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Abstract
Uncovering	the	genomic	basis	of	climate	adaptation	in	traditional	crop	varieties	can	
provide	insight	into	plant	evolution	and	facilitate	breeding	for	climate	resilience.	In	
the	African	cereal	sorghum	(Sorghum bicolor	L.	[Moench]),	the	genomic	basis	of	adap-
tation	to	the	semiarid	Sahelian	zone	versus	the	subhumid	Soudanian	zone	is	largely	
unknown.	To	address	this	issue,	we	characterized	a	large	panel	of	421	georeferenced	
sorghum	landrace	accessions	from	Senegal	and	adjacent	locations	at	213,916	single-
nucleotide	polymorphisms	(SNPs)	using	genotyping-by-sequencing.	Seven	subpopu-
lations	 distributed	 along	 the	 north-south	 precipitation	 gradient	 were	 identified.	
Redundancy	analysis	found	that	climate	variables	explained	up	to	8%	of	SNP	varia-
tion,	with	climate	collinear	with	space	explaining	most	of	this	variation	(6%).	Genome	
scans	of	nucleotide	diversity	suggest	positive	selection	on	chromosome	2,	4,	5,	7,	and	
10	in	durra	sorghums,	with	successive	adaptation	during	diffusion	along	the	Sahel.	
Putative	 selective	 sweeps	 were	 identified,	 several	 of	 which	 colocalize	 with	 stay-
green	 drought	 tolerance	 (Stg)	 loci,	 and	 a	 priori	 candidate	 genes	 for	 photoperiodic	
flowering	and	inflorescence	morphology.	Genome-wide	association	studies	of	photo-
period	 sensitivity	 and	 panicle	 compactness	 identified	 35	 and	13	 associations	 that	
colocalize	with	a	priori	candidate	genes,	respectively.	Climate-associated	SNPs	colo-
calize	with	Stg3a,	Stg1,	Stg2,	 and	Ma6	 and	have	allelic	distribution	consistent	with	
adaptation	across	Sahelian	and	Soudanian	zones.	Taken	together,	the	findings	sug-
gest	an	oligogenic	basis	of	adaptation	to	Sahelian	versus	Soudanian	climates,	under-
pinned	by	variation	in	conserved	floral	regulatory	pathways	and	other	systems	that	
are	less	understood	in	cereals.
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1  | INTRODUC TION

Local	adaptation	is	critical	for	survival	of	traditional	crop	varieties	
in	stressful	environments	(Camus-Kulandaivelu	et	al.,	2006;	Xu	et	
al.,	2006).	Smallholder	farmers	in	developing	countries	are	particu-
larly	vulnerable	to	environmental	factors	such	as	drought	and	heat	
stress	limiting	crop	production	(Morton,	2007).	Climatic	gradients	
in	relation	to	precipitation	are	major	drivers	of	adaptation	in	plants	
including	 traditional	 crop	 varieties	 (Fournier-Level	 et	 al.,	 2011;	
Lasky	et	 al.,	2015,	2012;	Siepielski	et	 al.,	2017;	Vigouroux	et	al.,	
2011).	Adaptation	to	water-limited	environments	involves	pheno-
logical,	physiological,	and	morphological	traits	such	as	photoperiod	
sensitivity,	 delayed	 senescence,	 and	 inflorescence	 morphology	
(Blum,	2014).	For	 instance,	when	growing	seasons	are	shortened	
by	end-of-season	droughts,	selection	favors	early	maturity	alleles	
to	 escape	 drought	 (Franks,	 Sim,	 &	Weis,	 2007;	 Kenney,	 McKay,	
Richards,	&	Juenger,	2014;	Vigouroux	et	al.,	2011).	Identifying	ge-
netic	polymorphisms	underlying	adaptive	traits	and	their	eco-geo-
graphic	distributions	is	necessary	to	understand	the	genetic	basis	
of	local	adaptation	of	landraces	(Romero	Navarro	et	al.,	2017).

The	 patterns	 of	 genome-wide	 nucleotide	 polymorphisms	 pro-
vide	insight	into	selective	forces	varying	over	time	and	space	(Olsen	
et	 al.,	 2006;	 Slatkin,	 2008).	 Recent	 studies	 in	 rice	 (Caicedo	 et	 al.,	
2007;	Li,	Li,	Jia,	Caicedo,	&	Olsen,	2017),	 tomato	 (Lin	et	al.,	2014),	
and	maize	 (Swarts	 et	 al.,	 2017)	 have	 shown	 that	 high	 genetic	 dif-
ferentiation	 among	 populations	 reflects	 adaptation	 to	 specific	 ag-
roclimatic	 zones.	 Population	 genomic	 approaches	 for	 identifying	
signatures	of	selection	include	decreased	pairwise	nucleotide	diver-
sity,	composite	 likelihood	ratio	(CLR)	analysis	for	selective	sweeps,	
and	 genome–environment	 associations	 (GEA)	 (Fang	 et	 al.,	 2017;	
Fournier-Level	et	al.,	2011;	Lasky	et	al.,	2015;	Li	et	al.,	2017;	Lin	et	
al.,	2014).	The	CLR	analysis	in	SweeD	is	relatively	robust	to	demo-
graphic	 events	 because	 the	 method	 conservatively	 estimates	 the	
neutral	site	frequency	spectrum	(SFS)	based	on	the	observed	data	
(Nielsen	 et	 al.,	 2005;	 Pavlidis,	 Živković,	 Stamatakis,	 &	 Alachiotis,	
2013).	Linear	regression	models	and	genome-wide	association	stud-
ies	(GWAS)	mixed	models	are	common	methods	used	for	GEA,	espe-
cially	to	investigate	adaptation	to	environmental	gradients	(Rellstab,	
Gugerli,	Eckert,	Hancock,	&	Holderegger,	2015),	and	have	been	ap-
plied	by	several	studies	in	plants	and	crop	species	(Fournier-Level	et	
al.,	2011;	Lasky	et	al.,	2015;	Yoder	et	al.,	2014).	Redundancy	analysis	
(RDA)	provides	an	estimate	of	allelic	variance	explained	by	climatic	
factors	based	on	multivariate	 linear	 regressions	 (Meirmans,	2015).	
Genome-wide	 association	 studies	 can	provide	high	mapping	 reso-
lution	 of	 adaptive	 traits	 in	 diverse	 populations	 (Cavanagh,	Morell,	
Mackay,	&	Powell,	2008).

