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Microarray is a powerful and cheap method to identify and quantify gene expression in particular in a mix of total
RNA extracted from biological samples such as the tsetse fly gut, including several organisms (here, the fly tissue
and the intestinal microorganisms). Besides, biostatistics and bioinformatics allow comparing the transcriptomes
from samples collected from differently treated flies, and thus to identify and quantify differential expressed
genes. Here, we describe in details a wholemicroarray transcriptome dataset produced from tsetse flies symbionts,
Sodalis glossinidius andWigglesworthia glossinidia. The tsetse fly midguts were sampled at key steps of tsetse fly
infection by trypanosomes, 3-day and 10-day sampling times to target differentially expressed genes involved,
respectively, in early events associated with trypanosome entry into the midgut and with the establishment of
infection; 20 days to target the genes involved in events occurring later in the infection process. We describe
in detail the methodology applied for analyzing the microarray data including differential expression as well
as functional annotation of the identified symbiont genes. Both the microarray data and design are available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48360; http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE48361; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55931.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Experimental design, materials and methods

Experimental design

Tsetse flies of the sub-species Glossina palpalis gambiensis were
infected by trypanosomes of the sub-species Trypanosoma brucei
gambiense. At key steps of flies' infection, 3, 10, and 20 days, midguts
of flies were dissected and total RNA was extracted in order to further
analyze the transcriptome of tsetse fly symbionts, Sodalis glossinidius
and Wigglesworthia glossinidia. The sampling days are chosen to target
events associated respectively, i) with trypanosome entry into the
midgut, ii) with the establishment of infection, and iii) with the late
stages of the infection process. Fig. 1 shows the general experimental
design.

Materials and methods

Experimental infection of G. p. gambiensis by T. b. gambiense
Insectary G. p. gambiensis flies from CIRAD, Montpellier, were

T. b. gambiense infected experimentally according to the protocol re-
ported by Geiger et al. [1] and Hamidou Soumana et al. [2–4]. Stabilate
of T. b. gambiense S7/2/2 (isolated in 2002 from aHAT patient diagnosed
in the sleeping sickness focus of Bonon, Ivory Coast [5]) was injected
intraperitoneally into balb/cj mice. After the parasitemia has reached
15–25 × 107 parasites/ml, teneral flies were fed on these infected
mice. This group of flies was then separated into three sub-groups a,
b, and c. Three days after feeding, four biological replicates, each of the
seven flies, were randomly selected from the sub-group a; they were
noticed (S3 for “stimulated-sampled at day3”). Ten days after feeding,
the flies of the sub-group bwere tested for the presence/absence of try-
panosomes in their anal drop and separated into two “sub-sub-groups”,
Fig. 1. General experiment design. Midgut of G. p. gambiensis was sampled at three times post
replicates of seven or three (for the I10 and NI10 samples only) midguts were constituted an
from each biological replicate, and reverse transcribed into cDNA that was then labeled and h
expressed between the different conditions were further analyzed and annotated.
one noticed “I10” (flies fed on infectedmice and that were shown to be
infected, sampled at Day 10 post-feeding), the second noticed “NI10”
[flies fed on infected mice and that were shown to be non-infected
(=refractory flies), sampled at Day 10 post-feeding]. Twenty days
after feeding the sub-group c was processed as was the sub-group b;
the corresponding “sub-sub-groups” were noticed “I20” and “NI20”.
Fromeach “S3”, “I20”, and “NI20”, 4 biological replicateswere constituted
eachof 7flies randomly sampled. For I10 andNI10: 4 replicateswere con-
stituted of 3 flies because of the low infection prevalence. Finally, a group
of flies was fed on non-infected mice, of which four replicates, each of 7
flies, were constituted, three days after feeding, and noticed “NS3” (for
non-stimulated = control flies).

Fly infection monitoring process
As mentioned, flies fed on infected mice and sampled at Day 10 and

Day 20 were controlled for the presence or absence of trypanosomes in
their anal drops. This was performed on chelex-extracted DNA [6] from
the anal drops and the presence of trypanosomes was assessed by PCR
using TBR1 and TBR2 primers [7]. When anal drops were PCR positive
for the presence of trypanosomes, it indicates midgut infections.
When PCR tests were negative, flies had self-cured the infection.

RNA extraction
Flies from the different biological repeats (from “S3”, “NS3”,…)were

then dissected separately and the midguts were collected in RNA latter
(Ambion) for further RNA extraction.

RNA was extracted from the midguts of each biological replicate
using TRIzol reagent (Gibco-BRL, France). High quality of RNA sample
was checked on an Agilent RNA 6000 Bioanalyzer and the RNA quanti-
fication was performed using the corresponding Nano kit (Agilent
Technologies, France).
-T. b. gambiense infected bloodmeal: 3, 10, and 20 days. For each time points, 4 biological
d further analyzed for Sodalis or Wigglesworthia transcriptome. Total RNA was produced
ybridized onto Sodalis or Wigglesworthia custom-made microarrays. Genes differentially



135A. Geiger et al. / Genomics Data 4 (2015) 133–136
Custom-made 60-mers oligonucleotide microarrays
The tsetse fly symbiont custom-made density arrays (8 × 15 K

format) were designed with 60-mer oligos specific to:

* For Sodalis [2,3]: genes of the S. glossinidius chromosome (NCBI
RefSeq: NC_007712.1; GenBank accession number AP008232), and
genes of the Sodalis four plasmids pSG1 (NCBI RefSeq:NC_007183.1),
pSG2 (NCBI RefSeq: NC_007184.1), pSG3 (NCBI RefSeq: NC_
007186.1), and pSG4 (NCBI RefSeq: NC_007187.1) [8,9]. Four unique
probes were designed for each gene.

