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Abstract 
Information sharing systems are often viewed as a potential way of increasing scrutiny by actors of their 
interactions with natural resources. Scrutiny is then seen as encouraging sustainable and adaptable management 
of the resource. We tackle this claim by using an agent-based model to focus on the specific issue of oyster 
farmers dealing with the deadly OsHV-1 virus by sharing information about their own experience (practices and 
outcomes) via their social network and/or an information sharing system. We followed closely what access to 
such information sharing means for the environment (production), agents (beliefs) and interactions between the 
environment and agents (practices). In the model, introducing information sharing leads to a decrease in mortality 
rates and a convergence in agents’ beliefs. Agents stop changing their practices earlier when they share 
information, but heterogeneity in agent decision-making models leads to wider exploration of possible strategies 
and increased production. Agent-based modelling proved a suitable method for studying the impacts of 
information sharing.  
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Code availability 
The VirusNoysters model was developed using Cormas v.2014.5.14 (Bousquet et al., 1998; Le Page et al., 2012) 
and analysed using R v3.2.1. (R Core, 2015). The model code and dependent data, including scripts to analyse the 
outputs, are publicly available at: https://doi.org/10.5281/zenodo.2546505. 
 

 

1. Introduction 

In the age of information, local environmental information sharing systems, such as information systems or 
documents, are thought to be a possible way for actors in a social-ecological system to increase their scrutiny of 
their environment and the resources that they use and share (Young et al., 2006). In such systems, actors are 
fundamentally connected to and by a collective resource, such as fish stock, an irrigation network or a forest 
(Berkes and Folke, 1998; McGinnis and Ostrom, 2014; Ostrom, 2007). The practices of some actors impact the 
practices of others and the resource itself. Actors are also linked by man-made elements such as rules, 
institutions and collective objects.  
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The success of the information technologies revolution in various domains has placed strong expectations on 
actors’ capacities to manage their own shared resources thanks to access to information systems (Young et al., 
2006). However, the belief that more information leads to better and more sustainable resource management 
needs to be questioned, qualified and contextually defined. 
 
Information sharing is difficult to monitor in real settings, in terms of both inputs and the way that this 
information is used by actors in a complex system. Thus, to explore this belief, we decided to focus on a specific 
case study and use an agent-based model. We chose to look at oyster farmers facing a poorly understood virus 
that wreaks havoc on oysters. In addition to analysing the effects of information sharing, a sub-question explored 
here is methodological in nature: how suitable is an agent-based model for the purposes of representing and 
finely controlling information sharing processes? In the model, we measure the impact of information sharing 
scenarios on agents and the environment, and compare the effects of information sharing to those of 
heterogeneity (in terms of agent decision-making), which is well known to increase exploration in agent-based 
models. 
 
In the following sections, we first discuss the theoretical background and case studies that allowed us to build 
the model subsequently described. We then present and analyse the outcomes that we obtained from the 
simulation results. We conclude by explaining how our results highlight the possible effects of information 
sharing, and discussing the suitability of an agent-based model for exploring these effects. 
 

2. Material and methods 

In this section, we first present the theoretical background on information sharing. We then describe the 
empirical case study. Finally, we explain why we chose to use an agent-based model to explore the main 
question addressed by this paper. 
 

2.1 Information sharing for the management of collective natural resources  

The popularity of global information sharing systems, combined with the advantage of external representations 
over internal ones – allow us to think the previously unthinkable (Kirsh, 2010) and move towards a shared view 
on issues (Adams et al., 2003) – seems to confirm the usefulness of such systems. 
 
However, such an assertion needs to be qualified. As a first caveat, in natural resource management, there is no 
panacea (Ostrom et al., 2007), and in general, the availability of an information system does not necessarily lead 
to its stated goal being met, even if the system conforms perfectly to its specifications (Mustonen-Ollila and 
Lyytinen, 2003; Tarhini et al., 2015). Ever since the emergence of information technologies, companies have 
been developing knowledge management systems at significant cost and with mixed success (Liebovitz, 2016; 
Malhotra, 2004). But more information sharing does not necessarily lead to the sustainable or fair use of a 
resource. Li (2014) provides an example of information improving the sustainable management of a 
groundwater resource, while Bell (2015) presents an example of the monitoring of a water resource in Pakistan 
leading to a decrease in water use but no improvement in equitable water distribution.  
 
In the context of social-ecological systems, actors who use a natural resource – potentially in various different 
ways – are both collaborating and competing at the same time. This creates issues for information sharing 
systems specifically within this context, while knowledge management systems in organisations are designed 
with collaboration towards a shared goal in mind. Firstly, there is limited anonymity: actors may know each 
other and therefore be able to identify the source of a given piece of information. The availability of person-
specific information may exacerbate the effects of the tragedy of the commons (Villena and Zecchetto, 2010) or 
negatively impact conditional cooperation (Janssen 2013). Secondly, the disclosure of private information could 
encourage strategic behaviour, for instance by providing incorrect information so competitors do not benefit. 
Thirdly, the issue of free-riding may emerge, with some actors benefiting from the work of others without having 
expended the same time and energy to collect and share information (Evans and Weninger, 2013).  
 
Information may be shared for various purposes, such as to justify a certain action (Berkes and Jolly, 2001), deal 
with conflicts (Adams et al., 2003), avoid depletion and pollution (Nagendra and Ostrom, 2014), or understand 
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a resource system’s dynamics (Evans and Weninger, 2013). It can also be transmitted in different ways, for 
example, via interpersonal exchanges on social networks (Bodin and Crona, 2009), institutional communications 
or schools. 
 
In this paper, we seek to understand the potential effects of implementing information sharing systems on 
social-ecological systems. The observations made above should alert us to the wide variety of possible methods 
and purposes of sharing information, as well as the information’s potential content. General studies of the 
effects of information have produced contrasting results depending on information type, context and intention 
(Apesteguia, 2006; Haynie, Hicks, and Schnier, 2009; Henry and Dietz, 2011). For this reason, we have focused 
here on a specific type of social-ecological system: oyster farming. 
 