Sorghum	(Sorghum bicolor	L.	[Moench])	is	a	staple	food	crop	for	
smallholder	farmers	in	semiarid	regions	worldwide.	The	modest	ge-
nome	 size	 (~800	Mbp)	 of	 sorghum	 relative	 to	 other	 grass	 species	
(Paterson	et	al.,	2009)	makes	it	a	tractable	system	for	the	genomic	
studies	 of	 local	 adaptation.	 Five	 botanical	 types	 (bicolor,	 durra,	
guinea,	 caudatum,	 and	 kafir)	 have	 been	 described	 (Harlan	 &	 De	
Wet,	1972).	Durra	types,	known	for	their	adaptation	to	arid	zones,	

are	thought	 to	have	originated	 in	Ethiopia	before	westward	diffu-
sion	along	the	Sahel	to	West	Africa	and	finally	Senegal	(Harlan	&	De	
Wet,	1972).	Guinea	types,	known	for	their	humid	adaptation	(Deu	
et	 al.,	 1994;	Folkertsma,	Rattunde,	Chandra,	Raju,	&	Hash,	2005),	
may	reflect	a	second	center	of	domestication	in	the	humid	savanna	
of	West	Africa	(Deu	et	al.,	1994;	Doggett,	;	Folkertsma	et	al.,	2005).	
Inflorescence	morphology	is	a	major	component	of	agroclimatic	ad-
aptation	in	sorghum	and	varies	from	loose	panicle	in	guinea	to	com-
pact	panicle	in	durra	sorghum	(Brown	et	al.,	2006).	Most	traditional	
sorghum	 varieties	 in	West	 Africa	 are	 photoperiod	 sensitive	 such	
that	 grain	maturation	 coincides	with	 the	 end	 of	 the	 rainy	 season	
(Bhosale	et	al.,	2012;	Sanon	et	al.,	2014).	In	U.S.	sorghum,	variation	
in	 flowering	 time	 is	 controlled	 by	 conserved	 cereal	 floral	 regula-
tory	 networks,	 including	 phytochromes	 (Ma3/PhyB,	 Ma5/PhyC),	
CCT-domain	regulators	(Ma1/PRR37,	SbEhd1, SbEhd2),	and	florigens	
(SbCN15/Hd3a,	SbCN12)	 (Mullet	et	al.,	2010;	Murphy	et	al.,	2011).	
Several	quantitative	trait	loci	(QTL)	(Stg1–4)	confer	stay-green	(i.e.,	
delayed	 leaf	 senescence)	 postflowering	drought	 tolerance	 in	 lines	
derived	 from	 Ethiopian	 durra	 (Borrell	 et	 al.,	 2014;	 Harris	 et	 al.,	
2007;	Kebede,	Subudhi,	Rosenow,	&	Nguyen,	2001;	Tuinstra,	Grote,	
Goldsbrough,	&	Ejeta,	1997),	but	it	is	not	known	whether	these	loci	
contribute	to	drought	adaptation	more	widely	across	the	Sahel.

Analyses	 of	 genetic	 diversity,	 linkage	 disequilibrium	 (LD),	 and	
GEA	have	provided	an	understanding	of	worldwide	sorghum	genetic	
structure	across	diverse	agroclimatic	regions	(Bouchet	et	al.,	2012;	
Lasky	et	al.,	2015;	Mace	et	al.,	2013;	Morris	et	al.,	2013;	Wang	et	
al.,	 2013).	 However,	 the	 genomic	 basis	 of	 climate	 adaptation	 at	 a	
regional	scale	remains	poorly	understood.	The	variation	of	agrocli-
matic	conditions	in	Senegal	reflects	the	sub-Saharan	climatic	gradi-
ent	with	increasing	annual	precipitation	from	north	to	south	across	
the	Sahelian	(~200–600	mm)	and	Soudanian	zones	(~600–1100	mm).	
A	large	panel	of	sorghum	landraces	was	collected	from	these	agro-
climatic	zones	in	Senegal	in	the	1970s	(Clément	&	Houdiard,	1977).	
To	better	understand	the	genomic	basis	of	Sahelian	and	Soudanian	
climate	 adaptation,	 we	 used	 genotyping-by-sequencing	 (GBS)	 to	
characterize	genome-wide	single-nucleotide	polymorphism	(SNP)	in	
georeferenced	and	phenotyped	Senegalese	sorghum	landraces.	We	
characterized	population	structure	of	genomic	diversity,	 identified	
signatures	of	selection,	and	mapped	genetic	polymorphisms	associ-
ated	with	phenotype	and	climate.	The	findings	suggest	that	climate	
has	shaped	genomic	variation	across	Sahelian	and	Soudanian	zones,	
with	variation	in	floral	regulatory	pathways	and	other	systems	con-
tributing	to	this	adaptation.

2  | MATERIAL S AND METHODS

2.1 | Plant materials

The	Senegalese	sorghum	germplasm	(SSG)	used	in	the	present	study	
were	 obtained	 from	 the	 U.S.	 Department	 of	 Agriculture	 (USDA)	
Germplasm	 Resources	 Information	 Network	 (GRIN).	 These	 acces-
sions	 (n	=	341)	were	 collected	 from	various	 agro-ecological	 zones	 of	
Senegal	 in	1976	 (Clément	&	Houdiard,	1977).	Germplasm	Resources	
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Information	Network	accessions	from	neighboring	countries	of	Gambia	
(n	=	60),	which	is	surrounded	by	Senegal,	and	Mauritania	(n	=	15),	which	
shares	border	along	the	Senegal	River	Valley,	were	also	included	in	our	
panel.	Six	improved	varieties	(CE	151-262,	CE	180-33,	ISRA-S-621-B,	
53-49,	 CE	 260-12-1-1,	 IRAT	 4)	 from	 the	 sorghum	 breeding	 program	
based	 at	 the	 Centre	 National	 de	 Recherche	 Agricole	 (CNRA)	 and	
two	sorghum	conversion	lines,	SC	1,067	(PI	576,432)	and	SC	417	(PI	
533,861),	were	included.	Information	about	the	SSG	including	botani-
cal	race,	geographic	origin,	local	name,	and	ethno-linguistic	group	from	
which	the	landrace	was	collected	are	presented	in	Data	S1.	Assignment	
in	“durra”	group	was	from	the	GRIN	genebank,	based	on	a	phenotypic	
assessment.	To	compare	the	SSG	landraces	with	the	global	sorghum	di-
versity,	we	reanalyzed	available	raw	sequencing	data	of	worldwide	sor-
ghum	diversity	panels	(Morris	et	al.,	2013),	hereafter	referred	to	as	the	
global	diversity	panel	(GDP).	This	data	set	included	582	lines	from	the	
sorghum	mini	core	collection	and	the	Generation	Challenge	Program	
reference	set,	and	178	lines	from	the	sorghum	association	panel.	The	
GDP	includes	accessions	from	Africa,	Asia,	and	the	Americas.

2.2 | Genotyping‐by‐sequencing

Accessions	of	 the	SSG	were	grown	 in	a	glasshouse	at	Kansas	State	
University.	Leaf	tissues	from	each	accession	were	harvested	from	two	
weeks	old	seedlings	(five	seedlings	pooled	per	accession),	placed	into	
96-well	plates,	and	dried	in	a	lyophilizer	for	two	days.	Genomic	DNA	
of	SSG	accessions	was	extracted	from	~50	mg	dried	leaf	tissue	using	
the	BioSprint	robot	with	DNeasy	Mini	Kit	(Qiagen)	according	to	the	
manufacturer's	instructions.	DNA	was	quantified	with	PicoGreen	and	
normalized	 to	10	ng/μl	DNA	 for	 each	 sample.	The	GBS	 library	was	
constructed	using	 the	 restriction	 enzyme	ApeKI	 for	DNA	digestion	
and	384-plex	barcode	 ligation	 (4	×	96-plex)	 following	 the	GBS	pro-
tocol	(Elshire	et	al.,	2011).	Digested	DNA	fragments	were	ligated	to	
the	barcode-adapters	in	a	solution	containing	the	10×	T4	DNA	Ligase	
Reaction	Buffer,	ultrapure	water,	and	T4	DNA	Ligase	(New	England	
Biolabs),	then	cleaned	using	a	QIAquick	PCR	purification	kit	(Qiagen).	
The	 adapter-ligated	 DNA	 fragments	 were	 amplified	 by	 polymer-
ase	 chain	 reaction	 (PCR).	 The	 PCR-amplified	DNA	 fragments	were	
cleaned	and	quantified	with	PicoGreen.	Four	96-plex	 libraries	were	
pooled	to	form	a	384-plex	GBS	library.	GBS	libraries	were	diluted	into	
20 μl	at	4	nM	for	each	library	and	analyzed	by	the	Agilent	2100	Bio-
analyzer	 for	 sequencing.	GBS	 libraries	were	 sequenced	on	 Illumina	
HiSeq	2500	at	the	University	of	Kansas	Medical	Center.

