@wa et al., 2011). Previous works,

carried out on fermentation of different cocoa learasses, showed that the fermentation of

12
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the large cocoa bean-pulp mass decreased theomenatiich slows down microbial activities
(Camu et al., 2008; Guehi et al., 2010). It is imi@ot to note thad. pasteurianus species (V,

W) was not present during fermentation with turniag5, 6 and 7 days (Fig. 1.b-Table 1).
This result was unexpected becadsepasteurianus was the most prevalent AAB species
involved in spontaneous cocoa from Ivory coast,zBrand Malaysia (Hamdouche et al.,
2015, Papalexandratou et al.,, 2011; 2013) and wated as starter culture in cocoa
fermentation (Moens et al., 2014; Lefeber et &11,@; 2012). First of all, we thought that this
unexpected result came from technical error, bet mthost surprising thing about this
observation, was the correlation of this resulhwite one obtained from volatile compounds
analysis. The disappearancefopasteurianus species was correlated with acetic acid content
decreases during fermentations with turning. Iftédehnical error is sparing, the result could
be explained by the fact that the temperature as@d during fermentation with turning (by
increasing activity AAB). In our fermentation assathe temperatures could have risen such
as it became lethal for this thermosensible spetiesvever, since, temperatures were not

measured in our studies, we could not concludetab@ihypothesis.

When comparing DGGE bacterial profiles obtainedrfrstored pods during 2 and 8 days,
DNA bands (R, K, X) specific to cocoa pods storedays were detected and identified as
belonging toKlebsiella pneumoniae, Bacillus sp, and Acinetobacter sp (Fig. 1.b compared to
Fig. 1.a). These bacterial taxa could be presenoais surface and developed during storage
time, which rendered them detectable by PCR-DGG&.olir knowledge, no work has
investigated the pod storage effect on cocoa miakodcology except the study of our
colleagues Kedjebo et al. (2016) who studied tHecefof post-harvest treatment on the
occurrence of ochratoxin A (OTA) in raw cocoa be&mosn Ivory Coast. They showed that
OTA content in raw cocoa beans increased with gtalsige duration (0, 4 and 7 days) which

reflected the increase of ochratoxinogenic fundivag (Aspergillus strains) during cocoa

13
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pods storage time. Therefore, their conclusion iooed our results that showed a highest

microbial contamination with long pod storage afegmentation.

Principal Component Analysis (PCA) was applied actbrial DGGE profiles to represent
the dataset variance. We observed that fermentesohcgsamples tended to group according to
fermentation time along the first component axid (fepresenting 53.44% of the total
variance). For 2 day storage samples, two mainggaontaining cocoa beans samples turned
fermented during 2 and 4 days on the left siddefaxis and those fermented during 5, 6 and
7 days on the right side of the axis could be olezk(Fig. 2). The picture is similar for 8 days
storage of non-turned samples. Eight-day storageiroied samples appeared as two main
groups: 2 day fermented on the left side of the axid the rest of the samples on the right

side. 2 days storage unturned samples tend to grmegrding to the fermentation duration.

The secondary axis F2 (12.58% variance) separategg of cocoa beans samples fermented
by turning (bottom part) from those fermented withturning (upper part, Fig.2). This result
showed that bacterial communities varied mainlyoading to fermentation time followed by
processing (turning). PCA did not show an obvioffisct of storage time on bacterial ecology
of cocoa comparing with the impact of the two otlparameters (fermentation time and
turning). The strong dynamics and activity of thenwbial populations observed during the

fermentation does not seem to be linked to anyr@heironmental parameter.