2.2 Oyster farming case study 

We studied two examples of oyster farming, the first in the Thau Lagoon, France, and the second in nine 
estuaries in New South Wales (NSW), Australia. In these estuaries, oyster growers cultivate oysters of several 
types, including the Pacific oyster Crassostrea gigas (PO). POs account for 99% of the oysters produced in France 
(Oden et al., 2011) and 72% of those produced in Australia (ABARE, 2014).  
 
POs in the Thau Lagoon and NSW face a deadly virus, the ostreid herpes virus OsHV-1, which can, in the space 
of a day, kill up to 100% of a farmer’s oysters –  when water temperatures are above 16° (Cameron and Crane, 
2011). This virus has been active since 2008 in the Thau Lagoon (Oden et al., 2011), and since 2012 in the Lower 
Hawkesbury Estuary and other estuaries in NSW where this oyster is grown (Paul-pont et al., 2014). This type of 
threat has always been part of the history of oyster farming. French farmers used to grow the Portuguese oyster 
(Crassostrea angulata) in significant quantities prior to it being wiped out by a virus in the 1970s and 
subsequently replaced by the PO (Deltreil, 1973). NSW farmers growing the local Sydney rock oyster (Saccostrea 
glomerata) had to deal with the Qx disease that appeared in 2007 (Butt and Raftos, 2007). 
 

 

Figure 1: Description of the social-ecological system involved in oyster farming. The arrows with descriptions ending in 
question marks are the parts of the system investigated in the model. 

 
Production levels have undergone a steady decline in NSW since 1976, dropping from 9,375 tons of oysters in 
1976 to 3,200 tons in 2012 (OISAS, 2014), while still generating AUD 33 million in 2012. In the Thau Basin, oyster 
farmers produced 8,200 tons of PO in 2011, generating €26.1 million directly and €86.7 million indirectly 
(Gervasoni and Ritter, 2014). In the Thau Basin, in 2013, OsHV-1 killed 54% of oysters on average, with 88% of 
producers reporting between 25% and 75% mortality rates (Gervasoni and Ritter, 2014).  
 
Oyster farmers interviewed in both locations reported that the virus was their main concern and had a deep 
impact on their practices and future in the industry (Paget, 2016). Both scientists and oyster farmers have been 
conducting various studies to try to understand and tackle the virus by adapting practices (Girard et al. 2010; 
Paul-Pont, Dhand, and Whittington 2013; Pernet et al. 2012; Pernet et al. 2014; Whittington et al. 2015). 
However, these studies have not yet reached any conclusion as to what would be the best response to this 
situation. 
 
In NSW, researchers working alongside oyster farmers have developed an information sharing system called the 
Oyster Information Portal that gathers information about farmers’ practices, such as the types and quantities of 
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oysters grown, production figures and transfers between estuaries (Nash and Rubio-Zuazo, 2012). This is 
allowing oyster farmers struggling with this virus to share information about their personal practices, 
experiences and outcomes for the improvement of everyone’s understanding. Could a system enabling 
information sharing be useful for oyster farmers, and what effect would this have on their understanding of the 
virus and response to it?  
 

2.3 Modelling choices 

In this paper, we intend to explore how implementing an information sharing system may impact actors’ beliefs 
and practices, as well as overall production in a basin where oysters are cultivated and may fall victim to a virus. 
In doing so, we have to confront a number of difficulties linked to various aspects of the question, in addition to 
the general observations presented in Section 2.1. 
 
First of all, the act of sharing information, the main focus of this paper, is difficult to observe systematically. 
Linking any change in practices to a specific piece of information is virtually impossible, since actors operate 
within complex systems, receiving pieces of information from various sources, and learning from experience, 
they may adopt a certain practice for any number of reasons. Secondly, oyster farmers may or may not be willing 
to participate in giving their input to an information system. Thirdly, the virus is active only once per year and 
has considerable economic consequences, which makes experiments in the field delicate, if possible at all. 
Fourthly, the virus’ modus operandi is still unclear, making it impossible to compare farmers’ beliefs with actual 
virus dynamics. 
 
By providing a virtual laboratory in silico, an agent-based model is an appealing method of overcoming these 
caveats, since it can be used to simulate scenarios and control parameters. Agent-based models are a suitable 
method to study questions of environment management (Janssen and Ostrom 2006; Le Page et al. 2013). They 
have been used in a wide array of domains in natural resource management, covering questions around land 
use (Matthews et al., 2007; Ralha et al., 2013), tourism (Anwar et al., 2007; Balbi et al., 2013), epidemiology 
(Almeida et al., 2010; Crooks and Hailegiorgis, 2014), common-pool resources (Schlüter and Pahl-Wostl, 2007) 
and water management (Feuillette et al., 2003). More precisely, in this paper, the use of such a model makes it 
possible to test and control various virus and information sharing scenarios. By carefully changing parameters, 
simulations of models can be followed thoroughly. Diverse actors interpret and use information in various ways. 
One of the strengths of agent-based modelling is that it allows multiple aspects to be easily modelled by 
implementing various decision procedures. 
 

3. VirusNoysters model 

The model is described using the Overview, Design and Details (ODD) protocol (Grimm et al., 2006, 2010, 2013), 
and more specifically the ODD+D (the additional D standing for Decision) protocol (Müller et al., 2013), an 
extension that includes human decision-making. This is the standard protocol for providing a thorough 
description of agent-based models.  
 

3.1 Overview 

Purpose 

The purpose of the model is to investigate the effects information sharing can have on the adaptive management 
of a renewable natural resource used by some actors, such as oyster farmers adapting in response to the herpes 
virus. This model is designed to act as an exploratory model for studying the possible impacts of information, 
shared in a range of different ways, on the management of a natural resource. 
 
