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• Background and Aims Plant modelling can efficiently support ideotype conception, particularly in multi-criteria 
selection contexts. This is the case for biomass sorghum, implying the need to consider traits related to biomass pro­
duction and quality. This study evaluated three modelling approaches for their ability to predict tiller growth, mortality 
and their impact, together with other morphological and physiological traits, on biomass sorghum ideotype prediction. 
• Methods Three Ecomeristem model versions were compared to evaluate whether tillering cessation and mor­
tality were source (access to light) or sink (age-based hierarchical access to C supply) driven. They were tested 
using a field data set considering two biomass sorghum genotypes at two planting densities. An additional data 
set comparing eight genotypes was used to validate the best approach for its ability to predict the genotypic and 
environmental control of biomass production. A sensitivity analysis was performed to explore the impact of key 
genotypic parameters and define optimal parameter combinations depending on planting density and targeted pro­
duction (sugar and fibre). 
• Key Results The sink-driven control of tillering cessation and mortality was the most accurate, and repre­
sented the phenotypic variability of studied sorghum genotypes in terms of biomass production and partitioning 
between structural and non-structural carbohydrates. Model sensitivity analysis revealed that light conversion effi­
ciency and stem diameter are key traits to target for improving sorghum biomass within existing genetic diversity. 
Tillering contribution to biomass production appeared highly genotype and environment dependent, making it a 
challenging trait for designing ideotypes. 
• Conclusions By modelling tiller growth and mortality as sink-driven processes, Ecomeristem could predict 
and explore the genotypic and environmental variability of biomass sorghum production. Its application to larger 
sorghum genetic diversity considering water deficit regulations and its coupling to a genetic model will make it a 
powerful tool to assist ideotyping for current and future climatic scenario. 

Key words: Sorghum bicolor (L.) Moench, stem biomass, (non-)structural carbohydrates, C source-sink relation­
ships, ecophysiological modelling, .ideotyping, tillering, ti Iler mortality. 

INTRODUCTION 

Sorghum is increasingly used as a biomass crop to meet world­
wide societal expectations in terms of bioenergy (Regassa and 
Wortmann, 2014; de Oliveira et al., 2018). ltis a C

4 
cereal char­

acterized by a high (stem) biomass yield potential and a wide 
phenotypic diversity for stem biochemical composition (fibre 
and sugar contents), potentially ensuring the development of 
diverse value chains (Trouche et al., 2014). Its genetic diver­
sity is also a remarkable source of tolerance to various abiotic 
stresses, such as drought, which makes it advantageous com­
pared with other crops (Schittenhelm and Schroetter, 2014). 

Biomass sorghum is commonly characterized by a long cycle 
facilitating the production of tall and thick stems. Until now, 
breeders have not valued the tillering capacity of biomass sor­
ghum, although the maintenance of one or two vigorous tillers 
until harvest call' make a considerable difference in terms of 

biomass or grain production (Alam et al., 2014). The end-use 
value of sorghum biomass depends on its biochemical com­
position and particularly the partitioning between cell wall 
components (lignin and structural carbohydrates) and non­
structural carbohydrates (Trouche et al., 2014) that varies with 
the genotype, the environment and the interactions between 
them (G x E) (sorghum (Perrier et al., 2017; McKinley et al., 
2018); miscanthus (van der Weijde et al. , 201 7); corn (El Hage 
et al., 2018)]. Several studies showed that stem biomass pro­
duction and composition and their G x E are not entirely inde­
pendent, complicating the breeding process (in sorghum: Salas 
Fernandez et al. , 2009; Carvalho and Rooney, 2017; Luquet 
et al., 2018). 

Thus, the design of biomass sorghum ideotypes is chal­
lenging and implies multiple morphological and physio­
logical traits, their linkages and plasticity in response to the 
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environment (Regassa and Wortmann, 2014; Anarni et al., 
2015; Mathur et al., 2017). In this respect, plant eco-physio­
logical models and functional-structural plant models (FSPMs) 
can be powerful. They provide a unique approach to describe 
dynamically the biological processes contributing, at the organ 
level, to phenotype elaboration depending on G x E (Rarnirez­
Villegas et al., 2015; Chew et al., 2016). They are also increas­
ingly applied to support ideotype design (ideotyping), i.e. the 
in silico exploration of optimal trait combinations in a given 
environment (Luquet et al., 2016; Yin et al., 2016). 

For a given breeding target, model-assisted ideotyping 
implies that the model used captures realistically the traits 
where the G x E take place and their interactions or trade-offs 
(Yin et al., 2016). In the case of biomass sorghum and other 
biomass grass crops, an appropriate model should account for 
the C source-sink relationships underlying biomass produc­
tion and quality through C partitioning among sink organs 
(Dingkuhn et al., 2007) and among structural and non-struc­
tural biomass (Perrier et al., 2017). Ideally, light interception 
and C assimilation should be modelled in order to account, 
respectively, for plant architectural traits and photosynthetic 
responses to climate change and fluctuations (Wu et al., 2016). 
However, considering these formalisms in an ideotyping con­
text still suffers from the difficulty of acquiring calibration 
data on a large range of genotypes (Parent and Tardieu, 2014; 
Cabrera-Bosquet et al., 2016) and simpler approaches are stiJl 
largely used (Wu et al., 2016). Regarding C sink-related traits, 
to our knowledge, very few models consider C allocation both 
to the different productive sinks (growing organs) and to their 
structural vs. non-structural biomass (Dingkuhn et al., 2007). 
Among these sinks is tillering. Tillering is one of the most 
plastic yield component traits in grass crops, with high impact 
on both biomass and grain production (Kumar et al., 2016). 
It is strongly prone to G x E, with respect to not only tiller 
emergence (Kim et al., 20 IOa ) but also senescence (Bueno 
and Lafarge, 2009). Tillering benefit was much less studied 
for biomass sorghum, although it is already a key breeding 
criterion for perennial grass crops [miscanthus (Lewandowski 
et al., 2016), sugarcane (Gouy et al., 2015)]. Different and not 
necessarily contradictory approaches were developed to model 
tillering (response to light quality, C availability or hormonal 
signals; for a review, see Evers and Vos, 2013). The physiol­
ogy and modelling of tiller mortality was, however, much less 
addressed, although its hormonal and nutritional (C and N) 
control was suggested (Dreccer et al., 2013). 

Ecomeristem is a plant growth model initially developed 
to deal with C source-sink relationships underlying the phe­
notypic diversity and plasticity of rice and sorghum vegetative 
growth (Luquet et al., 2006). Plant growth is driven by geno­
typic parameters defining C sink demands and is regulated by 
a plant internal index of competition '.~r C: (supply/demand 
ratio) and controlling C storage/remob1lizat10n. Plant C sup­
ply is, however, computed in a simple way at the crop level. 
Ecomeristem concepts were recently extended to the whole 
crop cycle. This resulted in an un~erestimated .mortalitY_ of the 
youngest tillers, and a bad simulation of culm size and biomass 
partitioning among culms. Two hypotheses we~e put forward to 
tackle this modelling issue: the first one quest10ns the concept 
of a plant common C pool and suggests that the yo~ngest tiller~, 
at the lowest position within the canopy, are penalized for their 

access to light. The second hypothesis is compatible with the 
concept of a plant C pool bur questions the existence of a hier­
archical tiller access to plant C supply depending on their age, 
possibly related to apical dominance processes. To test these 
hypotheses, two additional Ecomeristem versions were imple-
mented and compared. · 

The present study aims to evaluate several modelling 
approaches in terms of their ability to capture tiller growth 
and mortality, and their impact on biomass production and 
quality, i.e. non-structural vs. structural biomass partitioning, 
in biomass sorghum. For this purpose, three versions of the 
Ecomeristem model were tested on three field data sets related 
to two and eight biomass sorghum genotypes. Once validated, 
the best model version was applied to explore in silico optimal 
trait combinations, i.e. ideotypes depending on targeted produc­
tions (fibre and sugar) and cultural constraints (planting density 
and crop duration). The results are discussed with respect to the 
chalJenge of providing modelling tools in support of the pre­
breeding process of biomass sorghum. 