3. 1. 2. Variation in fungal community structures

During cocoa fermentations, dominant species (1, a@@ 11) were detected on DGGE
profiles and identified as belonging téanseniaspora opuntiae, Pichia kudriavzevii and
Pichia manshurica specieqFig. 3 - Table 2). These species had previousgntaetected in
fermented cocoa beans from the same location iry I€oast (Hamdouche et al., 2015; Koné

et al., 2016) and in other countries and continéDtafack et al., 2013; de Melo Periera et al.,

14
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2013; Papalexandratou et al., 2013). Minor vameiavere observed comparing DGGE
profiles obtained from cocoa fermented with the fpvocesses due to intrinsic variations in
fungal diversity during fermentation (Fig. 3.a.l8enerally, we did not observe specific
fungal communities associated to a process prolmhl#yto the fact that turning or aeration do

not drastically favor fungal populations growth.

In DGGE profiles obtained from fermented cocoa Isepreviously stored longer (8 days),
four specific bands were detected (4, 5, 7, 9) idedtified asHanseniaspora uvarum and
Pichia sp (Fig. 3.b). The results of PCR amplifications cleabto DGGE profiles of both
bacterial and yeast communities showed more DNAd®an cocoa pods stored longer (8
days), which probably means that microbial speai@sndance increased with storage time

(as discussed above with bacterial data).

PCA on fungal communities associated with cocopresented by F1 and F2 axis (58. 26%)
did not allow to discriminate cocoa beans samplas, result was expected, as mentioned

before (Fig. 1 in supplementary material).

Canonical analysis of correspondence (CAC) wasieghph order to describe the relation
between variations in microbial community structu@nd changes in cocoa post-harvest
parameters. CAC results showed that microbial conitiés associated with turning
parameter consisted mainly of bacterial communitBasillus, LAB and Acetobacter species
(Fig. 4). This result was expected for AAB becatis®y are aerobic microorganisms, which
are usually affected by the aeration. Bacillus, it could be explained by the increasing of
the temperature after turning due to the thermaplaiptitude of this genus. No microbial
species was found linked to the parameter of pooiage time (Fig. 4) as pods storage

duration was not related to the composition of otota.

3. 2. Volatile compounds analysis
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The results obtained on the volatile compoundsyaismight not be accurate because of the

limit of the identification and quantification meitth used.

Twenty-six volatile compounds were detected in fmted and dried cocoa beans by SPME-
GC-MS (Table 3). These compounds were separatédamilies: aldehydes, ketones, esters,

alcohols, acids, pyrazines and phenols.

3. 2. 1. Variation of aldehyde compounds

Four aldehydes compounds were identified on alh@&rted cocoa beans analyzed, which
were isobutanal, 2 and 3-methylbutanal, benzaldehgknzaldehyde was the dominant
aldehyde, followed by 2 and 3-methylbutanal incaltoa fermentations (Fig. 5.a.g.m and Fig.
6.a.9). These aldehydes were previously identifiedermented cocoa beans (Serra-Bonvehi,
2005; Rodriguez-Campos et al., 2012; Ho et al.420mh all fermentations, aldehydes content
increased with fermentation time. These resultsewenrrelated with those obtained by
Rodriguez-Campos et gR012). Statistical test (ANOVA) showed significatitferences in

aldehydes level (p<0.05) between the first stagiewohentation (2 and 4 days) and the last

stage (5, 6 and 7 days) (Fig. 5.a.g.m and Figgy.a.

ANOVA test showed significant differences for algidas content between cocoa beans
fermented with and without turning (Fig. 7.a.b)tiwihe highest level obtained in the case of
fermentation with turning at 7 days. These obs@watwere probably related to the presence
of LAB that were detected throughout the fermentastages mostly in the case of turning
(Fig. 1.a and b). Aldehydes compounds could be ymed by enzymatic reactions from
amino acids mainly by LAB (Jinap et al., 1994). Theand 3-methylbutanal are usually

produced from isoleucine and leucine, while beretayde is produced from phenylalanine by
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LAB (Jinap et al., 1994; Smit et al., 2005; Bonnaret al., 2004). During beans mixing,
temperature increased and reached its maximum (Gsnalt, 2008), which increased the
enzymatic activity. As regard to pod storage tinfeea, the aldehydes level had not

significant difference (p>0.05) between the two gtatage delays (Fig. 7.a.b).