2.3 | SNP calling

The	SNP	calling	was	done	based	on	1,208	samples	including	the	ac-
cessions	from	the	SSG	panel	and	accessions	from	the	GDP.	Single-
end	 sequence	 reads	 obtained	 from	 Illumina	 sequencing	 and	 raw	
sequencing	data	from	the	GDP	were	processed	with	the	TASSEL	5	
GBS	v2	pipeline	 (Glaubitz	et	 al.,	 2014).	All	 unique	 sequence	 reads	
were	trimmed	to	64	bp,	which	was	the	default	setting.	The	first	step	
in	the	pipeline	(GBSSeqToTagDBPlugin)	allowed	to	collapse	identical	
reads	into	tags	using	the	key	files	of	both	SSG	and	GDP	accessions.	

Distinct	 tags	 were	 pulled	 and	 exported	 from	 the	 database	 in	 the	
FASTQ	format	using	the	TagExportToFastqPlugin	for	their	alignment	
to	the	BTx623	sorghum	reference	genome	v.3.1	(McCormick	et	al.,	
2018;	Paterson	et	al.,	2009).	The	alignment	was	performed	with	the	
Burrows–Wheeler	Alignment	(Li	&	Durbin,	2009)	where	the	created	
SAM	file	was	passed	through	the	SAMToGBSdbPlugin	to	store	the	
position	information	of	aligned	tags.	The	SNPs	were	called	from	the	
aligned	 tags.	 The	 DiscoverySNPCallerPlugin	 was	 used	 to	 identify	
SNPs	 from	 the	aligned	 tags	where	minor	 allele	 frequencies	 (MAF)	
was	set	to	0.0001	and	minimum	locus	coverage	(mnLCov)	was	kept	
as	 the	default	 setting	of	0.1.	For	downstream	population	genomic	
analyses,	SNPs	with	<20%	missing	data	rate	and	MAF	>	0.01	were	
retained.	Monomorphic	sites	were	removed	and	only	biallelic	sites	
were	retained.	Missing	genotypes	were	imputed	using	Beagle	v4.1	
program	(Browning	&	Browning,	2016).	For	the	association	mapping	
studies,	the	SNP	data	set	was	filtered	for	MAF	>	0.05	to	reduce	the	
chance	of	observing	false-positive	associations.

2.4 | Population structure analysis

Principal	components	analysis	(PCA)	of	SNP	variation	was	performed	
using	the	snpgdsPCA	function	of	the	R	package	SNPRelate	(Zheng	
et	 al.,	 2012).	 Neighbor-joining	 (NJ)	 analysis	 was	 performed	 using	
TASSEL	5	program,	and	the	tree	was	visualized	with	the	ape	package	
in	R	(Paradis,	Claude,	&	Strimmer,	2004).	Bayesian	model-based	clus-
tering	in	ADMIXTURE	v1.23	(Alexander,	Novembre,	&	Lange,	2009)	
was	used	to	estimate	the	subpopulation	membership/admixture	for	
K	=	2–20	subpopulations.	To	reduce	SNP	redundancy	due	to	LD	for	
the	admixture	analysis,	genotypic	data	were	LD-pruned	with	a	win‐
dow size	of	50	SNPs,	step size	10,	and	VIF threshold	of	0.5	using	the	
function	 indep	 in	PLINK	1.9	 (Purcell	 et	 al.,	 2007).	Default	 settings	
of	ADMIXTURE	were	used,	and	fivefold	cross	validation	(CV)	error	
with	 block	 bootstrap	 and	2,000	 iterations	was	 used	 to	 determine	
the	optimum	value	of	K.	Each	accession	was	assigned	to	subpopula-
tion	when	the	proportion	of	the	coefficient	of	membership	to	sub-
population	was	>0.60.	To	determine	the	spatial	genetic	co-ancestry	
structure	with	respect	to	geography,	we	used	the	R	package	TESS3	
(Caye,	Deist,	Martins,	Michel,	&	François,	2016).	Results	were	visual-
ized	using	the	R	program	(R	Core	Team,	2016).

2.5 | Linkage disequilibrium analysis

LD	was	characterized	in	the	whole	SSG	and	separately	in	the	guinea	
and	durra	accessions.	VCFtools	 (Danecek	et	al.,	2011)	was	used	to	
filter	the	genotypic	data	based	on	MAF	>	0.05.	The	pairwise	corre-
lation	 coefficient	 (r2)	 among	 SNPs	was	 used	 to	 estimate	 LD	using	
TASSEL	5	(Bradbury	et	al.,	2007).	LD	decay,	measured	as	the	distance	
by	which	the	r2	decays	to	half	its	maximum	value,	was	fit	using	the	
nonlinear	least	square	(nls)	function	(Hill	&	Weir,	1988;	Remington	et	
al.,	2001)	in	R	program.	The	R	package	LDheatmap	0.99-4	(Shin,	Blay,	
McNeney,	&	Graham,	2006)	was	used	to	determine	and	display	the	
pairwise	LD	surrounding	(50	kb	region	from	both	sides	of	the	SNP)	a	
SNP-environment	variable	association.
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2.6 | Genome‐wide nucleotide variation and 
genome scans

Minor	 allele	 frequencies	 and	 observed	 and	 expected	 heterozygo-
sity	for	SNP	markers	were	calculated	using	VCFtools	program	and	R	
program	 (R	Core	Team,	2016).	Pairwise	genetic	differentiation	 (FST)	
among	 subgroups	 defined	 based	 on	 eco-geography	 was	 estimated	
using	the	Weir	and	Cockerham	method	in	VCFtools.	FST	values	among	
subgroups	obtained	at	K	=	7	from	the	TESS3	program	were	calculated	
using	the	R	package	HierFstat	(de	Meeûs	&	Goudet,	2007).	Pairwise	
genome-wide	 nucleotide	 diversity	 (π)	 and	 Tajima's	D	 test	 statistics	
were	calculated	based	on	nonoverlapping	sliding	windows	of	1	Mbp	
across	the	genome	using	VCFtools.	Ratios	of	π	were	analyzed	between	
guinea	 and	 durra	 accessions	 in	 the	 SSG	 (πguinea/πdurra),	 and	 across	
putative	 prebottleneck	 and	 postbottleneck	 events	 (πguinea/πEthiopia	
durra,	πEthiopia	durra/πNiger	and	Mali	durra,	and	πNiger	and	Mali	durra/πSenegal	durra).	
Selective	sweeps	were	detected	using	the	CLR	method	in	SweeD	pro-
gram	(Pavlidis	et	al.,	2013).	Each	chromosome	was	divided	into	5,000	
grid	 points	 (nonoverlapping	 windows).	 The	 CLR	 windows	 with	 ≥8	
SNPs	(approximately	1	SNP	per	2	kb)	were	retained	during	the	analy-
sis.	The	significance	threshold	representing	the	95th	percentile	cutoff	
was	determined	based	on	1,000	simulations.