MATERIALS AND METHODS 

Ecomeristem model 

Ecomeristem models plant growth at the organ level in.the crop 
stand. It aims to simulate phenotype variability and plasticity 
within a given species depending on the genotypic (G) and 
environmental (E: water, light and temperature) regulation of 
C supply and demand and thus of C source-sink relationships. 
It represents the crop stand as a population of average plants 
described by their topology and morphology (organ size and 
dry weight) with a given homogenous planting density. The 
topology and morphology are dynamically simulated as the 
result of G x E interactions. 

This model was initially created for rice vegetative vigour, 
and its basic concepts were largely described in Luquet et al. 
(2006, 2007, 2012). A reminder of key concepts is provided 
below to facilitate the understanding of the novel formalisms 
implemented for modelling stem elongation and reproductive 
phases of rice and sorghum. Because of the scope of the pre­
sent study, modules related to the water regulation of growth 
will not be addressed. The new formalisms presented below can 
be used for modelling rice and sorghum by changing param­
eter values; however, here we explicitly use parameter values 
related to (biomass) sorghum. 

Basic concepts 

C sink activity. Thermal time is computed daily and comes as 
the pacemaker of sink activity (Luquet et al., 2006). 'Plasto' 
(plastochron, °Cd) is a genotypic parameter scheduling the 
phytomer initiation rate. A phytomer is considered as the 
ensemble of a leaf, a node and internode, and a tiller bud. At 
the onset of a given simulation (corresponding to germination), 
the parameter 'nbinitleaves' defines the number of phytomers 
already created (by analogy with the embryo). Within a phy­
tomer, the leaf is positioned above the intemode and related 
to the latter by the sheath. This parameter is fixed at four for 
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sorghum. A simulation starts at first leaf emergence (the others 
are already growing but hidden in the sheath of the first leaf). 
'Phyllo' (phyllochron, °Cd) schedules the leaf appearance rate 
and 'Ligulo' (°Cd), the leaf ligulation rate. 'Ligulo', 'Phyllo' 
and 'Plasto' together define the duration of different phases of 
organ growth, particularly the leaves (see Supplementary Data 
Fig. SIA for the developmental framework of sorghum phy­
tomers and Fig. SIB for leaf growth phases: phase 1, from leaf 
initiation to its outgrowth from the sheath of the previous leaf; 
phase 2, from leaf tip appearance to ligulation). In sorghum, 
'Ligulo' is longer than 'Phyllo', making the number of vis­
ible expanding leaves 2-4. At each new 'Plasto', a tiller bud is 
activated on culrns carrying at least four visible leaves. During 
the vegetative phase, only the leaves are growing. The first leaf 
length is defined by an initial genotypic parameter, 'Lefl • (cm). 
The specific parameter 'wlr' translates leaf length into width, 
and the specific parameter 'LL_BL' defines the ratio between 
blade and sheath length. An allometric coefficient ('Allo_Area') 
is used to compute blade area from width and length. 'FSLA' 
(first leaf-specific leaf area, cm2 g-1 blade) is fixed for a given 
genotype or species (initial parameter based on measurements) 
and used to translate the first leaf area into dry weight. 

Leaves on a given culm are then initiated successively each 
time the cumulated thermal time completes a new 'Plasto'. The 
final length of the newly activated leaf is computed (pre-dimen­
sioned) at this time, based on the previous leaf length plus an 
additive parameter MGR (meristem growth rate, cm). Leaves 
on tillers are dimensioned similarly but considering the average 
of the previous leaf on the main stem and on itself (see Luquet 
et al., 2006 for details). Based on the translation of daily leaf 
growth into dry weight using structural SLA (specific leaf area 
evolving with leaf rank as detailed in Luquet et al. , 2006), a 
daily C demand for growth is computed at the whole-plant level 
CDayDemand'). 'DayDemand' includes root demand until 
panicle initiation, computed proportionally to the shoot demand 
in a decreasing way (see Luquet et al. , 2016 for details). 

C source activity and source-sink regulation of growth and 
development. Each day, leaf blade area is summed on the 
plant (PLA) and aggregated at canopy level (LAI using a 
parameter defining plant density m-2). On this basis, Beer­
Lambert and Monteith equations are run at canopy level to 
compute, respectively, light interception and C assimilation 
rates and finally plant daily C supply availability, as described 
in Luquet et al. (2006). 

The ratio between the daily plant C supply and demand is com­
puted and named IC, a plant state-variable index of plant internal 
competition for C resource. On a given day, IC is averaged over 
the previous period corresponding to the duration of one 'Plasto' in 
order to smooth its kinetics and related morphogenetic responses. 

(I) If supply exceeds demand (IC >l), the C excess is stored 
in vegetative tissues to a maximwn amount of 50 % of 
leaf structural mass (70 % for the intemode which will be 
described later); this makes SLA an emerging property of 
the model, computed from structural (see structural SLA 
computation above) and non-structural leaf biomass; if the 
excess cannot be entirely stored, the surplus is spilled-over 
and considered as Jost as this surplus did not show any ben­
efit to root growth in a previous study (Gutjahr et al., 2013). 

(2) If IC is <I, the pool of C stored is mobilized and, if it is not 
enough to afford the daily C demand, growth is reduced, 
the senescence of the oldest leaf of each culm is accelerated 
and 40 % of its structural biomass is remobilized to the C 
pool. 

Growing organs are at this stage not prioritized for their access 
to plant C supply that is partitioned uniformly to each of them 
proportionally to their demand. In addition, IC comes as a regu­
lator of three plant morphogenetic events: ( 1) if IC is <I at the 
time of initiation of a phytomer, its pre-dimensioning is reduced 
proportio~~lly (_by multi~lying potential pre-dimensioning by 
~IC); (2~ 1f IC 1s <l dun?g or~an growth, daily sink activity 
(~longat1on rate ~d r~sultmg daily .demand) is reduced propor­
tionally (by multJplymg the potential elongation rate by ~IC)· 
(3) if IC is <ICt (genotypic threshold parameter tested on IC 
averaged during phase l of expansion of a given leaf), then the 
young tiller outgrowing from the corresponding bud is killed. 
Otherwise, the tiller keeps on growing. This test is perfonned 
only once during the life of the tiller. 