3. 2. 2. Variation of ketone compounds

For this family, the detected compounds were 2dmegie, 2-pentanone, 2-nonanone,
acetophenone, and acetoin. This later had beerdfasnthe dominant ketone in all cocoa
samples (Fig. 5.b.h.n and Fig.6.b.h) as reportedRbgriguez-Campos et a{2011). In
general, acetoin quantity decreased with fermemtatime. This compound is mainly
produced from pyruvate by alcoholic fermentationd afnom 2,3-butanediol by yeast
(Pretorius, 2000). Acetoin abundance in the fitags of fermentation could be correlated to
yeasts intervention in this stage. The quantityodiers ketones varied slightly during
fermentation. These compounds were naturally ptesecocoa beans (Ho et al., 2014) and
their production was not affected by fermentatiexcept for 2-pentanone, which was
probably used as substrate by microorganisms dufiElgnentation. Ketones were
significantly important (p<0.05) in cocoa beangrfented without turning (Fig. 7.a,b). Some
ketones that were probably present naturally (Afeakt al., 2008, Rodriguez et al., 2012),
were degraded and catabolized in the case of ttatealefermentation process, where more
diversity and abundance of bacteria were obseryeB@R-DGGE (Fig. 1.a). There was no
difference in ketones level for the two pod storadigrations, except in the case of
fermentation with turning, whither the dominanceketones was observed in pods stored at

the shorter time (2 days) (Fig. 7.a.b).

3. 2. 3. Variation of alcohol compounds
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The alcohols compounds found in cocoa beans sample®: ethanol, 2-pentanol,
isopentanol, 2-heptanol, 2,3-butanediol, and 2-ptiedethanol. Among them, 2-
phenethylethanol and 2,3 -butanediol were domiaming the four types of fermentations
(Fig. 5.c.i.o and Fig. 6.c.i); as already showedRmdriguez-Campos et gR011). Ethanol
was surely produced by the majority of yeasts (iHalg 2014, Koné et al., 2016). It was
probably the same in this study where it was geadrhy all detected yeasts by PCR-DGGE
(Fig. 3). Some alcohols could be elaborated by Humdlcteria and yeasts such as 2,3-
butanediol. Ethanol content presented significafier@nces (p<0.05) between fermentation
times (2 and 4 days) and (5, 6, and 7 days) (Fmi.& and Fig. 6.c.i). Its concentration was
higher during the first four days of fermentationdathen decreased rapidly, because this
compound is produced at the first (anaerobic) fetateon stage, which lasted 48 h,
subsequently it was oxidized in acetic acid (Schwad Wheals, 2004) mainly by AAB

during the second (aerobic) stage.

The abundance of these alcohols was significantfgrdnt (p<0.05) during the different
fermentation process, with the highest level olatdinn cocoa fermented beans without
turning mainly for ethanol (Fig 7.a,b, Fig. 5.c.ead Fig. 6.c.i). In aerated conditions, the
contribution of oxygen allows alcohols oxidatiororFexample, most alcoholic compounds
are oxidized to ester compounds, as phenethylethhabis a precursor of aldehyde and is
oxidized to phenylethyl acetate with the presentexygen by LAB (Smit et al., 2005).
Furthermore, alcohol compounds could be evaporaitd the aeratiorbrought by turning
process. This result agreed with those obtainedChynu et al. (2008) that showed the
evaporation of ethanol during the aeration of cdoeans mass, as well as favoring the AAB

growth that oxidized ethanol into acetic acid.

Total alcohols level was significantly higher incoa obtained from pods stored longer (Fig

7.a.b) as 2,3-butanediol (Fig 5.c.i.o and Fig B.d@.his may be explained by the studies of
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Afoakwa et al. (2013a; 2013b) that showed the cmior of total sugars with pod storage in
alcohol. Furthermore, Meyer et al. (1989) obsertreat increasing pod storage time before
fermentation improved subsequent microbial aeratpevented LAB development/growth

and increased yeasts abundance and activity. €hidtrcould be explained by the fact that
alcoholic fermentation may begin during the longrage of the pods injured during the

harvest, which are naturally or subsequently comatad by yeasts.