2.7 | Genome‐wide association studies (GWAS)

GWAS	were	carried	out	using	mixed-linear	models	(MLM)	in	GAPIT	
in	R	(Lipka	et	al.,	2012)	with	the	three	first	principal	components	ei-
genvectors	and	kinship	matrix.	The	Bonferroni	correction	at	α = 0.05 
level	was	used	to	define	the	significance	of	association	tests.	SNPs	
were	 filtered	 at	 MAF	>	0.05,	 yielding	 145,235	 SNPs.	 Phenotypic	
data	were	obtained	 from	the	GRIN	database	and	 treated	as	binary	
data	 for	both	photoperiod	sensitivity	 (e.g.,	 sensitive	vs.	 insensitive)	
and	panicle	compactness	(e.g.,	compact	vs.	open	panicle).	For	GEA,	
both	MLM	 and	 general	 linear	 models	 (GLM)	 were	 used.	 Nineteen	
WorldClim-derived	 bioclimatic	 variables	 (Hijmans,	 Cameron,	 Parra,	
Jones,	&	Jarvis,	2005)	were	used	for	genome–environment	associa-
tion	tests.	To	identify	environment-associated	SNPs	with	the	greatest	
significance	among	SNPs	of	the	same	genomic	region,	the	multilocus	
mixed-model	(MLMM)	(Segura	et	al.,	2012)	was	used	to	complement	
the	GLM	and	MLM.	In	both	MLM	and	MLMM,	the	first	three	principal	
components	were	included	to	account	for	population	structure.

2.8 | A priori candidate genes

A	list	of	a	priori	candidate	genes	for	climate	adaptation	was	defined	from	
known	sorghum	genes,	orthologs	of	cloned	genes	from	rice	and	maize,	
and	 candidates	 from	previous	 sorghum	mapping	 studies	 (see	Data	S2	
for	candidate	genes,	gene	functions,	and	references).	A	literature	survey	
of	sorghum	orthologs	of	maize	and	rice	genes	that	affect	inflorescence	
architecture,	 flowering	 time,	 and	 drought	 tolerance	 was	 carried	 out.	
Inflorescence	architecture	candidate	genes	from	a	previous	global	GWAS	
(Morris	et	al.,	2013),	photoperiodic	flowering	time	candidate	genes	from	a	
previous	study	(Bhosale	et	al.,	2012),	and	validated	drought	tolerance	loci	

(stay-green,	Stg1–4)	 from	(Borrell	et	al.,	2014)	were	 included.	Genomic	
position	of	candidate	genes	was	determined	using	Phytozome	v12.1.6	
(https://phytozome.jgi.doe.gov)	(Goodstein	et	al.,	2012).

2.9 | Redundancy analysis

RDA	 was	 performed	 using	 the	 R	 package	 vegan	 (Oksanen	 et	 al.,	
2017)	 for	 climatic	 factors,	 ethnicity,	 and	 space.	 Independent	 vari-
ables	included	nineteen	climatic	variables,	space	variables	(latitude	
and	longitude),	and	ethnicity	variables.	Ethnicity	was	coded	as	binary	
variable	indicating	the	ethno-linguistic	group	of	the	farmer	that	con-
tributed	the	landrace	to	the	collection	(Clément	&	Houdiard,	1977).	
Forward	 selection	 based	 on	 1,000	 permutations	 was	 performed	
for	space	(e.g.,	using	polynomial	coordinates),	climate,	and	ethnicity	
variables	to	include	only	the	meaningful	variables	for	ordination.	The	
total	among-population	genetic	variance	was	partitioned	into	space,	
climate,	ethnicity,	and	their	overlapping	fractions	using	1,000	ran-
domly	selected	SNP	(MAF	>	0.05).	The	significance	of	each	variance	
fraction	was	tested	with	1,000	permutations.

3  | RESULTS

3.1 | Genome‐wide SNP variation in Senegalese 
sorghum

The	Senegalese	sorghum	accessions	included	in	this	study	originated	
from	diverse	agroclimatic	zones	(Figure	1a),	agro-ecological	regions	
(Figure	 S1a),	 and	 ethnic–linguistic	 groups	 (Figure	 S1b).	Across	 421	
accessions,	we	identified	213,916	SNPs	after	filtering	out	SNPs	with	
>20%	missing	 data,	MAF	<	0.01,	 and	 retaining	 only	 biallelic	 SNPs.	
The	SNP	density	was	determined	based	on	nonoverlapping	windows	
of	1	Mb	where	SNPs	were	distributed	across	the	genome	with	higher	
density	in	the	subtelomeric	regions	(Figure	S2a).	The	SNPs	covered	
most	of	the	genome	with	an	average	coverage	of	1	SNP	every	2	kb.	
The	average	observed	and	expected	heterozygosity	in	the	SSG	were	
estimated	at	0.05	and	0.23,	respectively.	The	average	pairwise	nu-
cleotide	diversity	 (π)	was	0.00054	 in	durra	and	0.00060	 in	guinea	
accessions.	The	 average	pairwise	 LD	 (r2)	 decreased	 from	 its	 initial	
value	(~0.5)	to	0.2	at	220	kb,	150	kb,	and	81	kb	in	durra,	guinea,	and	
whole	 SSG,	 respectively	 (Figure	 S2b).	 LD	 decayed	 to	 background	
level	 (~0.1)	at	880	kb	 in	durra	and	430	kb	 in	guinea.	The	SSG	had	
a	 lesser	proportion	of	 low	frequency	minor	alleles	 (<5%	MAF)	and	
greater	proportion	of	intermediate	frequency	minor	alleles	than	the	
GDP,	 based	 on	 nonoverlapping	window	 size	 of	 1	Mb	 (Figure	 S2c).	
About	60%	of	SNPs	were	rare	(MAF	<	0.05).

Next,	we	investigated	the	genetic	variation	and	structure	of	the	
SSG.	The	two	first	principal	components	explained	3.8%	and	2.5%	of	
SNP	variation	(Figure	1b).	The	accessions	originated	from	the	center	
formed	one	cluster,	accessions	from	the	south	formed	a	second	clus-
ter,	and	accessions	from	the	north	formed	a	third	cluster.	The	third	
cluster	included	durra	accessions,	caudatum	accessions,	a	few	guinea	
accessions	from	the	north,	and	improved	varieties.	Neighbor-joining	
tree	matched	the	PCA	results	and	revealed	that	SSG	durra	accessions	

https://phytozome.jgi.doe.gov
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were	 closely	 related	 to	 the	 durra	 from	 Ethiopia	 and	 other	 West	
African	countries	(Figure	S2d).	Durra	and	guinea	accessions	within	the	
SSG	were	 genetically	 differentiated	 from	each	other.	 The	SSG	also	
clustered	 somewhat	with	 respect	 to	 ethno-linguistic	 groups,	which	
are	nested	within	geographic	origins	of	the	accessions	(Figure	S2e).