Model concept extrapolation to the whole plant cycle 

Scheduling of main developmental phases. To make the onset 
of stem elongation, panicle initiation and changes in leaf devel­
opment rates and sizing independent (see Supplementary Data 
Fig. lA), three ontogenetic stage parameters were implemented: 

(1) 'NbleafParam2' indicates the number of leaves which have 
appeared on the main stem when some morphogenetic rules 
change: 'Plasto', 'Phyllo' and 'Ligulo' are increased· the 
size increment of successive leaves (MGR) is modifi~d as 
is the blade to sheath length ratio ('LL_BL'). For this pur­
pose, the following genotypic parameters were created: 

X =Xx Cx 

RLB = RLB +sLB x n 

(1) 

(2) 

~here X is either MGR, 'Plasto', ' Phyllo' or 'Ligulo', 11 
1s the rank above 'NbleafParam2' of the considered oraan 
SLB the slope for the 'LL_BL' function (RLB) and C is

0 

th~ 
specific coefficient for 'Plasto', 'Phyllo', Ligulo orxMGR. 
This is applied on all tillers at the same time. 

(2) 'NbLeaf_StemEiong' indicates the number of ligulated 
leaves on the main stem at which internode elongation 
st~s: At this stage, the ~ntemode belonging to the phytomer 
bnngmg the youngest hgulated leaf on the main stem starts 
elongating. Simultaneously intemode elongation starts on 
other tillers that bring at least one ligulated leaf. The inter­
node length and diameter are pre-dimensioned as follows: 

Lr (n) =LL (n) x Ru x y'IC (3) 

Lr(n) =Lr(n-1) xSrxy'IC (4) 

Dr (n) =Dr (n-1) x Cv x y'IC (5) 

with L,(n) and D,(n) the pre-dimensioning, at phytomer n 
of intemode length and diameter, respectively, LL(n) the 
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pre-dimensioning of leaflength, and Ru, S1and C
0

genotypic 
parameters. If internode rank is below 'Nbleafparam2', 
eqn (3) is used and otherwise eqn (4) for internode length 
pre-dimensioning. ~IC has an upper limit equal to l in all 
equations . . 

The internode expansion rate is computed similarly to 
leaves assuming a similar sensitivity to IC and a duration 
of 3 'Ligulo' in order to have three internodes expanding 
at the same time, as suggested by Nakamura et al. (2011). 
Daily internode length and width enable computation of 
the internode volume, assuming internodes are cylindrical. 
Based on two parameters defining internode volume density 
(g of structural biomass cm-3), the daily internode growth 
is translated into a daily C demand. For a given internode, 
its density evolves linearly along its elongation from 'den­
sity_IN l to density_lN2' (up to 0.25 for sorghum). 

(3) 'MaxLeaves' indicates the rank of the flag leaf phytomer 
on the main stem, i.e. the last vegetative phytomer initiated, 
before the phytomer bringing the panicle and the peduncle is 
initiated. Accordingly, panicle initiation occurs on the main 
stem when the number of 'Plasto' reaches 'Maxleaves' + 
l. The panicle dimensioning (spikelet number per panicle) 
is then onset until flowering as follows: 

Sp (t) = Sp (t-1) +Rs x D (t) x v'JC (6) 

where S (t) is the number of spikelets per panicle on a 
given day t, R5 is the spike creation rate and D(t) is the total 
degree-days of that given day t. 

Onset of panicle initiation occurs first on the main stem and 
one 'Plasto' later on all tillers made of at least one phytomer 
with a fully expanded leaf. The other tillers will remain sterile. 
As tillers grow out later than the main stem and because flow­
ering (FLO) is synchronized among all culms on the plants, 
fertile tillers systematicalJy bring fewer leaves than the main 
stem. Based on another genotypic parameter defining spike 
number per panicle length unit, a panicle length is computed 
(not shown). 

When the last leaf (flag leaf) is expanded on the main stem, 
the last intemode and the peduncle are activated and start grow­
ing simultaneously, which starts the pre-flowering stage. The 
peduncle elongates during this phase, lasting one 'Ligulo' for 
sorghum. The peduncle is pre-dimensioned as a function of the 
last internode length and a multiplicative coefficient (equal to 
1.5 in sorghum), regulated by IC (similarly to other organs). 
Accordingly, panicle exertion is completed at the end of the 
pre-flowering period that is considered to correspond to the 
flowering stage (FLO). 

At FLO, the grains start filling to a rate defined by a geno­
typic parameter ('Grain_filling_Rate', in g °Cd-1) that can be 
regulated by ~IC as well. A number of 'Plasto' (six for sor­
ghum) defines the grain-filling phase duration. Grain physi­
ological maturity occurs one 'Plasto' after the end of the 
grain-filling phase. 

During the reproductive phase (from panicle initiation time), 
tillering is still tested but only in the case where C supply re­
mains positive after the daily demands for growing organs are 
afforded, in order to represent an accentuated apical dominance. 
This, associated with the fact that IC decreases dramatically 

during stem elongation and grain-filling phases due to an in­
crease of C demands, makes tillering inhibition an emerging 
property of the model. 

Leaf senescence 

In the first version of Ecomeristem (Luquet et al., 2006, 
2012), leaf senescence was activated only when plant C storage 
reached zero. This underestimated leaf and tiller senescence 
dynamics when using the model for the whole-plant cycle. 
A leaf senescence module was thus implemented considering 
a linear senescence rate from leaf ligulation u~til it reaches a 
maximal age defined by the genotypic parameter 'Coeff_life_ 
span' (in °Cd) at which it is entirely senesced (see Phase 3 in 
Supplementary Data Fig. lB). Each day, the portion of senesced 
leaf is partially allocated to the senesced dry weioht compart­
ment and remobilized to the C storage pool, as des;ribed above. 

Individualization of tiller growth and senescence 

From the onset of stem elongation, up to grain physiologi­
cal maturity, C balance, growth and senescence computation 
is individualized per culm (main stem and tillers) in order to 
capture the desynchronization of tiller development (panicle 
initiation and intemode elongation), related C source-sink 
relationships and (leaf and tiller) senescence processes. Three 
approaches were compared. 

Approach I : the daily plant C pool is partitioned equitably 
among culms proportionally to their green leaf fraction. For 
the vegetative phase, Ecomeristem (Luquet et al., 2006) consid­
ers that all growing organs have an equitable access to a com­
mon C pool (supply and storage) computed at the plant level, 
without any prioritization as to whether they belong to the main 
stem or a tiller. This approach was first extrapolated to the sub­
sequent developmental phases. For this purpose, the daily C 
supply of a given culm is computed as the fraction of the plant 
C supply multiplied by the ratio between tiJler and plant green 
leaf biomass: 

(7) 

where S' is the supply of the jth tiller for the ith day, S the 
plant supply for the ith day, B' the total leaf biomass of the 
jth tiller for the ith day, and B the total plant leaf biomass for 
the ith day. 

The daily C demand on a given culm is computed similarly 
to that described above. A local IC and C storage is then com­
puted at the level of each culm to locally control C remobili­
zation, growth reduction and leaf senescence, similarly to that 
explained at the whole-plant level. 