Entities, state variables and scales 

There are four main types of entities in the model: OysterFarmer, Oyster, WaterCell and 
InformationSystem. Figure 2 shows the model’s main classes using an UML class diagram. 
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Figure 2: UML class diagram representing the main ABM classes. 

 
OysterFarmer These are cognitive agents. Based on interviews and the suggestion of one oyster farmer, we 

can identify three main types of decision-making strategies adopted by farmers: economicus, 
conservative and conscious. Their strategies are described under “Individual prediction” in Section 
3.2. In short, they update their beliefs on the basis of various information sharing mechanisms (see below), 
which leads them to update their strategy and implement it. Agents belong to a social network and may 
have access to an information sharing system depending on the chosen scenario.  

 
Oyster These are reactive agents. Three types of Pacific oyster (PO) can be grown. The Natural oyster is one 

that is caught in the wild, which can only be done in summer. The remaining two types are Hatchery 

oysters: Triploid and Diploid. Triploids grow in six trimesters, while diploids and natural oysters grow 
in 12. Both kinds of hatchery oysters can be ordered all year long. All oyster quantities are separated into 
batch sizes (e.g. 0–2,000) of up to 10,000 oysters. These batches are located on tables.  

 
WaterCell This is the spatial entity. Viral elements are found in the water and regularly kill oysters. Three 

virus scenarios are tested, including a null scenario (Figure 3 and 4 show virus scenarios and consequences 
for oyster farmers’ expected income). The chosen virus model is the simplest of those described in 
(Gilligan, 2002), since the focus is on information sharing rather than epidemiology. Mortality rates are an 
increasing function of oyster quantity and density. The virus’ impact depends on the number of oysters 
located on a single table, without interaction with neighboring tables. Mortality is a sigmoid function of 

local quantities  𝑞: 𝑓(𝑞) =
𝐾

1+𝑎.𝑒𝑥𝑝−𝑟𝑞  defined for 𝑞 ≥ 0 where 𝑎 is a parameter that allows the sigmoid 

mid-point abscissa to be changed, 𝑟 a parameter that modifies curve steepness and 𝐾 is the maximum of 
the function. Thus, a virus scenario is defined by three sets of three triplets, 𝑆 = 〈𝑆𝑛 , 𝑆𝑑 , 𝑆𝑡〉 where 𝑆𝑖 =
〈𝑎𝑖 , 𝑟𝑖 , 𝐾𝑖〉 for 𝑖 ∈ {𝑛, 𝑑, 𝑡}, allowing the parameters of the sigmoid function to be set for each of the three 
types of oysters. 

 
InformationSystem This class contains a single object designed to be a passive entity. All agents can access 

it. It gathers information from agents’ observations (strategies and outcomes), which it then computes to 
provide agents with related figures.  

 
Three simple virus behaviour scenarios are studied: 

• No virus: the first scenario without mortality is the reference scenario, used as a base for comparison.  
• No overlapping: in the second scenario, there is a virus affecting the oysters. The virus is the simplest to 

understand for agents and designed so that the mortality curves of the three different types of oysters 
never overlap. Whatever the quantity, natural oysters are always the best option financially.  

• Overlapping: in this scenario, curves overlap at some point. This results in triploids being the oysters with 
the highest mortality rate once quantities have reached a specific point. As shown in Figure 4, this 
hypothetical scenario is more difficult for agents to explore, since the best option in terms of oyster type is 
dependent on quantity.  
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Figure 3: Annual mortality as a function of oyster quantity for the two scenarios involving virus mortality. 
 

 

 

Figure 4: Theoretical expected income as a function of oyster quantity, taking into account the length of the oyster growing 
cycle. In the no overlapping scenario, natural oysters provide higher income regardless of quantity. Similarly, regardless of 
quantity, for a given oyster type, the maximum income is obtained at around 2,500–3,000 oysters per batch. In the overlapping 
scenario, hatchery oysters are the best option, with little difference between triploids and diploids. If oyster farmers choose 
batch sizes of over 6,000 oysters, the best option from a financial point of view is to choose natural oysters. The market price 
is exogenous and fixed. 
 

 

Process overview and scheduling 

Figure 5 shows the agents’ relationships with the environment and the information sharing system. Depending 
on the scenario, an agent observes the outcomes of the practices she applies on her oyster farm, and shares this 
information through her network and the information sharing system. The information provided to friends and 
to the information system is the same, but the values that flow back to the agents are different, since they have 
been merged with various other pieces of information. This information is combined using a method of 
aggregation (see Learning) which enables the agent to update her beliefs and then choose a strategy. These 
strategies are implemented and impact the environment (the oysters and the virus). 
 
The sequence of operations computed at each time step is depicted in the sequence diagram in Figure 6. Each 
step represents one trimester, with several steps only occurring during specific trimesters of the year. The virus 
attacks only during the second trimester, and oyster farmers choose their mix (types and quantities of oysters) 
at the end of that trimester. Natural oysters can only be caught during summer, which is the third trimester of 
each year. 
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Figure 5: Main loop of the model: farmers put spat on tables and grow in the environment. The virus attacks oysters. Agents 
observe the outcomes and share information with others (through the network or an information sharing system). They 
update their beliefs that allows them to choose a strategy. 

 
 

 

Figure 6: Sequence diagram for a time step in the model, representing one trimester. 

 

3.2 Design concepts 

As explained above, the model contains four main classes. Of these, Oyster, WaterCell and 
InformationSystem behave simply, as described in the “Entities, states variables and scale” section. We shall 
therefore focus now on OysterFarmer. 
 