3.2 | Model‐based population structure and 
variance partitioning

To	 further	 characterize	 genetic	 structure	 and	 gene	 flow	 among	
groups,	we	used	Bayesian	model-based	clustering.	ADMIXTURE	re-
vealed	a	hierarchical	genetic	structure	and	high	amount	of	gene	flow	
among	subpopulations	(File	S1).	Cross	validation	error	was	minimized	
with	K	=	7	subpopulations	(Figure	S3).	We	investigated	the	spatial	ge-
netic	co-ancestry	 in	the	SSG	with	TESS3	based	on	allele	frequency	

distribution	 and	 geographic	 origin.	 Seven	 optimum	 spatial	 genetic	
clusters	(K	=	7)	were	identified	(Figure	2a).	The	TESS3	results	matched	
the	ADMIXTURE	groups	for	different	K	values.	Genetic	differentia-
tion	among	the	subpopulations	(including	only	samples	with	admix-
ture	 rate	≥	0.7)	 found	at	K	=	7	 from	TESS3	 results	was	determined	
using	 the	 FST	 analysis	 (Figure	 2b).	 The	 durra	 accessions	 from	 the	
northern	 subpopulation	 (pop1)	were	more	 related	 to	 the	 improved	
varieties	(pop4),	based	on	FST	analysis.	Both	pop1	and	pop4	were	dis-
tinct	from	central	and	southern	subpopulations	(pop2,	3,	5–7),	which	
were	mostly	formed	by	guinea	accessions	where	guineas	in	the	center	
were	differentiated	from	guineas	in	the	south.	FST	of	0.185	and	0.052	
were	estimated	between	guinea	and	durra	accessions	in	the	SSG,	and	
between	SSG	durra	and	GDP	durra,	respectively.

We	used	RDA	to	estimate	the	proportion	on	SNP	variation	ex-
plained	 by	 climate	 variation,	 ethno-linguistic	 origin,	 and	 space.	

F I G U R E  1  SNP	variation	in	the	
Senegalese	sorghums	accessions.	(a)	
Geographic	distribution	of	the	Senegalese	
sorghums	accessions	along	precipitation	
gradient.	The	accessions	are	colored	
coded	with	respect	to	botanical	race.	
The	color	background	scale	indicates	the	
annual	precipitation	in	millimeters	with	
green	color	representing	the	highest	
precipitation	of	the	Soudanian	zone,	pink	
representing	lowest	precipitation	of	the	
Sahelian	zone,	and	yellow	representing	
the	zone	of	transition	between	Sahelian	
and	Soudanian	zones.	(b)	Scatterplot	
of	the	two	first	principal	components	
explaining	the	genomic	variation	within	
the	SSG	collection
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Climate	and	ethnicity	explained	up	to	6%	and	4%	of	SNP	variance,	
respectively,	 including	 variance	 collinear	 with	 space	 (p	>	0.001)	
(Figure	2c).	After	accounting	for	space,	climate	and	ethnicity	explain	
up	to	2%	of	the	variance,	each.	Climate	collinear	with	space,	the	pu-
tative	proportion	of	clinal	adaptation,	explained	6%	of	variance.

3.3 | Genome‐wide patterns of nucleotide 
polymorphism

To	 identify	 genomic	 regions	 subject	 to	 selection,	 we	 compared	
genome-wide	 nucleotide	 polymorphism	 (π)	 between	 guinea	
(Soudanian)	 and	 durra	 (Sahelian)	 accessions	within	 the	 SSG.	 Since	
guinea	sorghums	are	generally	more	genetically	diverse	than	durra	
sorghums,	we	used	πguinea	in	the	numerator	and	πdurra	in	the	denomi-
nator	to	identify	low-diversity	genomic	regions	in	the	durra	genome.	
Nucleotide	polymorphism	was	reduced	in	durra	compared	to	guinea	
across	most	of	the	genome,	with	notably	low	π	on	pericentromeric	
regions	 of	 chromosome	 2,	 5,	 7,	 and	 10	 (Figure	 3a).	 For	 durra,	 34	
genomic	 regions	 (1	Mb	 windows)	 were	 identified	 as	 putative	 se-
lected	regions	(top	5%	cutoff	>	1.96).	A	notable	region	of	low	πdurra 
on	chromosome	1	colocalized	with	the	Ma3	photoperiodic	 flower-
ing	 gene.	Modestly	 lower	πdurra	was	 observed	 around	Stg1,	Stg3a,	
and Stg3b.	Generally,	negative	values	of	Tajima's	D	were	observed	in	
durra,	contrasting	the	positive	values	observed	in	guinea	(Figure	3b).

To	better	understand	the	timing	of	putative	selection	events,	we	
investigated	 ratios	of	nucleotide	polymorphism	across	 three	puta-
tive	genetic	bottlenecks:	 (a)	since	the	divergence	of	durra	from	 its	
common	ancestor	with	guinea	types,	(b)	from	Ethiopian	durra	(center	
of	durra	origin)	to	West	African	durra	(Niger	and	Mali),	(c)	and	from	

West	African	durra	to	Senegalese	durra	(Figure	3c).	We	also	charac-
terized	nucleotide	polymorphism	between	all	Sahelian	durra	against	
worldwide	guinea	(Figure	S4).	The	π	reduction	in	the	pericentromeric	
regions	of	 chromosome	4	occurred	mainly	 in	Ethiopian	durra.	The	
π	 reduction	on	pericentromeric	 regions	of	chromosomes	5	and	10	
and	subtelomeric	region	of	chromosome	6	were	common	to	all	West	
African	durra	sorghums.	The	π	reduction	in	the	pericentromeric	re-
gion	of	chromosome	2	was	specific	to	the	SSG	durra.

3.4 | Selective sweeps and colocalization of a priori 
candidate genes

Next,	 we	 used	 CLR	 to	 identify	 candidate	 selective	 sweeps	 for	
Sahelian	 adaptation	 in	 durra	 in	 the	 SSG.	 Composite	 likelihood	
ratio	 identified	 47	 candidate	 genomic	 regions	 (top	 5%	 cutoff	 or	
CLR	>	16.9)	 in	durra	 (Figure	4a).	We	 investigated	 if	 a	priori	 candi-
date	genes	(n	=	64)	 implicated	in	stay-green,	flowering	time,	or	 in-
florescence	morphology	 colocalized	with	CLR	outliers.	Given	 that	
the	candidate	genes	were	 identified	a	priori	 from	 the	 literature,	 a	
liberal	 cutoff	 of	 1	Mb	was	 used	 to	 define	 colocalization	 between	
CLR	outlier	regions	and	candidate	genes.	Sixteen	out	of	47	CLR	out-
liers	colocalized	with	candidate	genes	(Data	S3).	The	photoperiodic	
flowering	genes	Ma3,	GI,	CRY1, and ZFL1	 and	 inflorescence	archi-
tecture	candidate	genes	HAM3, Sbra2, and vt2	colocalized	with	CLR	
outliers.	The	stay-green	loci	Stg3a and Stg3b	colocalized	with	outlier	
regions	on	subtelomeric	regions	of	chromosome	2.	We	used	CLR	in	
guinea	to	identify	candidate	selective	sweeps	for	Soudanian	adapta-
tion.	The	CLR	identified	28	candidate	genomic	regions	(CLR	>	10.3)	
in	 guinea	 (Figure	 4b).	 Eleven	 out	 of	 28	 CLR	 outliers	 colocalized	

F I G U R E  2  Spatial	population	structure	
and	SNP	variance	partitioning	in	the	
Senegalese	sorghum.	(a)	Spatial	genetic	
co-ancestry	structure	of	the	accessions	
at	K	=	7.	Each	accession	is	represented	
by	dot	on	the	map	and	each	color	
represents	a	genetic	co-ancestry	matrix.	
(b)	The	FST	genetic	differentiation	among	
subpopulations	at	K	=	7	ancestral	groups	
from	b;	the	color-coding	matches	that	in	
a.	(c)	Among-population	genetic	variance	
at	1,000	randomly	selected	SNPs	with	
MAF	>	0.05	explained	independently	by	
climatic,	space,	and	ethnicity	variables
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with	candidate	genes	(Data	S3).	The	photoperiodic	flowering	genes	
PhyA,	Hd1, SbCN2, and Ma6	 colocalized	with	 outlier	 regions.	 The	
stay-green	locus	Stg1	colocalized	with	an	outlier	region	on	chromo-
some	3.	The	inflorescence	morphology	genes	IDS1,	DFL2,	Sbra3,	and	
Dwarf8	colocalized	with	outlier	regions.