3. 2. 4. Variation of ester compounds

The six detected esters were ethyl acetate, isblagtgtate, isoamyl acetate, phenylethyl
acetate, methyl isopentanoate, and methyl isouvelefldig .5.d.j.p and Fig. 6.d.j). Ethyl
acetate was the dominant ester in all fermentatidnsording toRodriguez-Campos et al.
(2012), esters concentration decreased with fermienttime, but in our case, no significant
difference was observed (p>0.05) depending on fetatien time except for ethyl acetate,
which dominated in the first stage of fermentatfgrdays) (Fig .5.d.j.p and Fig. 6.d.j). This
ester seems to be produced only at the beginniegada fermentation as reported previously
(Rodriguez-Campos et al., 2011), and also in warméntation (Rojas et al., 2003) mainly in
the first day of fermentation. This may be dueht® abundance of glucose and ethanol during
this stage, because they are the main substratethfd acetate synthesis (Yong et al., 1981).
Moreover, Ethyl acetate is a product of esterif@atrom acetic acid and ethanol (Pretorious,
2000); this concept explains the correlation betwi® amount of this ester, acetic acid and
ethanol quantities mainly in the case of fermeatatwith aeration, in which a logical
evolution of the quantities was observed for thestmad volatile compounds detected in this
study.A large quantity of these compounds was observatieabeginning of fermentation
and decreased sharply after 2 days (Fig. 5.ck.g.@nd 6.c.i.e.k). The concentration of this
ester was significantly higher in cocoa fermenteatheut turning (Fig 7.a,b). Esters were

synthetized by yeasts from alcohols during anaerghiase (Rojas et al., 2002), which
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explained their dominance in fermentation withoetasion. This observation could explain
the high level of esters in this process. Concermiads storage time, esters were higher as
mainly methyl isovalerate in cocoa obtained fromdgowhich were stored less time (Fig.
7.a.b). That could be explained by the decreaseigdir and protein during cocoa pod storage
(Guehi et al., 2010, Afoakwa et al., 2013) that Idobe substrates for esters synthesis.
Substrates reduction during long storage (8 day@yad probably the decrease of the esters

content.

3. 2. 5. Variation of acid compounds

Three acids were detected in fermented cocoa bednghich acetic acid was largely
dominant comparing with isobutyric and isovalerida. Acetic acid quantity decreased
significantly during fermentation realized with mimg (Fig. 5.e.k.q and Fig. 6.e.k). In the case
of fermentation without turning, the evolution afetic acid was irregular because its quantity
was not stable, decreased and increased duringefgation (Fig. 7.a,b)The illogical
evolution of acetic acid amount in this case, cdaddexplained by the fact that there was no
beans turning, therefore no homogenization in thetabolites produced and beans
composition. Whatever the pods storage delay, anabevolution of acetic acid amount
during fermentation with turning was observed. Adong to the literature, acetic acid
increased and reached its maximum around 72h afecfezmentation then decreased after 88
h (Shwan and Wheal, 2004; Lefeber and al., 201Bjs @lata confirmed our result, which
showed that turning of cocoa beans allowed to zedkrmentation with a normal evolution
over time. The concentration of this acid was gigantly higher in cocoa beans fermented
without turning. To explain this, one possibilig/that residual or minimal acetic fermentation
(with AAB growth and/or activity) occurs in unmixexcoa, and the rise in temperature plus
the aeration favors the volatilization nutrientsplééion (Camu et al., 2008¥uring

fermentation with turning.
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During fermentation, assimilation of citric acid hyAB generates a slight rise in pH to 4.5
and temperature to 37°C of cocoa pulp (Camu et 28Q7) which create a favorable
environment for the growth of AAB involved in thecond phase of fermentation (acetic
fermentation). During this phase, AAB are respadesif the oxidation of ethanol to acetic
acid (Schwan and Wheals, 2004). Our results oricaaeid bacterial communities structure
was related to acetic acid production, becausedoi acetic level was observed in parallel
with the disappearance of the main AAB, which wapasteurianus (band V and W) (Fig. 1)

in the absence of aeration.