The appoach was, however, not able to simulate biomass 
sorghum growth and particularly biomass partitioning after 
stem elongation onset. Indeed, although plant total biomass 
was correctly simulated, the partitioning between main stem 
and tiller growth (and tiller abortion) was not well represented, 
main stem growth and height being underestimated to the 
benefit of tillers (see Fig. I). An underestimation of C supply 
allocated to the main stem should be explained either by a bad 
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partitioning of light interception among culms due to the use of 
the Beer-Lambert law (see Approach 2) or by a bad estimation 
of C sink strength of each culm (see Approach 3). To test these 
two hypotheses, two further approaches were implemented and 
compared. 

Approach 2: a light interception model enabling a better spa­
tial distribution of light and C supply among culms. In this 
approach, the Beer-Lambert law that computes light intercep­
tion at the canopy level and the concept of a common C pool for 
the whole plant are questioned. Indeed, the main stem (and the 
oldest tillers), being older and taller, may be at an advantage for 
their access to light and C assimilation and thus grow better. In 
this respect, a model computing light interception per culm was 
tested, inspired from that proposed by Yin and van Laar (2005). 
Before canopy closure (tested according to inter-row space and 
the length of the largest leaf on the plant; the canopy is consid­
ered closed when the length of the largest leaf is greater than 
half of the inter-row space), light interception is computed per 
horizontal canopy layer considering whether leaves belonging 
to this layer are sunlit and shaded leaves and taking into account 
the inter-row spacing. lf the canopy is closed, light interception 
is computed considering sunlit or shaded fractions of leaf area 
per continuous horizontal canopy layer. For both periods (open 
or closed canopy), light interception is discretized per leaf to 
compute the C assimilation for each culm. 

Approach 3: a hierarchical culm access to the whole-plant C 
pool depending on their age. This approach assumes that the 

A B 
SUPPLY 

CD 

Leaf 

MS T1 T2 

IC»1 

oldest culms are generally more prone to be fertile. For this pur­
pose, the implemented approach considers culms hierarchically 
(from the oldest to the youngest ones) in order to supply C lo­
cally, from the plant C pool, proportionally to the local daily 
C demand, when possible. IC and the resulting regulation of 
organ growth, senescence, C storage/remobilization and ultim­
ately tiller death are thereafter computed similarly to Approach 
1. Accordingly, the younger a tiller, the smaller the amount of C 
supply potentially provided. The youngest tillers are thus more 
prone to be source limited and to senesce. It must be mentioned 
that the daily C storage in leaf tissues is still considered but 
intervenes only in the case where the C storage in the inter­
nodes is maximal. Figure 1 summarizes the way Approach 3 
models tiller C source-sink relationships. 

Experimental data 

Three experiments were carried out in the DIAPHEN field 
phenotyping platform at Mauguio (South of France; Delalande 
et al., 2015) during the summer seasons 2014, 2015 and 2016 
(sowing on 23 May, 13 May and 18 May, respectively). Two to 
eight biomass sorghum genotypes were studied. Germination 
was considered as the appearance of the tip of the first leaf out 
of the soil; it occurred on average 5 d after sowing in the three 
experiments. Each experiment consisted of a randomized com­
plete block design with three replications. 

The 2016 experiment consisted of comparing two bio­
mass sorghum genotypes of similar height but contrasting 

c 

Leaf Leaf 

FIG. I. Schematic representation of the apical dominance concept in Ecomeristem (modelling Approach 3). Demands are satisfied subsequently according to tiller 
age from the oldest to the youngest, beginning with the main stem. Jf C supply is higher than C demand (case A), all demands are satisfied and the remaining C 
supply is stored in internodes, then leaves. IfC supply is close to demands (case B) all demands are satisfied but the internode-available C storage compartment is 
not entirely filled (leafC storage is not filled at nil) and can even be remobilized. If C supply is much less than the C demand (case C), demands are satisfied accord­
ing to tiller age; tillers that meet a C deficit (C supply lower than the demand) will have their oldest leaf killed, and tillers with only one leaf remaining will die. 
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morphology and tillering patterns (BIOMASS140, a commer­
cial hybrid; and IS 26833, a caudatum line, named GI and G6, 
respectively, in this study; see details in Luquet et al., 2018) 
at two cropping densities: a classical planting density with 0.8 
row spacing resulting on average in a plant density of 20 plants 
m-2• This cropping density will hereafter be named LD (low 
density); a high cropping density (HD), with inter-row spacing 
reduced to 0.4 m, resulted in a plant density of 40 m-2. This ex­
periment aimed to compare the three modelling approaches de­
scribed above with respect to their capacity to capture biomass 
sorghum phenotypic plasticity particularly in terms of tiller 
growth and mortality dynamics. In this experiment, one block 
consisted of three rows (LD) or six rows (HD) of 4 m. 

The 2014 and 2015 experiments were used to validate 
Ecomeristem in its capacity to simulate the growth, development 
and biomass component traits of eight biomass sorghum geno­
types (hereafter named Gl-G8 including GI and G6 studied in 
2016) representative of the morphological diversity found in the 
sorghum diversity reference set (organ size, number, tillering, 
stem fibre vs. sugar content; see details in Luquet et al. (2018). 
In these experiments, plants were cropped only at LD, and one 
replication of one genotype consisted of four, 8 m long rows. 
Details on field monitoring and measurements are provided in 
Luquet et at: (2018) and only key information is provided here. 
In the three experiments (2014, 2015 and 2016), four plants per 
block were tagged by marking the fifth leaf with a black point 
when plants presented an average of seven visible leaves. These 
plants were thereafter monitored weekly to measure the number 
of appeared (APP), ligulated (LIG) and green leaves on the main 
stem (a leaf is considered green when <50 % senesced), the plant 
height, i.e. the distance from the soil to the top ligule on the main 
stem (PHT), and tiller number (NBT). Every 2 weeks only, the 
length and maximal width of the last ligulated leaf blade on the 
main stem were measured and used to calculate blade leaf area 
(AREA) using an allometric coeffic;ient constant for sorghum 
(0.69). On three dates: beginning of stem elongation (between 
40and45 dafter germination, only in 2015 and 2016); last week 
of the stem elongation phase (between 60 and 70 dafter germin­
ation); and final harvest (during grain filling for the genotypes 
that flowered, between 110 and 130 d after gennination), 3-4 
plants were sampled per block to estimate the dry weight of the 
different organs [only total above-ground dry weight (ADW) in 
201 Sat the first date): stem (SOW), green leaves (LDW) and the 
panicle (PDW) of the main stem and bulk tillers (TDW). Main 
stem sub-samples (one per block) were used in 2014 and 2015 
for NIRS (near infrared spectroscopy) prediction of stem bio­
chemical composition [detailed in Luquet et al. (2018)). Only 
the prediction of soluble sugar content was used here to com­
pute non-structural carbohydrate dry weight in the main stem 
(MSS, g). 

In 2016 only, and on the same three dates, light interception 
measurements were performed using a SunScan canopy ana­
lysis system (Delta-T Devices, Cambridge, UK). Measurements 
were taken in each block near the plants monitored weekly for 
development and phenology, keeping the sensor parallel to the 
soil and at three levels: within the canopy (above, at medium 
height and at ground level), by positioning the SunScan along 
the row at the base of the plants, and with a 45° angle on the left 
and right sides of the row. At final harvest, the number of inter­
nodes, their cumulated length, the length of the peduncle and 

the diameter of the first and the last expanded intemodes were 
measured on the main stem. 