* For Wigglesworthia [4]: genes of the W. glossinidia chromosome
(from Glosina morsitans morsitans) (NCBI Reference Sequence:
NC_016893.1) [10]. Ten different probes were used for each gene.

To avoid cross-hybridization with non-target genes, for Sodalis and
Wigglesworthia custom-microarrays, probes were selected only when
they correspond to unique sequences.

The details of the Sodalis and Wigglesworthia array design, sample
description, and expression data are available at Gene Expression
Omnibus (GEO) under accession numbers respectively, GPL17347
and GSE48361 for Sodalis:

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48360;
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48361) [2,3],

and GPL18427 and GSE55931 for Wigglesworthia:
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55931)

[4].
Preparation of cDNA and hybridization on Sodalis and Wigglesworthia
custom-microarray

Microarray experiments were performed at the TAGC core facility
(http://tagc.univ-mrs.fr/) for Sodalis, and at Hybrigenics platform
(Clermont-Ferrand, France) forWigglesworthia.

Sodalis cDNA labelingwith Cy3 dCTPwas donewith 5 μg of total RNA
using the ChipShot direct labeling and clean-up system kit (Promega).
Samples were then hybridized onto the Sodalis custom-microarrays
made from S. glossinidius Genome. Labeling ofWigglesworthia cDNA was
performed with Cy3 dCTP and 100 ng of total RNA using the Low Input
Quick Amp Labeling Kit One-Color (Agilent Technologies, France). cDNA
samples were then hybridized onto the custom-microarrays made from
W. glossinidia genome.

Hybridizationwas performed, for both custom-microarrays types, at
65 °C for 17 h at 60 rpm.
Microarray data analyses
Lowest normalization was used for within-array normalization.

Quantile normalization was used to make the density distributions
similar across arrays [11]. Only one expression value was then assigned
to each biological replicate by averaging the normalized expression
values through Cy3 signal intensities. The pictures of microarray data
scanned with an Agilent microarray scanner (Agilent Technologies)
were extracted with the software (version 10.5.1.1) Agilent Feature
Extraction. When in at least three of the four replicates, data show with
expression levels greater than the background noise, then they were se-
lected for further analyses. In the case of Sodalis transcriptome analyses,
statistics was performed using the TIGRMeV (MultiExperiment Viewer)
v4.5 software (http://www.tm4.org/mev.html). A two-way ANOVA was
used to analyze, simultaneously, the effect of infection and of the time
course post-feeding on trypanosome-infected mice on gene expres-
sion [12]. p-Values were calculated after 10,000 permutations, andmulti-
ple testing was controlled [13,14] using a FDR of 5%.

Unsupervised hierarchical clustering was applied to median-centered
data, using the Cluster and TreeView programs (average linkage clus-
tering using Pearson's correlation as the metric distance) to investigate
relationships between samples and between genes.
One-way analysis of variance was applied to identify Sodalis genes
differentially expressed between infection self-cured and control flies.
A FDR of 5% was used for differential expression threshold [14].

RegardingWigglesworthia, background adjustment, quantile normali-
zation of data [11,15], log-transformation, and gene clustering analyses,
were performed with GeneSpring GX (version 12.0, Agilent Technolo-
gies). A t-test was used for statistics [16]. A p-value below 0.05 indicates
significant differences between groups (Wigglesworthia from 3 day stim-
ulatedflies versus 3 day control flies,Wigglesworthia from10 day infected
flies versus 10 day self-curedflies, andfinally,Wigglesworthia from20day
infected flies versus 20 day self-cured flies).

Functional annotation of differentially expressed genes
Regarding Sodalis transcriptomes, functional annotation of differen-

tially expressed genes (DEGs) was performed using DAVID software
[17]. It was used to assess whether specific biological functions or path-
ways were overrepresented among the DEGs, based on gene ontology
(GO) terms and on the Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathways (http://www.genome.jp/kegg/). A score based on
Fisher's exact test reflected the probability that the prevalence of a
particular term within a cluster was a simple matter of chance or not.
The p-values were corrected to account for multiple testing [13]; a
p-values lower than 0.05 was considered significant.

As concerns the Wigglesworthia samples, GO was performed using
the GeneSpring database, and Wigglesworthia gene expression data
were also analyzed by principle component analysis (PCA) [18,19] per-
formed with GeneSpring on infected (or stimulated) vs. non-infected
(or non-stimulated) conditions at the different experimental infection
times.

Quantitative real-time PCR (qPCR) analysis
cDNAwas synthesized from5 μgof total RNA fromeachbiological rep-

licates using random hexamers and Superscript II reverse-transcriptase
(Invitrogen, France). qPCR was then tested on some Sodalis genes that
were differentially expressed in microarray experiments between the
different groups of flies analyzed to confirm the results. Primers specific
to the chosen genes were designed using Primer-Blast software
(http://www.ncbi.nlm.nih.gov/tools/ primer-blast/). qPCR reactions
were then performed in an Mx3005P QPCR System (Agilent Technolo-
gies) using the Brillant II Sybrgreen qPCR Kit (Agilent technologies)
with 2 μl of cDNA in a 25-μl total volume. qPCR was analyzed using the
qPCR Stratagene MxPro 3005P data analysis software. Efficiencies of the
PCR reactions for each primer pair were calculated using ten-fold dilu-
tions of fly gut-extracted cDNA [20]. Melting curve analysis was per-
formed to check the specificity of the PCR reaction and to verify the
amplification efficiency. Relative quantification was calculated with the
2−ΔΔC(τ) method as described by Livak and Schmittgen [21].
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