We also observed that volatile acids content deei@among time in cocoa beans and were
very low after a pod storage of 8 days (Fig. 7.allhjs observation is in agreement with the
works of Tomlins et al. (1993) and Jinap et al.94® who observed a lower acetic acid
content in stored cocoa compared with un-stored&@ods. As mentioned previously from
the literature, acetic acid is produced by oxidatiof the ethanol during the second
fermentation phase (aerobic). These results wensistent with those obtained on ethanol
(section 3.2.3) which was low after pod storageBalays. Therefore, acetic acid content,

which is volatile, could vary according to the etbbcontent and time.

3. 2. 6. Variation of othersvolatile compounds

Pyrazines: Tetramethylpyrazine was the unique compound betantp pyrazine family that
was detected (Fig. 5.f.l.r and Fig. 6.f.1). In masises, tetramethylpyrazine compound has
been reported to produce characteristics note®asted cocoa that is important for flavor
quality (Afoakwa et al., 2008; Serra-Bonvehi, 200=)rthermore, various studies reported on
the microbial origin of pyrazines in fermented foasl cocoa and soybeans (Selamat et al.,
1994; Besson et al.,, 1997). In our case, tetranmttazine was probably produced by
Bacillus asBacillus megaterium species that wadetected by PCR-DGGE (Fig. 1). They play

an important role in producing alkylypyrasines ss@ciation withB. subtilis during cocoa
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fermentation. Our results showed that tetramethgiripe level had no significant difference
during fermentation times, pods storage times atdden fermentation processing. Pyrazine

compounds were not affected by any of the threegages.

Methoxyphenol: This volatile phenolic compound was only detectetermented cocoa beans
obtained from pods stored for 8 days and it wasifsogntly (p<0.05) higher in the case of
fermentation with turning (Fig. 5.f.l.r, Fig. 6)t.ISome phenolic compounds were previously
detected at the end of cocoa fermentation (6 addy8) (Rodriguez-Campos et #012).
The presence of this compound only in fermentedo@doeans obtained from long pods
storage when more microbial diversity was detectedld be explained by the increase of
nutrient degradation, including phenolic acids,stttmethoxyphenol elaboration. We also
connected the production of this compound to theirah heating during sun dryindn
general, phenolic acids are degraded thermicalldemomposed by microorganisms into
phenols, as 2-methoxyphenol that results from & diegradation of ferulic acid during coffee

and cocoa roasting or kiln drying (Berlitz, 2009).

3. 3. Organic acids composition

Five non-volatile organic acids were detected amantjfied: citric, lactic, malic, oxalic and
tartric acids. The total of non-volatile acids v&gnificantly (p <0.05) higher on cocoa beans
fermented without turning (when compared to turrextoa), especially at the end of
fermentation (5, 6 and 7 days) (Fig. 8). This aonéd the results obtained on volatile acids,
which are less abundant during fermentation withiatten. The amount of acids is
significantly greater (p <0.05) on cocoa beans sitbrt pod storage durations (2 days) (Fig.
8). This is consistent with the results obtainedvofatile acids by Afoakwa et al. (2013a;

2013b) who showed consistent decreases in nonHecdaidity during pod storage.
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The concentration of volatile and non-volatile aciddentified was affected during
fermentation probably under microbial activitiefioSe naturally present in cocoa beans were
degraded, mainly citric acid, while others weredued during fermentation, such as acetic

and lactic acids, which could be considered as@ogmlity markers.