Air temperature (Ta), relative humidity and photosyntheti­
cally active radiation (PAR, MJ m-2) were measured hourly 
using a Cimel516 meteorological station (CIMEL electronic, 
Paris, France). Estimated daily Ta and PAR were used a~ input 
values for simulations with Ecomeristem. The water balance 
module was not activated in the model, considering that no 
water deficit event occurred. 

Modelling and simulation experiments 

Modelling calibration. A genetic algorithm (Luquet et al., 
2016) was used to carry out model parameter estimations. It 
consists of a metaheuristic method searching for the set of 
parameters maximizing the accuracy of simulations for several 
available phenotypic traits: APP, LIG, AREA, ADW, MSDW, 
MSS, PDW and PHT. The accuracy of parameter estimation 
was computed a~ the root mean square error [RMSE, expressed 
as a percentage in eqn (8)] between simulated and observed 
data. The set of parameters that was estimated, measured or 
fixed (species dependent) is summarized in Table 1. 

NRMSE ( % )= 
"''.'_ (~) ~1.-I Yi 

n 
(8) 

It must be mentioned that this RMSE used a weighing coef­
ficient to give increasing importance to error values with plant 
age: this weight is increased by I 0 % every day. This was nec­
essary in order to tolerate some discrepancies at the early stage 
more than at the later stage, in particular regarding tiller num­
ber, as during the tillering phase some small tillers could be not 
counted in the field (because they were about to die or were too 
small) whereas they are simulated by the model. 

In 20 l 6, model calibration wa~ performed for G l and G6 
on experimental data in LD conditions, and model validation 
was performed on data in HD conditions. For other genotypes, 
model calibration was performed on 2015 data and validation 
on 2014 data. The validation consisted of running the model 
with previously estimated parameters and independent mete­
orological data (or cropping conditions). Only two genotypic 
parameters could differ from the calibration to the validation 
set because their variability was not entirely captured by the 
model: 'MaxLeaves' and 'CoefflnDiamW (Table I). 

The light interception model could be calibrated only on 
2016 SunScan data. 

Modelling approach comparison. The modelling approaches 1, 2 
and 3 were compared using 2016 data for the.ir capacity to capture 
the differential growth and senescence of culms depending on the 
genotype and the cropping density. Although model parameters 
were assumed to be genotype dependent, the three approaches im­
plied modified model formalisms in such a way that a calibration 
(i.e. model parameters estimation) was needed for each approach 
in order to compare them. The model comparison therefore con­
cerned the behaviour of each approach at the optimum, i.e. for a 
set of parameters that gives the best results with respect to obser­
vation points, assuming the model parameters are not only geno­
typic dependent but also model dependent. 
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TABLE I. Estimated, fixed(*) and measured(**) parameters with, when required, the letter code used/or illustrations in this article and 
the range used for parameter estimation (f) or obtained by parameter estimation and used for eight of them for sensitivity analysis (:{:) 

Parameter Letter code Description (unit) Interval/value 

Epsib A Light conversion coefficient (g MJ-1) [3 .0, 8.0]t 
[5.0, 8.0]:j: 
[0.5, 2.5]t 
[1.0, 2.5]:j: 
[6.0, 14.0]t 
[6.7, I0.3H 
[0.0, 0.4Jt 
[0.0, 0.3H 
[0.85, 1.0]t 
[0.85, l.O]:j: 
[1.3, 2.6]:j: 
[0.08, 0.3Jt 
[0.08, 0 .l 7]:j: 
[25.0, 45.0]t 
25/30/35:j: 

let B Threshold parameter tested on IC to enable a culm to live 

MGR_init c Initial value of the additive parameter meristem growth rate for leaf length 
pre-dimensioning 

slope_LL_BL 

slope_length_IN 

D Slope for the leaf length to blade length ratio decrease after Nbleafparam2 

E Multiplicative coefficient to compute internode n final length from n - I after 
Nbleafparam2 

CoeffiinlNDiam** 
density _IN2 

F 
G 

Basal main stem diameter (cm) 
Internode final volume density (g cm-3) 

Plasto/phyllo/ligulo Initial values of plastochron, phyllochron and ligulochron (°Cd) 

Nbleafparam2* 

NbLeaf_StemElong* · 
Maxi eaves* 

Number of leaves which appeared on the main stem when some morphogenetic 
rules change 

15 

Number of ligulated leaves on the main stem when intemodes start elongating 
Final number of phytomers on the main stem 

8 
[17, 27] 

Sensitivity analysis and ideotype exploratio11. A sensitivity ana­
lysis was carried out using seven key genotypic parameters, i.e. 
those with the hlghest genotypic variability in the present study 
(Table l) using an extended-FAST method (see Luquet et al., 
2012 for details). This method changes the value of only one 
parameter at each step and evaluates how it affects an output 
variable. It computes the direct and interactive effects of each 
considered parameter on a targeted simulated variable. Thls ana­
lysis was performed on two types of biomass output of potential 
interest for bioenergy production: plant stem structural ('fibre') 
and non-structural (sugar or C stored) biomass, produced at two 
planting densities in order to study further the added value that 
tillering should provide: lO and 20 plants m-2, corresponding to 
that commonly met in West Africa and Europe, respectively. This 
was perfonned for one type of phenology corresponding to that 
typical of biomass sorghum: a long cycle genotype ( 130 d after 
germination to reach the grain-filling stage) producing 23 leaves. 
The development rate ('Plasto', 'Phyllo' and 'Ligulo') was, how­
ever, considered as constant and fixed at the values estimated for 
Gl (typical biomass hybrid, international commercial reference; 
a discretization length of 100 000 was used as a sample size, i.e. 
I 00 000 samples for each parameter, resulting in 700 000 simula­
tions for each configuration: planting density x targeted biomass 
output). In order to provide a first appraisal of ideotypes for each 
type of production, the ten best parameter sets maximizing a tar­
geted production were selected among the 700 000 simulations 
and their parameter values were analysed. 

Programming and software 

Ecomeristem is programmed in C++ (https://dl.acm.org/ 
citation.cfm?id=2543987). All equations implemented in 
Ecomeristem are available at http://biomasorgho.cirad.fr/ecom­
eristem2_doc/. All figures were constructed with R software 
and the ggplot2 R package (https://cran.r-project.org/web/ 
packages/ggplot2) or Excel software. Parameter estima­
tion was performed using the differential evolution algorithm 

implemented in the 'DEoptim' R package (bttps://cran.r-pro­
ject.6rg/web/packages/DEoptim). Sensitivity analysis was 
performed using the extended-FAST method implemented 
in the 'sensitivity' R package (https://CRAN.R-project.org/ 
package=sensitivity). 