Theoretical and empirical background 

The model combines empirical (scientific and grey literature, and a field study involving 30 interviews with 
farmers and meetings with actors) and theoretical elements. Theoretical choices were guided by An (2012), who 
suggests categories that modelers of human decision-making can use in combined human and natural systems. 
We made use of several of these categories. First, psychosocial and cognitive models (agents have beliefs about 
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the environment and the impact of their actions on their income and production – see Individual prediction) 
which can be partly shaped by an institution: in this case, the information sharing system. Different decision 
models were used for each type of OysterFarmer (Figure 7). Specifically, a microeconomic model of utility 
maximization was used for economicus and a heuristic rule following procedural rationality for conservative 
agents (Simon, 1976). 
 
Torra and Narukawa (Torra and Narukawa, 2007) describe in detail a large number of decision models based on 
information coming from different sources that have to be aggregated. Information fusion may be modelled 
using two frameworks: probability and fuzzy reasoning. We chose a probabilistic approach since observations 
(as described below) are realizations of events based on independent and identically distributed random 
variables. Since agents use these realizations to construct personal beliefs and need to cope with uncertainty, a 
probabilistic approach based on a weighted average operator seems logical (see Learning). 
 
We adapted the main structure of the agent-based models proposed in (Ferber, 1999), in which agents interact 
with an environment. Agents perceive their environment and deliberate over a collection of strategies that they 
subsequently execute. Onto this basic structure for agent decision making we added a layer of information 
sharing via a network of agents and the passive entity that is the information system. 
 

Individual sensing and belief structure 

Agents measure the number of oysters produced on their farms and their mortality rates. They gather precise 
information on oyster type, quantity and mortality for each table. Agents also receive information on the results 
achieved by other oyster farmers by means of social networks and an information sharing system that feeds 
their beliefs (see Interaction). Beliefs consist of mortality probability values for each type of virus and batch size 
class (e.g. 0–1,999, 2,000–3,999, etc.). 
 

Interaction 

The virus affects each oyster table individually, and there is no specific interaction at the resource level. 
Interactions occur only at the information sharing level through networks and a central information sharing 
system. Network types influence learning and the dissemination of innovations (Bodin and Crona, 2009; Jackson, 
2010). We designed three graph structures (Table 1). Information is sent to and received from friends through 
an agent’s network. The first structure, the neighbourhood graph, emerged from interviews with oyster farmers 
who asserted that they mostly maintain relationships with their neighbours. This observation is possibly specific 
to one of the case studies (Thau Lagoon), and may not even be precise enough to describe the local network, 
since no social network analysis was conducted.  
 

Table 1: Network scenarios used in the model 

Type of network Description Expected effect 

Neighborhood 
graph 

Each agent is friend with immediate 
neighbor (2 on each side) 

Slow diffusion of 
information, local learning 

Preferential 
attachment 

Variation of the small world network 
where new nodes are attached 
preferentially to those who are most 
connected 

Fast diffusion of 
information, some nodes 
have more influence than 
others 

Homophily network Agents are preferentially linked to 
agents who have chosen the same mix 

Self-confirmation of beliefs 

 
 
The second network is typically found in many real-life examples: the preferential attachment network (Barabási 
and Réka, 2002). Its main characteristics are its small diameter and the presence of hubs (nodes with high 
degree), allowing information to be spread quickly through the network. The first two networks are static and 
created during initialization.  
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The last type of network is based on homophily (Golub and Jackson, 2010; Jackson and López-Pintado, 2013), 
with oyster farmers that choose the same strategies being more likely to become friends. This network is 
dynamic and entirely reshaped every 12 steps (three years). Since agents generally collect information from the 
people with whom they have the most in common, it can be expected that this type of network would slow 
down innovation. 
 

Collectives 

Agents do not interact directly in a collective. However, the information sharing system is a collective object. 
The goal of the system is to collect information about the mortality rates experienced by oyster farmers 
practicing a variety of different methods. All oyster farmers are able share their personal experience (strategy 
and outcomes) and access aggregated information: the system averages agents’ observations for all oyster types 
and batch size classes. It is updated annually since the virus returns once a year. The information system is based 
on classes of oyster quantities (e.g. 0–1,999), while mortality rates are continuous (monotonously increasing as 
oyster numbers increase). The more information the system gets; the closer the aggregated collective 
observations should be to the actual virus dynamics. In addition to the bias due to aggregating in classes, there 
are possible gaps in knowledge that would result from agents’ choices. If no agent chooses a specific practice, 
there will be no observation of its outcomes (agents receive a mortality rate of 0 as information), and if too few 
agents choose a practice, the data may become biased due to the small number of personal experiences that 
they are based on, especially if these few experiences led to high mortality rates. 
 

Learning 

Agents learn by observing the environment, exchanging information with friends, and sharing through the 
information sharing system. For each variety of oyster, oyster farmers can be given three types of observations: 
their personal observations, their friends’ observations and the aggregated information provided by the system. 
In each scenario, agents then combine (perform a weighted aggregation of) these various observations to arrive 
at their own beliefs on mortality rates (see Table 2 and Individual decision-making for a description of how 
beliefs about mortality are constructed). 
 

Table 2: Aggregation scenarios – coefficient used for distribution aggregation. Scenarios are compared to the scenario in 
which no information is shared. ISS = information sharing system. 

Personal Friends ISS Type Expected outcome 

1 0 0 No information sharing Slow learning curve 

½  ½ 0 Personal and friends 
experience 

Increased learning 

½  0 ½  Personal and ISS Increased learning 

⅓ ⅓ ⅓ Equal trust among sources Increased learning 

0 0 1 ISS only Little exploration 

 
 
Personal learning is the main goal of information exchange in our model, since the virus will not spread from 
one patch to those neighbouring it, and thus other agents’ decisions are not relevant. Collective learning appears 
in the external representation created by the information sharing system that agents use for their own decision-
making. This collective system, a means of gathering a collection of strategies and outcomes, creates an external 
memory of agents’ experiences that all can access. 
 

