Agritrop
Home

Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis

Duarte Karoline Estefani, de Souza Wagner Rodrigo, Ribeiro Santiago Thaís, Leite Sampaio Bruno, Ribeiro Ana Paula, Guitton Cotta Michelle, Andrade Dias Brito da Cunha Bárbara, Marraccini Pierre, Kobayashi Adilson Kenji, Molinari Hugo Bruno Correa. 2019. Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Scientific Reports, 9:4028, 16 p.

Journal article ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Preview
Published version - Anglais
License Licence Creative Commons.
Duarte et al. 2019 Scientific Reports.pdf

Télécharger (3MB) | Preview

Url - éditeur :

Quartile : Q1, Sujet : MULTIDISCIPLINARY SCIENCES

Abstract : Abscisic acid (ABA) is an essential phytohormone that regulates growth, development and adaptation of plants to environmental stresses. In Arabidopsis and other higher plants, ABA signal transduction involves three core components namely PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs) and class III SNF-1-related protein kinase 2 (SnRK2s). In the present study, we reported the identification and characterization of the core ABA signaling components in Setaria viridis, an emerging model plant for cereals and feedstock crops presenting C4 metabolism, leading to the identification of eight PYL (SvPYL1 to 8), twelve PP2C (SvPP2C1 to 12) and eleven SnRK2 (SvSnRK2.1 through SvSnRK2.11) genes. In order to study the expression profiles of these genes, two different S. viridis accessions (A10.1 and Ast-1) were submitted to drought, salinity and cold stresses, in addition to application of exogenous ABA. Differential gene expression profiles were observed in each treatment and plant genotype, demonstrating variations of ABA stress responses within the same species. These differential responses to stresses were also assessed by physiological measurements such as photosynthesis, stomatal conductance and transpiration rate. This study allows a detailed analysis of gene expression of the core ABA signaling components in Setaria viridis submitted to different treatments and provides suitable targets for genetic engineering of C4 plants aiming tolerance to abiotic stresses.

Mots-clés Agrovoc : Setaria viridis, Expression des gènes, Adaptabilité

Mots-clés libres : Setaria viridis, ABA (Abscisic acid), Gene expression

Classification Agris : F30 - Plant genetics and breeding
F40 - Plant ecology

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Auteurs et affiliations

  • Duarte Karoline Estefani, UFLA (BRA)
  • de Souza Wagner Rodrigo, EMBRAPA (BRA)
  • Ribeiro Santiago Thaís, EMBRAPA (BRA)
  • Leite Sampaio Bruno, EMBRAPA (BRA)
  • Ribeiro Ana Paula, EMBRAPA (BRA)
  • Guitton Cotta Michelle, UFLA (BRA)
  • Andrade Dias Brito da Cunha Bárbara, EMBRAPA (BRA)
  • Marraccini Pierre, CIRAD-BIOS-UMR IPME (VNM) ORCID: 0000-0001-7637-6811
  • Kobayashi Adilson Kenji, EMBRAPA (BRA)
  • Molinari Hugo Bruno Correa, EMBRAPA (BRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/591615/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-28 ]