3.5 | Genome‐wide association studies of putative 
adaptive traits

To	better	characterize	variation	underlying	putative	adaptive	traits,	
we	 mapped	 genotype–phenotype	 associations	 for	 photoperiodic	
flowering	and	inflorescence	morphology.	To	reduce	confounding	ef-
fects	of	population	structure,	we	also	applied	a	regional	mapping	ap-
proach	where	durra	accessions	were	excluded.	In	total,	445	and	178	
significantly	associated	SNPs	(Bonferroni	p-value	>	0.05)	were	iden-
tified	for	photoperiod	sensitivity	for	the	whole	SSG	and	SSG	without	
durra,	 respectively	 (Figure	 5a	 and	 Figure	 S5a).	 Colocalization	 be-
tween	associated	SNPs	and	candidate	genes	was	determined	based	
on	LD	decay	rate	to	background	level	(r2	=	0.1)	in	durra	(800	kb)	and	
guinea	(500	kb).	Among	the	associated	SNPs,	35	and	26	colocalized	
with	 photoperiodic	 flowering	 candidate	 genes	 for	 the	 whole	 SSG	
and	SSG	excluding	durra,	respectively.	For	panicle	compactness,	48	
and	124	significantly	associated	SNPs	were	found	for	the	whole	SSG	

and	SSG	excluding	durra,	 respectively	 (Figure	5b	 and	Figure	 S5b).	
Among	the	associated	SNPs,	13	SNPs	colocalized	with	a	priori	can-
didate	genes	for	inflorescence	morphology.

Photoperiod	sensitivity-associated	SNPs	were	found	near	floral	
regulators	Ma3,	Ma5,	Ma6,	MADS14,	GI,	HD6,	zfl1/2,	Ehd2,	SbCN12,	
and SbCN15	 (Data	 S4).	Most	of	 these	 associations	were	observed	
whether	or	not	durra	were	included.	The	association	near	Ehd2	was	
only	observed	when	durra	accessions	were	excluded,	while	associa-
tions	near	Ma6 and HD6	were	only	observed	when	durra	accessions	
were	 included.	 Eighteen	 of	 the	 highly	 significant	 (p-value	>	10−10)	
associations	were	not	near	any	a	priori	candidate	genes.	For	pani-
cle	compactness,	significantly	associated	SNPs	colocalized	with	SP1,	
CRCK3,	TCP24,	DFL2,	Sb‐ra2,	vt2,	 and	 rel2.	The	SNP	S1_55302939	
(within	 the	 SP1	 gene)	 was	 significant	 in	 both	 GWAS	 approaches,	
while	 S1_55305415	 (1	kb	 away	 from	 SP1)	 was	 only	 significant	
when	using	the	whole	SSG	panel.	Two	of	 the	highly	significant	 (p-
value	>	10−10)	associations	were	not	near	a	priori	candidate	genes.

3.6 | Environment‐SNP associations

We	performed	GEA	to	 identify	SNPs	associated	with	climate	vari-
ables	 (Data	S4).	Based	on	 the	GLM,	GEA	 identified	560	SNPs	sig-
nificantly	 associated	 (Bonferroni-adjusted	 p-value	>	0.05)	 with	

F I G U R E  3  Genome-wide	pattern	of	
nucleotide	diversity	in	durra	accessions.	
Decrease	in	pairwise	nucleotide	diversity	
and	Tajima's	D	test	for	nonoverlapping	
sliding	windows	of	1	Mbp	across	
the	genome.	(a)	Decreased	pairwise	
nucleotide	diversity	in	durra	relative	to	
guinea	in	the	Senegalese	sorghum.	The	
horizontal	dashed	lines	indicate	the	mean	
value	(blue)	and	the	top	5%	(gray)	of	
decreased	nucleotide	diversity.	(b)	Tajima's	
D	test	between	durra	(green)	and	guinea	
(red)	accessions	in	Senegalese	sorghum.	
(c)	Positive	selections	between	durra	
from	Ethiopia	and	all	guineas	in	the	global	
diversity	panel	(blue),	between	Ethiopian	
durra	and	West	African	durra	(green),	
and	between	West	African	durra	and	
Senegalese	durra	(red)
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F I G U R E  4  Genome-wide	scan	for	
selective	sweeps	in	the	Senegalese	
sorghum.	Selective	sweeps	in	the	
durra	(a)	and	guinea	(b)	genomes.	Each	
chromosome	was	divided	into	5,000	grid	
points	each	corresponding	to	one	dot.	The	
y-axis	represents	the	composite	likelihood	
ratio	(CLR)	of	each	grid	point.	The	vertical	
dashed	lines	indicate	the	colocalized	
candidate	genes	with	genomic	signatures.	
The	horizontal	dashed	blue	line	represents	
the	95th	percentile	cutoff	obtained	from	
1,000	simulations

F I G U R E  5  GWAS	of	photoperiod	sensitivity	and	panicle	compactness.	Manhattan	plots	of	association	tests	using	the	Mixed-linear	
model	for	photoperiod	sensitivity	(a)	and	panicle	compactness	(b)	for	the	whole	Senegalese	collection.	The	negative	base	10	logarithm	of	
the	significance	p-value	(y-axis)	of	the	SNP-phenotype	association	is	plotted	against	the	genomic	position	of	each	SNP	on	the	chromosomes	
represented	on	the	x-axis.	The	gray	horizontal	line	indicates	the	significance	threshold	for	the	Bonferroni	corrected	p-value	>	0.05.	
Candidate	genes	colocalizing	with	significantly	associated	SNPs	are	indicated
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environment	variables	 including	precipitation	of	 the	driest	quarter	
(Figure	6a),	mean	temperature	of	the	warmest	quarter	(Figure	S6a),	
and	precipitation	of	the	wettest	quarter	 (Figure	S6b).	Associations	
for	longitude	variable	were	based	on	the	MLM	(Figure	S6c)	because	
GLM	 identified	 many	 associated	 SNPs.	 Multilocus	 mixed-model	
identified	16	 significantly	 associated	SNPs,	 including	one	overlap-
ping	SNP	(S7_59683060)	with	the	GLM,	and	15	additional	SNPs	that	
were	not	identified	by	GLM	or	MLM	(Table	S1,	Figure	6a,	and	Figure	
S6).	Associated	SNPs	for	precipitation	of	the	driest	quarter,	such	as	
S2_60708848	and	S6_691400,	identified	by	the	MLMM,	colocalized	
with	 the	 Stg3a	 locus	 and	Ma6	 gene,	 respectively.	 The	 stay-green	
candidate	loci	(Stg1–4)	colocalized	with	SNPs	associated	with	mean	
temperature	of	the	driest	and	warmest	quarters,	precipitation	of	the	
driest,	warmest	and	wettest	quarters,	and	longitude	(Data	S4).	The	
SNP	S1_7584419	identified	by	MLMM	as	associated	with	mean	tem-
perature	of	the	warmest	quarter	colocalized	with	Ma5 and MADS14,	
but	at	greater	distance	(>800	kb).