Individual prediction 

The observations obtained during the learning phase allow agents to make their own prediction of future 
mortality rates and update their ideal quantity of oysters per batch, which is the first step in their decision-
making process. Their predictions are actually beliefs and may be erroneous, since they are based on their own 
experience, that of their friends, and the information collected by the information sharing system.  
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Individual decision-making 

Figure 7 shows the activity diagram for agent decision-making. Every year, an agent has to choose sequentially 
their ideal quantities per batch 𝑄 = 〈𝑄𝑛 , 𝑄𝑑 , 𝑄𝑡〉  for each type of oyster, as well as decide on a mix M∈M of 

triploid, diploid and natural oysters, where M is the set of possible mixed proportions of oysters. There are seven 

options for M: only one type, or two or three types of oyster equally divided.  

 

Figure 7: Activity diagram: updating of beliefs and decision-making process 

 
As with all farmers, oyster farmers have tolerance levels, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 , where 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑚𝑎𝑥, that they use to 
choose whether they will increase or decrease the fixed quantity 𝑞 > 0 that they think is good per batch. 𝑇𝑚𝑖𝑛, 
𝑇𝑚𝑎𝑥  and q are parameters that can be modified to make farmers more or less averse or prone to risk. Farmers 
therefore use the following formula to choose their ideal quantity 𝑄𝑖 ,𝑖 ∈ {𝑡, 𝑑, 𝑛}, at time 𝑡 + 1, for all three 
types of oyster: 

𝑄𝑖(𝑡 + 1) = {

𝑄𝑖(𝑡) − 𝑞 𝑖𝑓 𝑚𝑜𝑟𝑡(𝑄𝑖(𝑡) > 𝑇𝑚𝑎𝑥

𝑄𝑖(𝑡) + 𝑞 𝑖𝑓 𝑚𝑜𝑟𝑡(𝑄𝑖(𝑡) < 𝑇𝑚𝑖𝑛

𝑄𝑖(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (1) 

𝑄 is updated in the same way for all agents. It is the answer to the following question: If I had to use these 
oysters, how many should I use per batch? After choosing these ideal quantities, agents can choose a mix by 
calculating their expected profit. 
 
There are three types of oyster farmer: economicus, conservative and conscious. They differ in their 
decision-making process:  

1. Economicus uses a microeconomic model whereby she uses the following formula to decide on the mix of 
oyster types that will maximize her utility (expected profit): 

 𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑀𝑖∈𝑀 ∑ 𝑀𝑖 . 𝑄𝑖 . (𝑠 × (1 − 𝑚𝑜𝑟𝑡(𝑄𝑖))
𝑒𝑥𝑝𝑜(𝑖)

− 𝑏𝑖)𝑖∈{𝑛,𝑑,𝑡}    (2) 

where 𝑠 and 𝑏 are, respectively, the selling (not dependent on oyster type) and buying prices, and 𝑒𝑥𝑝𝑜(𝑖) 
is the exposure of each type of oyster to the virus. Since triploids live only 18 months, they are exposed to 
the virus on average 1.5 times over the course of their lifetimes, whereas other types are exposed three 

times. (1 − 𝑚𝑜𝑟𝑡(𝑄𝑖))
𝑒𝑥𝑝𝑜(𝑖)

 corresponds to the agent’s belief about the survival rate. Mortality is not 

dependent on oyster age. 

2. Conservative’s goal is to remain in the oyster farming industry. Agents will keep 𝑀 as long as it is 
satisfactory. The agent is satisfied if 𝑀 generates positive income. If she is no longer satisfied, then she 
chooses a mix 𝑀 ∈ M at random and calculates the profit using Equation 2 until she finds one that she 
predicts will generate positive income for her, allowing her to remain in the oyster farming industry. 

3. Conscious farmers are deeply convinced that they should only cultivate natural oysters. They never 
change M, but rather, only the quantities.  
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Heterogeneity 

Agents are heterogeneous in the way they make decisions. As explained above and in Figure 7, this influences 
the mix that they choose. 
 
Stochasticity 

The virus randomly affects oysters based on fixed probabilities for each of the scenarios described in “Entities, 
state variables and scales” (Figure 3). During initialization, oyster farmers are given a random number of tables. 
The preferential attachment network has stochastic elements (the order in which agents enter the network and 
the agent that they first connect with) and the homophily network is shuffled every 12 steps following a 
stochastic rule. When they need to change their mixes, conservatives randomly try different mixes until 
finding an acceptable one. To smooth stochasticity, scenarios are repeated 40 times each.  
 
Observation 

Data are collected at each time step. The following indicators are recorded: mortality rates, total production, 
beliefs, and practices. 
 

3.3 Details 

Implementation details 

The model runs on Cormas v.2014.5.14. (Bousquet et al., 1998; Le Page et al., 2012) a multi-agent development 
platform specifically designed for contexts in which humans interact with a natural environment. It provides an 
agent-based meta-model organized around three main classes of entities: agents, spatial entities and objects 
(passive entities). It is coded in the smallTalk language and uses a VisualWorks environment. We generated 
scenarios using R v.3.2.1 (R Core 2015) in RStudio v.0.98.1102 (RStudio 2012) and made extensive use of the 
tidyr (Wickham, 2014), dplyr (Wickham and François, 2015) and ggplot2 (Wickham, 2009) packages for the 
analysis of outcomes. This model led to the development of the first version of a module that links R and Cormas.  
 

Initialization 

At initialization, oyster farmers are given a random number of tables (between 1 and 10), and a random mix 
(natural only if the farmer is conscious). Tables are loaded with batches of oysters in the proportions of the 
allocated mix. Farmers are not aware of the existence of the virus and have beliefs of zero mortality for all 
oysters (see following section for initial parameters). 
 