3. 4. Correlations between microbial ecology and volatile compounds produced in cocoa

fermentation

In order to measure the impacts of turning duriegnfentation (fermentation time and pods
storage time), PCA was applied on all volatiles poonds detected in fermented cocoa beans
(Fig. 9). Statistical analysis showed a global tto® volatile groups) and specific (on volatile
compounds) effects. We showed that ketones, alspheters and acids contents were higher
in cocoa fermented without turning, while aldehydesre significantly abundant in the
process with turning. Pod storage duration hadféetteon all chemical families except for
aldehydes and pyrazines. ACP separated 4 sammepgyaccording to fermentation time,
fermentation process and pod storage time. Prihaixia F1 (38.86%) separated cocoa beans
samples fermented (5, 6 and 7 days) without turfiom the beans fermented with turning
(Fig. 9). ACP analysis allowed identifying discrmant compounds that were affected by
studied parameters. Discriminant and significamhgounds in fermentation without turning
were acetic acid, isobutyric acid, 2,3-butanedagktoin, phenethyl acetate, isoamyl acetate.
In the case of turning, all aldehydes compoundesaleti and some esters were identified as
discriminant compounds. The same axis F1 regrowgagdples according to fermentation
time, the higher level of acetic acid, ethyl acetasobutyl acetate and ethanol at the first
stage of fermentation (2 and 4 days) discrimindtedns fermented at short term from the
other samples. F2 axis (18.45%), separated thebae storage times starting from 5 days of
fermentation, by 2-methoxyphenol and acetophenbatewere significant (abundant) in long
storage (8 days).
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Variations in volatile composition were comparedhwliterature and with microbial ecology
analyses carried out in our study. Some hypotheses given about the relationship that
could exist between microbial community structuaed volatile composition of cocoa beans.
CAC was applied on all data obtained in order ttewhine these relationships (Fig. 10).
Microbial taxa detection by DGGE and their cornelatwith volatile compounds had a
similar evolution whatever the fermentation timedae processing applied. It was not
possible or rather difficult to relate each volagjroup and/or compound to a given microbial
taxa, which is explained by the fact that sevesdsys or bacteria could produce the same
compounds (Ho et al., 2014; Koné et al., 2016). edwer, the CAC described the relation
betweenA. pasteurianus (V, W) acetic acid, and acetoin and betwé€nopuntiae to ethyl
acetate and ethanol (Fig. 10). This suggested dloatic acid level was related .
pasteurianus abundance. This hypothesis could be verified ey itientification of volatile

profile for each microbial species detected dufergnentation.

4. Conclusion

This study measured the effect of three cocoa psogearameters on both microbial
community structures and volatile composition of@® beans, and showed that fermentation
time has a major impact on the aroma, followeduoging. In our study, pod storage duration
(2 days vs 8 days) had a minor impact on cocoaamial communities. Contrariwise, the
effect was pronounced on volatile composition whemas associated to turning. Fermented
cocoa beans with desired flavors were obtained s¥ititt pod storage times, which promoted
a significant presence of esters. Consequentlyexaected a short fermentation without
aeration could have a negative impact on the cwotstile composition, because of the high

levels of undesirable compounds such as aceticaaxdicetoin.

The molecular approach coupled to volatile andsttedl analysis provided insight into the

relationship between the microbial communitiesusture and aroma compound production
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in fermenting cocoa beans. To better describedlaionship, it would be interesting to carry
out the study in a specific way by identifying theomatic profile of each microbial strains
involved in the processes. Consequently, this dlaibalysis allowed the identification of

molecular and volatile markers, which could be gadndicators of cocoa post-harvest
processing. Acetic acid, acetoin, benzaldehydeyd Zamethylbutanal content are related to
cocoa fermentation time and aeration type, wherthas evaluation of esters concentration

could be used to distinguish pods storage duratidearmented beans.