To	determine	the	pairwise	LD	between	the	two	SNPs	colocalizing	
with	Stg3a and Ma6	and	variation	within	these	loci,	we	generated	the	
LDheatmap	of	the	50	kb	region	surrounding	each	SNP	(Figure	6b,c).	
Nearly	 complete	 LD	 (r2	>	0.9)	 was	 found	 between	 S2_60708848	
and	other	SNPs	in	the	Stg3a	locus.	The	SNP	S6_691400	was	in	LD	
with	two	SNPs	 in	Ma6.	The	genotypes	carrying	the	minor	allele	at	

S2_60708848	were	distributed	in	the	southern	subhumid	environ-
ments	(Figure	6d).	By	contrast,	genotypes	carrying	the	minor	allele	
at	 S6_691400	 were	 distributed	 in	 the	 northern	 and	 dry	 environ-
ments	 (Figure	 6e).	 The	minor	 alleles	 at	 S3_67831630	 (colocalized	
with	Stg1/SbPIN4)	and	S3_57321183	(colocalized	with	Stg2/SbPIN2)	
were	mostly	found	in	durra	landraces	and	few	guinea	landraces	dis-
tributed	in	the	dry	areas	of	Senegal	(Figure	S7a,b).

4  | DISCUSSION

Genomic	analysis	of	crop	landraces	can	help	determine	the	basis	of	
local	adaptation	(Lasky	et	al.,	2015;	Li	et	al.,	2017;	Lin	et	al.,	2014;	
Swarts	 et	 al.,	 2017).	 The	 aims	 of	 this	 study	 were	 to	 characterize	
factors	 shaping	 the	genomic	variation	of	Senegalese	sorghum	 lan-
draces,	map	genomic	regions	shaped	by	agroclimatic	adaptation,	and	
identify	genes	that	could	play	a	role	in	local	adaptation.

4.1 | Factors shaping genomic variation of 
sorghum landraces

Population	 structure	 in	 the	 Senegalese	 landraces	 followed	 the	
north–south	 precipitation	 gradient.	 These	 regional-scale	 patterns	

F I G U R E  6  Genome–environment	
associations	for	precipitation.	(a)	SNP	
associations	for	“precipitation	of	the	
driest	quarter”	using	the	generalized-
linear	model	(GLM).	The	red	dots	
represent	SNPs	identified	from	the	
multilocus	mixed-model	(MLMM).	Linkage	
disequilibrium	displayed	as	heat	map	of	
coefficient	of	correlation	r2	in	a	50	kb	
region	around	SNPs	S2_60708848	(b)	
and	S6_691400	(c)	that	colocalize	with	
Stg3a	and	Ma6	loci	in	(a),	respectively.	
Red	asterisks	on	each	heat	map	represent	
these	SNPs	and	blue	asterisks	indicate	
the	SNPs	within	Ma6.	The	color	scale	
indicates	the	significance	of	r2	values	with	
black	color	indicating	high	r2	values.	Allelic	
map	distribution	at	SNPs	S2_60708848	
(d)	and	S6_691400	(e)	associated	with	
precipitation	of	the	driest	quarter.	The	
shape	of	the	points	indicates	the	botanical	
race	of	the	accession	and	the	color	
indicates	the	allele	at	the	SNP	with	H	
being	the	heterozygous	alleles
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are	in	line	with	global	patterns,	where	population	structure	is	associ-
ated	with	precipitation-based	agroclimatic	zones	(Lasky	et	al.,	2015).	
Within	Senegalese	sorghums,	guinea	and	durra	clustered	distinctly,	
consistent	 with	 global	 patterns	 of	 genetic	 differentiation	 (Morris	
et	al.,	2013;	Sagnard	et	al.,	2011).	The	relatively	high	proportion	of	
variation	explained	by	climate	collinear	with	space	suggests	a	 role	
of	 clinal	 adaptation	 shaping	 variation,	 similar	 to	 recent	 findings	 in	
Nigerian	and	global	sorghum	germplasm	(Lasky	et	al.,	2015;	Olatoye,	
Hu,	Maina,	&	Morris,	2018).	However,	two	guinea	groups,	from	the	
center	 and	 south,	 clustered	 distinctly	 (Figure	 1b	 and	 Figure	 S2d),	
suggesting	possibly	a	specific	genomic	adaptation	to	the	Soudano–
Sahelian	and	the	Soudanian	agroclimatic,	respectively.

The	 average	 pairwise	 nucleotide	 diversity,	 observed	 heterozy-
gosity	(data	not	shown),	and	the	spatial	and	hierarchical	genetic	struc-
ture	observed	within	guinea	group	(Figure	2a;	File	S1)	is	consistent	
with	guinea	being	the	most	genetically	diverse	sorghum	type	(Deu	et	
al.,	1994;	Folkertsma	et	al.,	2005;	Morris	et	al.,	2013).	Although	the	
number	of	 inferred	 subpopulations	may	not	 always	 correspond	 to	
the	number	of	biological	genetic	groups	(François	&	Durand,	2010;	
Meirmans,	2015),	the	spatial	genetic	co-ancestry	structure	analysis	
suggests	the	presence	of	untapped	genetic	diversity	in	the	subpopu-
lations	in	eastern	Senegal	(Figure	2a).	The	high	estimated	admixture	
coefficients	 among	 putative	 guinea	 subpopulations	 (File	 S1)	 could	
be	due	to	gene	flow	among	subpopulations	or	an	effect	of	 limited	
isolation-by-distance.	 The	 limited	 isolation-by-distance	 may	 occur	
because	 the	geographic	origin	of	 the	accessions	 is	not	broad	 (e.g.,	
Senegal	is	not	large)	and	there	is	any	major	geographic	barrier	that	
may	create	isolated	subpopulations.	There	was	little	evidence	of	ad-
mixture	between	guinea	and	durra	types,	consistent	with	phenotype	
studies	that	rarely	identify	guinea–durra	intermediates	(Harlan	&	De	
Wet,	1972).	Evidence	of	gene	flow	was	mostly	from	guinea	to	durra	
(e.g.,	red	subgroup	at	K	=	7,	File	S1)	and	rarely	from	durra	to	guinea.	
The	lower	abundance	of	durra	in	this	region	may	explain	the	limited	
gene	flow	between	guinea	and	durra	sorghums.

Ethnicity	of	farmers	has	shaped	genetic	structure	in	several	sta-
ple	crops	 including	maize	and	pearl	millet	 (Naino	Jika	et	al.,	2017;	
Orozco-Ramírez,	 Ross-Ibarra,	 Santacruz-Varela,	 &	 Brush,	 2016).	
Distribution	 and	 diffusion	 of	 ethnic	 groups	 in	 Senegal	 including	
the	Wolof,	Serer,	Diola,	and	Fulani	 (Toucouleur,	Peul,	Peul	Foulbe,	
and	Peul	Firdou)	could	have	affected	gene	 flow	among	 landraces.	
Indeed,	the	ethno-linguistic	origin	of	the	accessions	contributed	to	
the	genetic	variance	of	the	Senegalese	sorghum	(Figure	2c).	Seed	ex-
change	among	farmers	of	the	same	ethnic	group	may	have	contrib-
uted	in	shaping	this	genetic	structure	(Barnaud,	Trigueros,	McKey,	
&	 Joly,	 2008;	 Orozco-Ramírez	 et	 al.,	 2016;	 Pressoir	 &	 Berthaud,	
2004).	 Codiffusion	 of	 sorghum	 with	 human	 migration	 has	 been	
demonstrated	at	Africa-wide	scale	(Westengen	et	al.,	2014)	and	at	
a	regional	scale	 in	Kenya	(Labeyrie,	Thomas,	Muthamia,	&	Leclerc,	
2016).	Durra	 sorghum	 in	 Senegal	 are	 grown	mainly	 by	 the	 Fulani	
ethnic	group,	so	the	clustering	of	Senegalese	durra	with	Ethiopian	
durra	(Figure	S2d)	and	low	FST	(0.052)	suggest	that	durra	sorghums	
moved	with	Fulani	people	from	northeast	Africa	(Scheinfeldt,	Soi,	&	
Tishkoff,	2010).