3.4 Submodels and parameters 

We defined various scenarios on the main elements of the model. We created variations on types and quantity 
of oyster famers, decision-making thresholds, virus behaviour, information sharing schemes and social network 
structures, detailed as follows: 

Oyster farmers’ types (3 scenarios): A type is described with a triplet of proportions of each type of farmers 
〈𝑃𝑒𝑐𝑜 , 𝑃𝑐𝑜𝑛𝑠𝑒𝑟 , 𝑃𝑐𝑜𝑛𝑠𝑐〉. There are always economicus agents. The situations studied were those with 

economicus only 〈1,0,0〉, economicus and conscious agents 〈
1

2
,

1

2
, 0〉 and all three types 〈

5

12
,

5

12
,

1

6
〉 (with 

“conscious” as a rare type).  

Number of oyster farmers (4 scenarios): 10, 25, 50 and 100. All oyster farmers are given an initial budget 
allowing them to fill all their tables with triploids twice.  

Decision-making (4 scenarios) This factor is driven by two dimensions: the size of the change in quantity, 𝑞, 
and risk aversion, 𝑇𝑚𝑖𝑛  and 𝑇𝑚𝑎𝑥  (see Individual decision-making and Equation 1). q can take two values: 
500 (small change) and 2,000 (big change). There are two sets of values for the 〈𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥〉 ordered pair: 
〈40,70〉 (risk averse) and 〈60,80〉 (risk prone).  

Virus (3 scenarios) No virus and virus with or without overlapping mortality rates (Figure 3 and 4).  

Information sharing and social networks (9 scenarios) This involves agents combining their personal 
experience, that of their friends, and information obtained from a collective system (Table 2 – see 
Learning). There are four options for networks: none, neighbourhood, preferential attachment and 
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homophily (Table 1 – see Interactions). These networks can be combined or not with an information 
sharing system. We added a scenario in which agents use only the system.  

In total, there are 4 × 2 + 1 = 9 combined scenarios for graphs and information sharing. This brings the total 
number of scenarios to 3 × 4 × 4 × 3 × 9 = 1296. All these scenarios were run and repeated 40 times. 
Scenarios are summed up in Table 3. 
 

Table 3: Experimental plan of the simulation runs Factors are the main elements of the model that take the parameters 
instantiated with the listed modalities.   

Factor Parameter(s) Modalities 
Number 

of 
scenarios 

Farmer type 〈𝑃𝑒𝑐𝑜 , 𝑃𝑐𝑜𝑛𝑠𝑒𝑟 , 𝑃𝑐𝑜𝑛𝑠𝑐〉 〈1,0,0〉, 〈
1

2
,

1

2
, 0〉 , 〈

5

12
,

5

12
,

1

6
〉 3 

Number oyster farmers Number 10, 25, 50, 100 4 

Decision making {𝑄𝑡𝑦, 〈𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥〉} {500, 〈40,70〉}, {500, 〈60,80〉}, 
{2000, 〈40,70〉}, {2000, 〈60,80〉} 

4 

Virus  Mortality rates  Figure 3 3 

Information sharing 
scenarios and social 
networks 

〈𝑂𝑤𝑛, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝐼𝑆𝑆〉 〈𝑌𝑒𝑠, 𝐴𝑛𝑦, 𝑁𝑜〉, 
〈𝑌𝑒𝑠, 𝐴𝑛𝑦, 𝑌𝑒𝑠〉, 
〈𝑁𝑜, 𝑁𝑜𝑛𝑒, 𝑌𝑒𝑠〉 

9 

 

4. Results 

In this section, we will first explain briefly the choice of indicators used to study the model’s results: agents’ 
beliefs regarding mortality rates, agents’ practices, and oyster production. We first aggregated outcomes while 
keeping information sharing and virus scenarios separate. We then disaggregated all scenarios using a measure 
that captures the limitations of learning in the model, enabling a comparison of the effects of information 
sharing and heterogeneity in decision making. 
 

4.1 Overall results 

4.1.1 Verification and indicators 
Before going further, we ensured that the computerized model was not distorting the conceptual model (David, 
2013). For instance, we ran scenarios in which the virus was not active to check that actors tended to maximize 
the number of oysters in the basin, which should be the consequence of their decision models. Having verified 
this, we were confident enough to run the simulation and give the following outcomes. 
 
In the model, actors decide upon a strategy that will allow them to adapt to a characteristic of their environment 
that they understand poorly. Given the context (oyster farmers dealing with a virus), and the focus of the model 
on studying the impact of information sharing, the three indicators that capture the key elements of the model 
are beliefs, practices and production. Also, we specifically detail information sharing scenarios to enable 
comparison. 
 
Mortality rates may seem to be a relevant indicator. However, these rates increase as the number of oysters per 
batch increases (Figure 3). If agents wanted to reduce mortality rates to their absolute minimum, they would 
need to stop cultivating oysters. Since they aim to maximize oyster production while taking mortality into 
account, the lowest mortality rate is not the best solution and should not be expected as an outcome. Figure 4 
shows changes in income as a function of the number of oysters cultivated, which provides a solution to the 
problem faced by agents. Production was therefore chosen as an environmental indicator. 
 

4.1.2 Analysis of belief dynamics 

We measured beliefs by investigating the dispersion of agents’ beliefs about mortality rates to observe whether 
a collective belief would emerge. Shared information is used by agents to update their beliefs about mortality 
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rates as a function of quantity for each type of oyster. Figure 8 shows changes in the dispersion of these beliefs 
over time, at 2, 5 and 20 years, for the non-overlapping scenario. Each graph represents the aggregation of 
48 scenarios (Farmer type x Number of farmers x Decision making – see Table 3). Figure 9 provides a zoomed-in 
view on a specific situation so as to clarify Figure 8. Regardless of the information sharing scenario, a general 
tendency can be observed that fits the theoretical mortality rates: these increase as oyster numbers increase, 
but in a non-significant way.  
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Figure 9: Zoomed-in view of the Personal × 5 years scenario from Figure 8. This graph represents the dispersion of beliefs 
about mortality rates among oyster farmers for the different oyster types. 