RESULTS 

Comparison of the three modelling approaches for C partitioning 
among cu/ms 

Once the light interception model used in Approach 2 was 
calibrated on 2016 SunScan data (not shown, error of 9.8 
% for Beer-Lambert and 3.5 % for Approach 2), the three 
modelling approaches were compared on 2016 data. This is 
presented in Fig. 2. As expected, Approach l was unable to 
capture tiller mortality and biomass partitioning amongst 
culms as observed in the 2016 experiment in LO and HD 
conditions. The mean RMSE over four phenotypic traits 
reached 54.3 %, with the biggest errors made on tiller 
number. Approach 2 did slightly better for PHT and MSS, 
due to a better partitioning of light and C supply among 
culms depending on their spatial distribution, but worse 
on ADW, with a mean RMSE of 57.2 %. However, both 
Approaches 1 and 2 underestimated MSDW and overesti­
mated ADW, which can be largely explained by the absence 
of tiller abortion. Approach 3 gave a significant improve­
ment (mean RMSE of 8 %) with a perfect fit on NBT. 
Logically only Approach 3 provided consistent validation 
results using data in HD conditions. This is illustrated for 
genotype G6 in Fig. 3. To further understand how plant C 
supply partitioning among culms is simulated differently . 
in each modelling approach, simulations were compared 
on a given day in identical simulation conditions. This 
is presented in Table 2. Interestingly, by considering the 
geometrical position of tillers within the canopy and their 
resulting reduced access to light, Approach 2 simulated a 
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smaller proportion of plant C supply for tillers compared 
with Approach I . However, this was obviously not enough 
to simulate tillering cessation and mortality correctly (Fig . 
2). Approach 3 simulated a lower proportion of plant C 
supply to tillers that resulted in a realistic simulation of 
mortality thereafter. Accordingly, only Approach 3 will be 
considered hereafter. 

Modelling the phenotypic variability of biomass sorghum 
genotypes 

Model calibration was carried out on the eight genotypes 
studied in the 2015 experiment. The results are presented in Fig. 
4, showing the ability of Ecomeristem to simulate a large range 
of biomass sorghum phenotypes (mean RMSE of 10.4 % per 
genotype, per output variable). For all genotypes, Ecomeristem 
was able to simulate tillering dynamics and mortality (if any). 
Errors on early tiller number were, however, higher, which can 
be expla1ned by the fact that model simulations account for very 
small tillers not necessarily measured in the field. Interestingly, 
Ecomeristem was able to simulate the dynamic allocation of C 
to structural and non-structural (sugars) stem biomass, resulting 
from the complex C source-sink relationships involved within 
the plant (Fig. 4D). 

Figure 5 presents Ecomeristem validation on data from the 
2014 experiment. Only 'MaxLeaves' and 'CoefflinlNDiam' 
were modified from the calibration to the validation set of gen­
otypic parameters, although these parameters did not change 
significantly from one year to the next. The results show the 
ability of the model to predict fairly well the component tra1t5 
of stem biomass production and properties. The main weakness 
concerns the prediction of the highest tiller. numbers, which 
corresponds to the end of the tillering phase, the time at which 
the model can simulate the creations of small, unviable tillers, 
not necessarily observed experimentally. 

Model sensitivity analysis and ideotype exploration 

Figure 6 shows the direct and interaction effects of each geno­
typic parameter on the simulation of structural (upper row) and 
non-structural (lower row) biomass at two planting densities: 10 
and 20 plants m-2• The proportion of direct effects to the total 
effect of parameters A (light conversion coefficient, 'Epsib'), F 
(basal diameter) and G (intemode density) were higher at IO 
than at 20 plants m-2 (only on structural biomass for parameter 
A). This is the result of smaller inter- and intraplant competition 

at this lower planting density making the direct effect stronger 
for these key C supply and demand parameters. These param­
eters remained, however, the most influential parameters in all 
situations. Parameters B (ICt, tillering sensitivity to C avail­
ability) and C (MGR, leaf sizing) became more influential at 
higher planting density. These parameters in the first place con­
trol the number and the size of leaves set up during the vege­
tative phase and therefore the capture of light. Neither the 
parameter controlling the length increment of successive inter­
nodes (E) nor the blade area decrease rate for the top leaves from 
'NbleafParam2' upward (D) exhibited a strong effect whatever 
the planting density and the targeted production. This can be 
easily explained for parameter E by its low genotypic variability 
or for parameter D by the minor effect of top leaf size for geno­
types that exhibited an average high Light conversion efficiency. 

The ten sets of parameters simulating the genotypes maxi­
mizing the structural or non-structural biomass production, for 
each planting density, were then analysed. They are presented 
in Fig. 7. In both cases, several ideotype profiles emerged, al­
though stem biomass yield (per hectare) was stable among 
ideotypes in a given configuration (plant density x targeted 
production) and between the two densities or the two targeted 
productions (Supplementary Data Fig. 2). Light conversion ef­
ficiency (parameter A) exhibited consistently high values across 
ideotypes for the four configurations, whereas other parameters 
showed variability among configurations and between ideotypes 
in a given configuration. At 10 plants m-2 and considering stem 
structural dry weight as targeted production (Fig. 7 A), tillering 
sensitivity to C availability (parameter B), top leaf blade area 
downsizing (parameter D) and internode volume density (par­
ameter G) were the most variable, whereas the parameters con­
trolling intemode length and diameter (parameters E and F) and 
.leaf size profile (MGR) were fairly high. At 20 plants m-2 for the 
same targeted production (Fig. 7B), two profiles emerged. The 
first profile favoured tillering (low parameter B, i.e. low sensi­
tivity of tillering to C) together with a high internode density 
(parameter G); the second one observed high parameter B (high 
sensitivity of tillering to C) and low density. However, whatever 
the profile, all ideotypes ended up with the same tiller number 
and contribution to production (Supplementary Data Fig. 2). 
The same trend could be observed between these two param­
eters with stem non-structural C dry weight as the targeted pro­
duction. In addition, in this configuration and for both planting 
densities, high internode density (parameter G) pairs with a low 
downsizing of top leaf blade area (parameter D) (Fig. 7C, D). 

In general, D20 ideotypes maximizing stem dry weight ex­
hibited small leaves (parameter C) and D20 ideotypes maxi­
mizing stem non-structural C dry weight exhibited a low ICt 

TABLE 2 Amount of the plant C supply a/located to each culm computed by the three modelling approaches compared in this study 

Mainstem supply(%) Tiller I supply (%) Tiller 2 supply (%) Tiller 3 supply (%) 

Approach I 
Approach 2 
Approach 3 

34.19 
45.47 
57.39 

27.39 
24.15 
33.48 

23.74 
18.75 
9.12 

14.68 
11.63 
0 

Example ofone genotype (GI). one planting density (20 plants m-') and one year (2014 meteorological data) on one date (3 July 2014) on an identical average 

plant during the phase of tillering cessation. 
Results are expressed as the percentage of total plant carbon supply. 
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value with high intemode diameter (parameter F) and length 
(parameter E). Tillering capability showed_ more variability 
considering plant stem dry weight than stem non-structural bio­
mass as the targeted production, but this resulted in a similar 
contribution of tiller to final production. 

For each condition, the mean value over the ten ideotypes of key 
stem biomass production variables as well as of stem biomass yield 
per hectare was computed (see Supplementary Data Fig. 2). It is 
interesting to note that, at lower density, tillering was able to com­
pensate either stem structural or non-structural biomass production, 
leading to stable production between the two densities used. 

DISCUSSION 

The present study aimed to ( l) evaluate three ·modelling ap­
proaches for their ability to predict tiller growth and mortality 
and (2) use the best approach for evaluating the impact of til­
lering traits, among other morphological and physiological traits, 
on biomass sorghum production and quality (non-structural vs. 
structural biomass partitioning) depending on cropping density 
in an ideotyping context. The sink-driven modelling approach 
considering a hierarchical access of tillers to C resources de­
pending on their age was shown to be the most efficient. The 

results discussed below come as a proof of concept of its interest 
for a (pre-)breeding context and open the door to its application 
for analysing larger genetic and environmental diversity. 