At this stage, the impact of post-harvest procgssivas measured on cocoa Vvolatile
composition but not specifically on aroma qualifjhat aspect yet remains to be explored in

the future.
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Figure 1: Bacterial DNA DGGE profiles obtained from fermented cocoa beans (with and without turning) during 2, 4, 5, 6 and 7 days fermentation, previously
stored during 2 days (a) and 8 days (b). Identification of DGGE bands for bacterial speciesare given in Table 1.
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Figure 2: Principal component analysis (PCA) of bacterial 16S rDNA DGGE band profiles obtained from cocoa beans stored during 2 days, fermented with turning (2S2F T,
2S2F T, 2SAF T, 2SA4F T, 2S5F T, 2S5F T, 2S6F T, 2S6F T, 2S7F T and 2S7F T) and without turning (2S2F , 2S2F , 254F , 254F , 2S5F , 2S5F , 2S6F , 2S6F , 2S7F and
2S7F) during 2, 4, 5, 6 and 7 days fermentation and from cocoa beans stored during 8 days, fermented with turning (8S2F T, 8S2F T, 8S4F T, 8A4F T, 8S5F T, 8S5F T, 8S6F
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Figure 3: Yeasts DNA DGGE profiles obtained from fermented cocoa beans (with and without turning) during 2, 4, 5, 6 and 7 days fermentation, previously
stored during 2 days (a) and 8 days (b) . Identification of DGGE bands for yeast species are givenin Table 2.
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Figure 5: Concentration of aldehydes (a,g,m), ketones (b,h,n), alcohols (c,i,0), esters (d,j,p), acids (e,k,q) and other volatile compounds (f,I,r)
produced in cocoa beans previousdly stored during 2 and 8 days, fermented 2 days (2F), 4 days (4F) , 5 days (5F) with turning (+T) and without
turning.A indicates significant differences between fermentation with and without turning.e indicates significant differences between the two
pods storage duration. ¢ indicates significant differences between fermentation times.
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Figure 6: Concentration of aldehydes (a,g,), ketones (b,h), alcohols (c,i), esters (d,j), acids (e,k) and other
volatile compounds (f,I) produced in cocoa beans previously stored during 2 and 8 days, fermented 6
days (6F) and 7 days (7F) with turning (+T) and without turning. A indicates significant differences
between fermentation with and without turning. @ indicates significant differences between the two pods
storage duration.® indicates significant differences between fermentation times.
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Figure 7: Total Concentration of volatile compounds produced in cocoa beans previously stored during 2 days (a) and 8 days (b), fermented without
turning at 2, 4, 5, 6, 7 days (2F, 4F, 5F, 6F, 7F) and with turning (2F+T, 4F+T, 5F+T, 6F+T, 7F+T). & indicates significant differences between
fermentation with and without turning. @ indicates significant differences between the two pods storage duration. + indicates significant differences
between fermentation times.
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Figure 8: Concentration of organic acids present in cocoa beans previously stored during 2 days (a) and 8 days (b), fermented with turning and
without turning. In (c) the two storage durations (2 and 8 days) were compared. 4 indicates significant differences between fermentation with and
without turning. @ indicates significant differences between the two pods storage duration.
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Figure 9 : Principal component analysis (PCA) of peak areas of volatiles compounds obtained from cocoa beans stored during 2 days, fermented with turning
(2S2F T, 2S2F T, 2SAF T, 2S4F T, 2S5F T, 2S5F T, 2S6F T, 2S6F T, 2S7F T and 2S7F T) and without turning (2S2F , 2S2F , 2S4F , 2S4F , 2S5F , 2S5F , 2S6F
, 2S6F , 2S7F and 2S7F) during 2, 4, 5, 6 and 7 days fermentation and from cocoa beans stored during 8 days, fermented with turning (8S2F T, 8S2F T, 8S4F
T, 8S4F T, 8S5F T, 8S5F T, 8S6F T, 8S6F T, 8S7F T and 8S7F T) and without turning (8S2F , 8S2F , 8S4F , 8S4F , 8S5F , 8S5F , 8S6F , 8S6F , 8S7F and

8S7F) during 2, 4, 5, 6 and 7 days fermentation.
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Figure 10: Canonical analysis of correspondence (CAC) applied on microbial DGGE band profiles and peak areas obtained from cocoa beans

stored during 2 and 8 days and fermented with and without turning during 2, 4, 5, 6 and 7 days.