 

Important differences can be noted between information sharing scenarios. In the personal scenario, beliefs 
tend to spread over time and vary considerably across scenarios, with this spreading and variation even 
increasing over time. The addition of social networks narrows belief dispersion in all cases, and the introduction 
of a central information sharing system serves to enhance this effect further. In the ISS only scenario, beliefs are 
the most compact. Figure 8 shows that the introduction of information sharing encourages a shared view of a 
phenomenon, leading to shared beliefs.  

4.1.3 Practices 

Oyster farmer agents use their beliefs to update their strategy in accordance with their decision-making process 
(Figure 7). Changes in practices can be understood as the combined effect of experience and information 
sharing.  
 
Figure 10 shows the proportion of agents who decide to change their practice due to updating their belief. The 
different lines represent various agent type scenarios. It is not surprising to observe that when we add 
conservative agents (who change their mix only when they are not happy) and conscious agents (who grow only 
natural oysters) to economicus ones, the number of strategy changes is more limited. This is the result of their 
decision-making process. We can see that when the virus is not active, agent practices quickly converge as they 
decide on a definitive practice. The same result is observed in the ISS only scenario. For all other scenarios, we 
can observe a steep decline of all the curves and a final convergence towards the end. The slowest convergence 
occurs for the Personal scenario, and the addition of an information sharing system shifts the curve to the left 
and increases the speed of convergence.  
 

4.2 Production: comparing information sharing and heterogeneity of agents 

The convergence of the curves in Figure 10 led us to define a global indicator of convergence, which can be 
understood as the limit at which agents who have adopted a definitive strategy stop using new information. This 
indicator, called the change convergence, is defined as the time step after which less than 5 % of agents modify 
their strategy. This allowed us to extract a single value for each scenario instead of the whole time series used 
and displayed in most of the previous graphs.  
 
Using this compact indicator, we produced Figure 11. This graph shows production results (with production 
equivalent to income, since markets absorb all produce and the oyster price is fixed for all types and not 
dependent on production levels) as a function of this change convergence for the different agent type scenarios. 
Each dot is the average of the 40 repetitions of the same scenario.  
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Figure 10: Proportion of agents changing their strategy over time for the different agent type scenarios. 

 
 

 
Figure 11: Total production over 20 years for the different agent type scenarios. 
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Figure 11 allows us to compare the relative effect of heterogeneity and information sharing. As observed in 
Figure 10, the addition of an information sharing system systematically speeds up convergence, resulting in the 
dot clouds shifting to the left side of the plots in Figure 11. The slowest convergence is observed in the Personal 
and Homophily scenarios, and the fastest in the ISS only scenario. However, differences in overall production 
are not observed for the different information sharing scenarios, with production much more affected by the 
heterogeneity of agents. Light grey dots are scenarios involving only economicus agents. Adding conservative 
agents (dark grey dots) increases the overall production significantly, and adding conscious agents (black dots) 
enhances this effect further. The ISS only × No overlapping scenario provides an interesting artefact of 
initialization, since the dots are distributed along the production axis. This variation is due to the random initial 
choice of agents, leading to a fast convergence in beliefs and a choice of strategies strongly influenced by this 
initial strategy. 
 

5. Discussion  

In this paper, we explore the use of an agent-based model to investigate the impact of information sharing on a 
social-ecological system. The model was designed as an exploratory model. We devised precise information 
sharing modalities and evaluated the impact for all important aspects of the model. Given our objective, we will 
first examine how suitable ABMs are for studying information sharing in contexts such as that of oyster farmers. 
We will then discuss how the model shows convergence of agents towards a definitive practice quickly when 
they have access to more information sharing, but without acquiring beliefs that reflect actual virus dynamics. 
We will subsequently discuss how increasing the heterogeneity of agents allows them to more efficiently explore 
the range of practices than increased information sharing does. Finally, we will consider the limitations of the 
model in terms of the rigidity of the information sharing model and focus on the effect of the virus action at the 
patch level as opposed to a more global scale. 
 

5.1 Validation 

The goal of this model was to explore the impact of hypotheses about practices in various information sharing 
scenarios. We were not able to compare the model’s results to actual changes in practices or beliefs for two 
reasons. Firstly, information sharing scenarios are only a kind of caricature of actual information sharing, and 
virus behaviour was hypothesized without strict reference to its actual behaviour (which is not known). It would 
be difficult to claim that we are able to replicate observed patterns of information sharing and virus dynamics 
under these conditions. Secondly, although some techniques allow us to assess changes in beliefs, the durability 
of such observed changes is questionable. As a consequence, we could not lead a proper validation. However, 
hypotheses that led us to the way we built the model, especially those relating to categories of actors and 
responses to environmental outcomes, are consistent as far as our tests and understanding of the literature are 
concerned. As discussed above in the Verification section, agents behave as expected in scenarios that are 
simple to predict, following recommendations by David (2013). For instance, in the absence of virus, all agents 
maximize production and conservatives never change their oyster mix. 
 
As a matter of consistency with this approach of agent-based modelling, our results focus on possible biases 
linked to a specific self-evident explanation: in this case, that more information sharing would result in the best 
outcomes. We can observe that this is not always true. As a reminder, this model is not intended to be used as 
a decision aid that actors could use in real settings. 
 