No vel insights for 111odelli11g the G x E underlying biomass 
sorghum production 

Advantage of considering plant C source-sink relationships at 
organ and culm levels. Three versions of Ecomeristem were 
compared to evaluate whether tiller growth, mortality and final 
contribution to biomass production was C source (light inter­
ception distribution within the plant) or sink (apical dominance) 
driven . It could be suggested that, in a given planting situation, 
the genotypic variability in tiller final contribution to stem bio­
mass yield was mainly explained by the level of plant internal 
competition for C among cul ms and the existence of a prioritiza­
tion related to their age. This should be attributed to hierarch­
ical apical dominance of tillers, apical dominance being known 
to regulate the allocation of resources within the plant (Bennett 
et al., 2012); however, we did not check in the present study 
whether a hormonal phenomenon was indeed driving these 
phenotypes. The processes underlying tillering and particularly 
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its cessation and tilJer mortality were largely omitted both in 
crop models and in FSPMs (Evers and Vos, 2013). Crop mod­
els generally do not consider tillering per se but only bulk LAI 
dynamics. This is commonly considered as a main limitation 
with respect to the challenge of using crop models to dissect 
the genetic and physiological control of complex traits such as 
yield (Hammer et al., 2010; Kim et al., 2010b). Accordingly, 
crop models are more and more expected to consider tillering 
processes, but this is still in its infancy (e.g. in sorghum and 
rice; Alam et al., 2014; Kumar et al., 2016). In contrast, several 
3-D plant models already dealt with tillering processes (Evers 
and Vos, 2013) but in a way largely disconnected either from 
the simulation of crop production or from the consideration of 
mechanistic (explicative, predictive) processes (Abichou et al.. 
2018). The concept of a plant C supply-demand ratio underly­
ing the genotypic and environmental control of tillering, ini­
tially formalized in Ecomeristem (Dingkuhn et al., 2006) and 
experimentally validated for sorghum (Alam et al., 2014; Kim 
et al., 20l0a; b), also appeared relevant in the present study 
for predicting tillering cessation. However, it failed in predict­
ing tiller mortality, which required the introduction of a hier­
archical access of tiller to plant C resources depending on their 

age. This rule was made the same for all genotypes, i.e. that the 
older the tiller (and thus the main stem in the first place) the 
better its daily C demand is afforded (up to l 00 % if possible). 
Accordingly, the simulated tiller mortality only resulted from 
the inherent level of competition among tillers due to organ 
size, growth rate and daily plant-available C. This approach en­
abled us to simulate final tiller number and its contribution to 
biomass production, but the dynamics of mortality were trickier 
to simulate precisely. Apical dominance is known to be largely 
hormonal and to vary not only among species but also among 
genotypes, although this has not yet been addressed regarding 
tiller mortality (Millier and Leyser, 2011). It will be interest­
ing, in the follow-up of this study, to introduce a parameter 
for tuning the level of apical dominance (e.g. the percentage 
of daily C demand afforded as a priority for an older tiller be­
fore testing the C supply to provide to the next tiller), to check 
whether it can improve the simulation of tiller mortality across 
a large range of genotypes and finally explore its potential im­
pact on stem biomass production. 

The second approach presented in this study introduced a 
more sophisticated light interception model to deal with its vari­
ability among culms within the canopy and in terms of diffuse 
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and direct light Even though it did not strongly contribute to 
improve the prediction of tiller mortality, it does not minimize 
the role architectural modelling and FSPMs can play in an ideo­
typing context, particularly for biomass crops or when dealing 
with more complex cropping systems (e.g. intercropping, cf. 
ongoing H2020 project https://www.remix-intercrops.eu/). 

Stem C storage and partitioning between non-structural and 
structural carbohydrates was correctly captured by the model. 
This represents an important feature for a model dedicated to 
the simulation of phenotypes of a bioenergy crop such as bio­
mass sorghum (Trouche et al., 2014; Xu et al., 2015). Some 
crop models already paid attention to the partitioning of stem 
structural and non-structural biomass, in particular for pre­
dicting sugarcane yields (Singels and Bezuidenhout, 2002). 
However, such models were not dedicated to capture the traits 
underlying G x E at the organ or culm level, which can be a 

strong limitation for ideotype design in increasingly fluctuat­
ing and extreme climate conditions (Rotter et al., 2015; Wu 
et al, 2016). 

The percentage of dry weight potentially represented by C 
storage (non-structural biomass) is handled in Ecomeristem 
by an organ-specific parameter fixed to 75 % (intemodes) and 
40 % (leaves) for all genotypes. The actual daily amount of C 
supply stored is thus the minimum between the available reser­
voir in storage organs and the remaining C supply after all de­
mands for structural biomass are satisfied. Considering that this 
C pool can be mobilized if the daily plant C supply is less than 
demand, leaf and internode sugar content dynamics depend on 
the genotype and the environment, and are emerging properties 
of the model simulations. The fact that th.is conceptual choice 
enabled us to simulate correctly stem sugar content is thus quite 
original. It can be mentioned that another genotypic parameter 
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related to C storage processes was implemented in the model 
but not used in this study. This parameter, fixed at 0 here, de­
fines whether and to what extent the daily C storage in the stem 
is an active sink. The value of this parameter determines the 
percentage of the available C storage reservoir functioning as 
an active sink and thus accounted for to compute the daily plant 
demand. By fixing this parameter to zero in this study, we con­
sidered that C storage in intemodes was only a passive process, 
i.e. the result of a spill-overof excess C supply once all the C de­
mands for structural growth were afforded. Whether C storage 
in sorghum (and sugarcane) intemodes is passive (result of a 
spill-over of c assimilate surplus once c demands for growth 
are satisfied) or active (dependent on the activity of sucrose 
synthesis enzymes and transporters; Bihmidine et al., 2016) re­
mains only partially understood. This has strong implications, 
however, for biomass sorghum improvement as a bioenergy 
crop. Having implemented such a parameter in Ecomeristem 
will enable evaluation of the impact of this putative process on 
biomass production and its implication for crop improvement. 

Modelling limitations to be overcome. The present study only 
focused on eight biomass sorghum genotypes, and the range of 
environmental conditions addressed was relatively narrow. In 
a climate change context and regarding current sorghum crop­
ping environments, it will be essential to extrapolate this study 
to drought-prone environments and environments where vapour 
pressure deficit (VPD) fluctuates and can become high. Both 
drought and high VPD conditions are known to affect organ 
growth (e.g. in maize, Chenu et al., 2007) and water use (sor­
ghum and maize, Truong et al. , 2017). Ecomeristem is already 
equipped with modules to deal with soil water balance and its 
impact on organ growth, stomata! aperture and C assimilation 
rate (Luquet et al., 2016). However very little is known about 
the genotypic sensitivity of internode growth to drought or VPD 
and whether this sensitivity is proportional between leaves and 
intemodes for a given genotype. Preliminary results in our lab 
suggest that this is the case. This will have to be further studied 
and implemented in the model, although it can be expected that 
sorghum will be less sensitive than maize (Truong et al., 2017). 
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FIG. 6. Sensitivity analysis results showing the main and interaction effects of eight key genotypic parameters on simulated plant stem dry weight (A, B) and plant 
stem C storage (C, D), at two planting densities [10 (DlO: A,C) and 20 (D20: B,D) plants m-2) for a standard. theoretical long cycle genotype (final leaf number 
of 23 on the main stem with development rates similar to G 1). Simulation of 130 d after germination (until the grain-filling stage) using 2014 meteorological dala. 
Parameters correspond to A= Epsib, B =Jct, C = MGR_init. D = slope_LL_BL_al_PI, E = slope_length_IN, F = CoeffiinlNDiam, G = density_IN2 (detailed in 

Table l ). 

