

Agroecological Rice Protection

Mathilde SESTER CIRAD. UPR AIDA mathilde.sester@cirad.fr

Buyung A.R. HADI IRRI b.hadi@irri.org

GDA

Chou CHEYTHIRITH

Florent TIVET CIRAD. UPR AIDA

Nancy CASTILLA IRRI

Principles of Agroecological Crop Protection

rice production (Heinrichs et al. 2017, modified from Zehnder et al. 2006) management)

Multi-pest approach

- One pest many symptoms
- One symptom many possible causes
- Holistic care of the crop health
- Modeling

Neck blast

Stem borer (source: IRRI knowledge bank)

■ IR504 no Trichoderma

■ CAR no Trichoderma

Multi-scale approach Intra and extra field biodiversity

- Crop rotations
- Introduce biodiversity in the field margins
- Cultivar mixtures
- Manage diversity at the regional level: cultivar heterogeneity
- > Enhance natural enemies

Rice blast dynamics (mean ± SE) in a pure variety or in a variety mixture with 1 row susceptible after 4 rows of a tolerant variety (Raboin et al. 2012)

Multi-tactic approach

■ IR504 + Trichoderma

■ CAR + Trichoderma

Effects of *Trichoderma* application and host plant resistance (CAR 14 is a resistant variety and IR504 is a susceptible variety) on blast incidence (mean ± SE) in Prey Veng, 2017 wet season. In a growth stage, bars with the same letter are not significantly different (P<0.05, LSD test).

Disease progress after 5 years simulation if one susceptible cultivar was cropped uniformely (top) or in only 50% of the fields. Yellow fields are contaminated by blast.