5.2 Suitability of ABM for the study of information sharing 

Even though a central subject in the current era, to our knowledge the specific and various effects of information 
sharing in agent-based models was not studied per se. The use of an agent-based model proved suitable for 
comparing scenarios of information availability and use involving various information sharing methods. Such a 
model enabled us to define different uses for the same piece of information thanks to the diversity of agents’ 
decision-making processes, ranging from agents that keep adapting to what they believe is the best economic 
strategy, to those who stick to their convictions. While this model focused on information sharing, other agent 
or network types could easily be modelled and simulated. The model was coded with this idea in mind, favouring 
modularity and making considerable use of object-oriented programming: information collection, information 
sharing and decision-making are clearly separate.  
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Since information covers a wide variety of content and goals, and can be shared in a multitude of ways, with 
unclear or even contrasting effects cited in the literature, we chose to apply this question to a specific context: 
that of oyster farmers having to deal with a virus whose behaviour is poorly understood. In our model, oyster 
farmer agents choose a cultivation strategy and observe mortality rates. They collect information about their 
own practices and results, and may share them via their social network and/or an information system. Thanks 
to these information exchanges, oyster farmers update their beliefs and may adopt new practices.  
 
We simulated a number of information sharing scenarios and compared several types of outcomes: for the 
environment (mortality rates), for agents (beliefs) and for the interaction between agents and the environment 
(practices). These indicators, and a comparison of these scenarios, allowed the impact of information sharing to 
be closely tracked for many aspects of the model. 
 

5.3 Effects of information sharing 

In the model, agents adapt faster and adopt a definitive practice much earlier when more ways of sharing 
information are offered to them, especially when they have access to a shared information system. They seem 
to create shared and convergent beliefs about virus dynamics much more quickly. In contrast to the case in 
Evans and Weninger (2013), the information sharing system in the present study does not allow agents to 
understand the virus behavior. They do not systematically explore, in a reliable manner, all available strategies 
in order to determine the real virus dynamics, but rather make do with what they have chosen and adapt their 
strategies accordingly. Defined in this way, access to methods of sharing information, such as social networks or 
information systems, leads to a convergence in beliefs and self- and community reinforcement of strategies and 
error, as defended in Adams et al. (2003).  
 

5.4 Heterogeneity vs information sharing 

Heterogeneity is known to have a decisive influence on innovation diffusion (Bohlmann et al., 2010), on 
environmental consequences of consumption (Raihanian Mashhadi and Behdad, 2018), or in financial markets 
(Schmitt and Westerhoff, 2017). Modelling heterogeneity is even a key strength of such models (An, 2012). Our 
results strengthen this observation: while information sharing allows for a quicker convergence of beliefs, 
heterogeneity has the greater impact in terms of overall production and results in more of the available 
strategies being explored (Figure 11). In this case, the mere existence of an external representation (the 
information sharing system structure is similar whatever the population) is not enough for agents to “think”, 
and even act “the previously unthinkable” (Kirsh 2010). Economicus agents on their own are convinced that 
cultivating triploids is the best choice and never explore other potentially successful strategies, such as raising 
natural oysters, the sole goal of conscious farmers. When oyster farmers are heterogeneous, total production 
for the same number of agents, increases by 150%, regardless of the information sharing scenario. 
 

5.5 Limitations 

Information structure in the model is defined a priori, as is the process of aggregating information coming from 
different sources. This fact limits the model’s modularity. This limitation exists with the choice of sensors and in 
information sharing systems that are designed to collect specific types of information and analyse it in a 
predefined manner. These preconceptions, in combination with agents’ focus on maximising production, may 
have prevented them from exploring all options available to them.  
 
The virus acts at the patch level, while the virus certainly acts at a more global scale. In this context, agents face 
an issue common to all, but no issue in relation to their common resource: the practices of agents do not impact 
the collective resource, only the collective information. In social-ecological systems, actors are also linked 
through the resource(s) they interact with. Another model focusing on information sharing that includes a 
common resource could focus on a situation in which actors share information about a resource they share, 
such as a common-pool resource. For instance, the virus could act as a function of the total quantity of oysters 
in the basin, instead of acting independently on each table.  Such a framing of the situation raises questions such 
as free-riding and strategic decision-making. However, the goal of this model was to focus on individual learning 
through a collective object, which led us to the choice that was adopted.  
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5.6 Next steps 

Ultimately, in the model, access to an information sharing system is not enough to allow agents to properly 
adapt to the virus. Such an information system should be considered part of a wider strategy of exploring how 
to cope with environmental dynamics that are poorly understood. We can think of heterogeneity in the model 
as a way of widening the exploration of options by adding other types of behaviour, which has an effect on all 
agents, in the same way that innovative agents or even research could offer new directions for exploration. 
 
Information and information sharing are core concepts nowadays and their effects need to be explored while 
taking context into account. Creating such information systems may seem to be an appealing method of 
increasing scrutiny in relation to environmental dynamics and practices, since they widen the spectrum of 
experiences and strategies available to agents. However, this situation leads to shedding light on a limited 
number of elements. While information systems seem to result in a possible reframing of strategies, they also 
appear to prevent profound strategy changes by constraining such reframing by restraining the set of 
observations. Focus on such specific elements is an issue for actors in social-ecological systems due to deep 
uncertainty and unexpected external changes in trajectories. Thus, they may hamper actors’ capacity to adapt. 
Creating information sharing systems may lead to counter-intuitive effects that can be analysed through agent-
based modelling. The results described in this paper shed light on potential issues that may have not been 
considered earlier. This allows actors to be more informed and prepared. 
 

6. Conclusion 

Through a focus on a specific case study of oyster farmers dealing with a virus, we demonstrated the potential 
of agent-based modelling in tracking information sharing schemes and their effects on agents and their 
environment. Information sharing in this model is limited to a single information structure and a limited set of 
strategies. One may easily extend such framing. The study of information sharing could benefit from detailed 
and contextualized studies and models to explore plausible improvements and discuss possible limitations of 
what appear to be panaceas.  
 
In our era of information-laden environment, due to the skyrocketing development of data and information 
(from information collection to information sharing) the study of the consequences of information sharing 
should be the highlight of more studies.  
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