Another important improvement of the model will concern 
the thermal time computation. In this study, we only used a 
base temperature, because the thermal conditions considered 
were not extreme. However, it will be necessary to use a more 
precise model considering other cardinal temperatures in stud­
ies with more extreme climatic conditions (as in the RIDEV 
model, Dingkuhn et al., 2017). Finally, as mentioned above, the 
stem biomass quality was considered here as the partitioning 
between structural and non-structural carbohydrates. However, 
the cell wall composition Oignin, cellulose and hemicellulose 
.fractions) and its response to the environment are key features 
for defining bioenergy crop ideotypes, and more and more is 
becoming known about the dynamic set-up of the components 
and their G x E control (Perrier et al., 2017; Luquet et al., 
2018). Ecomeristem will provide a relevant modelling frame­
work to integrate this kind of knowledge for in silica studies. 
Similarly, the internode thickening (diametric growth) needs to 
be better represented during internode elongation. Currently a 
given internode starts elongating with its final diameter, which 
may affect the precision of the C supply-demand balance in the 
model (Lacube et al., 2017). 

Finally, in a climate change context, the response of a plant 
to increased atmospheric co2 together with other key climatic 
variables is also crucial (Yin et al., 2016). We have already de­
veloped a leaf C assimilation model potentially connected to 

Ecomeristem to run at the leaf or leaf layer level. This could 
improve C assimilation computation and ideotype exploration 
for future climatic scenarios. 

Gait1 in complementarity of ecophysiological models to genetic 
models i11 a pre-breeding conteX/ 

In this study, a dedicated metaheuristic algorithm was 
used to estimate conjointly more than ten parameters of 
Ecomeristem. This type of algorithm comes as a powerful 
tool for model-assisted phenotyping, with a genotype being 
characterized by a set of model parameter values dissecting 
a complex trait into elemental process-based traits that are 
genetically simpler. Model-assisted phenotyping demon­
strated its added value 15 years ago (Reymond et al. , 2003); 
however, the use of estimated instead of measured param­
eters is much less frequent. Indeed, the models used for this 
purpose generally deal with only one elemental process and 
few (less than five) parameters underlying plant growth or 
yield, and do not require metaheuristics (e.g. parameters 
related to leaf elongation rate vs. grain yield simulation 
in corn, Chenu et al., 2009). Technow et al., (2015) con­
sidered in this context five parameters underlying grain 
yield in maize, but these parameters remained too complex/ 
integrative to dissect finely the genetic and environmental 
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FIG. 7. Radar plots of the eight key genotypic parameter values (detailed in Table I) met across the ten best ideotypes identified within the simulations performed · 
for the sensitivity analysis (presented in Fig. 6): ideotypes for plant stem dry weight (AB); plant stem C storage (CD), at two planting densities [10 (DIO: AC) 
and 20 (020: BD) plants nr']. for a standard, theoretical long-cycle genotype (final leaf number of 23 on the main stem with development rates similar to G 1 ). 
Simulation of 130 d after germination (until the grain-filling stage). Parameters correspond to A = Epsib, B = let, C = MGR_init, D = slope_LL_BL_at_Pl, 

E = slope_length_IN, F = CoefllinINDiam, G = density_IN2. For ease of reading, parameter values were normalized between [O, l ]. 

control of the simulated complex trait. Accordingly, the 
role ecopbysiological modelling can play, combined with 
appropriate parameter estimation approaches, to dissect 
the genetic and physiological control of yields is still chal­
lenging. The approach presented in this study enabled us, 
based on a vector of parameters, to capture more exhaust­
ively the genotypic value of a set of traits constituting 
the elaboration of the whole-plant phenotype. It also en­
ables us to account for the (genotypic) covariation and the 
trade-offs among these traits, which is essential to explore 
ideotypes in targeted environments. A key challenge for 
model-assisted ideotyping will be the coupling with gen­
etic modelling to relate genotypic parameters to genetic in­
formation (Yin et al., 2016). 

CONCLUSIONS 

In this study, we showed that Ecomeristem could be a relevant tool 
for the model-assisted ideotyping of biomass sorghum. Nevertheless, 
some methodological considerations that could improve (or set lim­
its to) its applications in a pre-breeding context were not taken into 
account. First, during parameter estimation, only the total RMSE 
over all variables was considered, reducing the fitness of the simu­
lation to a single (integrated) criterion. The ideotyping of biomass 
crops must be multi-criteria because it must consider the component 
traits of biomass quantity (organ size, development rate, ti1Jering, etc.) 
and quality (fibres, sugars, lignin, hemice1Julose, etc.) and their re­
spective response to the environment. This makes it. a multi-criteria 

optimization problem, and appropriate algorithms will have to be 
mobilized in this context (Constantinescu et al., 2016). A second con­
sideration is computation time. Complicating the model to deal with 
processes of interest for biomass sorghum ideotyping at finer bio­
logical and/or temporal scales (e.g. light interception on 3-D plants 
or C assimilation of individual leaves) will dramatically increase 
the simulation time (Tremblay and Wallach, 2004). The number of 
additional parameters implied should be also problematic for estima­
tion algorithms because the pbenotypic and numerical space to be 
explored will be exponentially larger (Constantinescu et al., 2016). 

Perspectives 

The simulation experiments carried out with Ecomeristem in 
this study provided insight to define biomass sorghum ideotypes 
for structural or non-structural biomass production depending 
on planting density modalities. It was pointed out that, within 
the range of genetic diversity explored, light conversion effi­
ciency and internode diameters were systematically key drivers 
of improvement. It was also suggested that sorghum tiller­
ing capacity should be further valorized to maintain or even 
increase biomass yield while using lower planting densities. 

More generally, the present study demonstrated the relevance of 
Ecomeristem to capture the genotypic and environmental variability 
of biomass sorghum phenotypes. This model is currently applied 
to dissect the genetic and environmental (including water deficit) 
control of biomass growth within a larger sorghum diversity panel 
phenotyped within the Phenoarch platform; this will enable genetic 
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infonnation on model parameters to be added to the integrative 
approach proposed here to design ideotypes. 

SUPPLEMENTARY DATA 

Supplementary data are available online at https://academic.oup. 
com/aob and consist of the following. Figure S l: example of phy­
tomer and leaf growth phases on sorghum main stem simulated by 
Ecomeristem along thermal time. Figure S2: averaged simulated 
values over ten ideotypes maximizing either plant stem dry weight 
or C storage per plant at a planting density of 10 or 20 plants m-2
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