Table 1: Identification of bacterial DNA bandsisolated from DGGE experiment

Band Family/ Genus/species Per cent Query E-value | References
identity cover
A Lactobacillus curvatus 93% 99% 5e-74 FJ609221
Y Enterobacteriaceae 100% 100% 2€-97 KM02135¢
B Lactobacillus fermentum 99% 100% le-95 LC042465
C Enterococcus cassdliflavus 99% 100% le-78 KJ571214
E Bacillus megaterium 94% 100% 2e-77 KJ004421
F Bacillus sp 99% 100% 8e-97 HG794259
G 98% 100% le-89
H 98% 100% 6e-88
J Acetobacter sp 99% 100% 2e-92 AB853266
T 90% 99% le-53
X Acinetobacter sp 92% 100% 2e-51 KJ814994
K Bacillus sp 100% 100% 2€-97 KM98300:
L Providencia sp 90% 97% 5e-64 AB920789
M Bacillus sp 90% 100% 5€-43 FJ23568
N Providencia sp 97% 100% 2e-67 KM059194
0] Enterobacter aerogenes 99% 100% le-95 LN623623
P Bacillus sp 91% 97% 1le-53 KC23648(
Q Enterobacter sp 99% 100% 8e-97 GU944492
S Klebsiella sp 92% 99% 7€-57 GQ41657.
\\//V Acetobacter pasteurianus 100% 100% ésgg’ KM983001
R Klebsiella pneumoniae 100% 100% 2e-97 KP761422
D, | NI
NI: not identified band
Table 2: Identification of DGGE bandsfor yeast species
Band Family/ Genug/ species Per cent Query E-value References
identity cover
1 Hanseniaspora opuntiae 98% 100% 6e-93 KC111446
2 Candida ethanolica/ Pichia 93% 100% | 8e56 | KM234475
deserticola
3 Pichia sp 99% 100% le-79 JX408867
4 Pichia galeiformis 93% 100% 3e-76 HM212622
5 Hanseniaspora uvarum 93% 100% 4e-65 KM816746
9 Pichia sp 95% 100% 4e-65 EU884437
10 Pichia kudriavzevii 99% 100% 2e-47 KC494718
11 Pichia manshurica 99% 100% 7e-11 JQ419868
12 Candida ethanolica/ Pichia 93% 99% 2e-64 |  KM005182
deserticola
6,7,13 NI

NI: not identified band




Table 3: Volatiles compounds identified in cocoa beans fermented with and without

turning
Group RT (min) RI RI* Compound
Aldehyde:  1.5C 811 821 Isobutane
2.15 910 912 2-Methylbutanal
2.19 913 910 3-Methylbutanal
28.06 1497 1495 Benzaldehyde
Ketone: 2.94 971 984 2-Pentanon:
9.51 1153 1170 2-Heptanone
21.0¢ 1367 138¢ 2-Nonanon
35.21 1629 1645 Acetophenone
14.8: 1257 1272 Acetoir
Ester: 1.94 88¢€ 88t Ethyl acetat
2.28 920 916 Methyl isovalerate
3.6( 1011 100t Isobutyl acetal
3.72 1016 1015 Methyl isopentanoate
6.92 110t 1117 Isoamyl aceta
44.55 1802 1803 Phenylethyl acetate
Alcohols 2.4¢ 934 92¢ Ethano
7.42 1115 1118 2-Pentanol
11.4¢ 118¢ 120¢ Isopentanc
17.96 1310 1332 2-Heptanol
33.0: 158¢ 1582 2,%2-Butanedio
49.58 1895 1925 2-Phenylethanol
Acids 24.26 1426 1449 Acetic acid
32.01 157( 158¢ Isobutyric acil
37.58 1680 1691 Isovaleric acid
Other: 26.0¢€ 146( 146¢ Tetramethylpyrazir
46.7: 1842 184¢ 2-Methoxy-pheno

*: Odour description and Retention Index (RI) obtdirfeom literature: (Serra-Bonvehi, 2005;
Rodriguez-Campos et al., 2011; 2012).
RI: Retention Index calculated

RT: Retention time
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