4.2 | Genetic basis of Sahelian and 
Soudanian adaptation

Nucleotide	polymorphism	patterns	can	provide	insight	into	loci	un-
derlying	adaptation	(Vitti,	Grossman,	&	Sabeti,	2013).	The	reduction	
of	nucleotide	polymorphism	observed	throughout	the	durra	genome	
(Figure	 3a)	 could	 be	 resulted	 from	 the	 bottlenecks	 during	 its	 dif-
fusion	 along	 the	 Sahelian	 zone.	Because	Ethiopia	 is	 known	 as	 the	
center	of	origin	of	durra,	we	investigated	whether	the	reduced	poly-
morphism	in	durra	was	common	to	all	African	durra	or	specific	to	the	
Senegalese	durra.	The	results	suggest	selective	sweeps	across	durra	
genomes	as	durra	populations	diffused	along	 the	Sahel	 (Figure	3c	
and	 Figure	 S4).	 Interestingly,	 putative	 selective	 sweeps	 on	 peri-
centromeric	regions	of	chromosome	2	were	specific	to	Senegalese	
durra.	By	contrast	to	durra,	there	was	little	reduction	of	nucleotide	
polymorphism	in	the	guinea	genome	and	predominantly	positive	val-
ues	of	Tajima's	D	 test	 (Figure	3a,b),	reflecting	population	structure	
or	possible	balancing	selection	(Vitti	et	al.,	2013).	Simulations	with	
demographic	models	could	be	used	for	more	robust	genome	scans.	
Unfortunately,	the	underlying	population	parameters	(e.g.,	effective	
population	size,	migration	rates)	are	poorly	described	in	sorghum.

Photoperiodic	 flowering	 is	 a	 key	 factor	 underlying	 adaptation	
in	 tropical	 crops	 (Kloosterman	 et	 al.,	 2013).	 The	 colocalization	 of	
photoperiodic	 flowering	 candidate	 genes	 with	 putative	 selective	
sweeps	 and	 phenotypic	 and	 environment	 associations	 (Figures	 4	
and	5a;	Table	S1;	Data	S4)	are	consistent	with	a	role	of	conserved	
cereal	flowering	pathways	in	sorghum	climate	adaptation.	The	rare	
allele	at	 the	SNP	near	Ma6/Ghd7	 (6	kb	away)	was	present	 in	durra	
genotypes	distributed	in	the	drier	areas	of	the	Sahelian	zone	charac-
terized	by	short	growing	seasons	and	low	rainfall	(<400	mm	per	year)	
(Figure	6e).	 This	 rare	 allele	may	be	 associated	with	 early	maturity	
and	 thus	suggesting	a	 role	 in	drought	escape	such	 that	plants	can	
rapidly	cover	their	maturity	cycle	and	produce	seeds	before	the	end	
of	growing	season.

Other	 photoperiod	 flowering	 regulators	 identified	 in	U.S.	 sor-
ghum,	PhyC	(Ma5),	PhyB	(Ma3),	PhyA,	and	Ma1	(SbPRR37),	colocalized	
with	phenotype-associated	SNPs	 (Data	S4)	 and	putative	 selective	
sweeps	 in	 the	Senegalese	 sorghum	 (Childs	et	 al.,	 1997;	Rooney	&	
Aydin,	1999).	Signatures	of	selection	near	Ma3	 in	durra	 (πdurra and 
CLR;	 Figure	 3a	 and	 Figure	 4a)	 are	 consistent	 with	 signatures	 of	
positive	selection	in	Ma3	observed	in	global	sorghum	(Wang	et	al.,	
2015).	The	florigens	SbCN12 and SbCN15	(ortholog	of	rice	florigen	
Hd3a)	 found	 near	 photoperiod-associated	 SNPs	 are	 photoperiod-
regulated	activators	of	floral	induction	in	U.S.	sorghum	(Murphy	et	
al.,	2011).	Putative	photoperiodic	flowering	regulators	SbCRY1 and 
SbGI,	colocalizing	with	selective	sweeps	in	durra	and	photoperiod-
associated	 SNPs,	 were	 previously	 associated	 with	 photoperiodic	
flowering	 in	 regional	West-Central	African	germplasm	 (Bhosale	et	
al.,	2012).	Several	of	the	above	genes	were	associated	with	flower-
ing	time	adaptation	in	maize	landraces,	including	PhyB,	PhyC,	PRR37,	
and ZFL1/2	(Romero	Navarro	et	al.,	2017).

Panicle	compactness	 in	 sorghum	 is	a	 function	of	 the	number	
and	length	of	inflorescence	branches	and	the	number	of	aborted	
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spikelets	 (Brown	 et	 al.,	 2006).	 Several	 candidate	 genes	 from	 a	
previous	 GWAS	 of	 inflorescence	 branch	 length	 in	 global	 sor-
ghum	(Morris	et	al.,	2013)	colocalized	with	GWAS	signals	for	pan-
icle	 compactness	 and/or	 CLR	 outliers	 in	 the	 current	 study	 (SP1,	
CRCK3/THE1,	 TCP24,	 and	 DFL2).	 The	 minor	 alleles	 in/near	 SP1 
(S1_55302939,	 S1_55305415)	 observed	 in	 durra	 accessions	 and	
some	guinea	 accessions	 (Figure	 S7c,d)	 suggests	 a	 rare	 variant	 in	
SP1	 could	 contribute	 to	 shorter	 inflorescence	 branches	 in	 some	
Senegalese	sorghum.

The	 colocalization	 of	 selective	 sweeps	 and	 GEA	 (Data	 S4)	
with	 stay-green	drought	 tolerance	 loci	 (Borrell	 et	 al.,	 2014)	 sug-
gests	a	broader	role	for	stay-green	loci	 in	Sahelian	adaptation.	A	
selective	 sweep	 and	 associated	 SNPs	 colocalized	with	 the	 stay-
green	locus	Stg1/SbPIN4	in	guinea	sorghums,	suggesting	that	this	
region	may	 confer	 adaptation	 of	 some	 guinea	 accessions	 to	 the	
dry	areas	of	Senegal.	The	rare	allele	of	SNP	S3_57321183,	which	
colocalized	 with	 SbPIN2,	 was	 found	 in	 a	 few	 guinea	 sorghums	
(Figure	 S7b).	 One	 possibility	 is	 that	 severe	 droughts	 starting	 in	
the	1970s	(Gautier,	Denis,	&	Locatelli,	2016;	Mbow,	Mertz,	Diouf,	
Rasmussen,	&	Reenberg,	2008)	have	favored	the	introgression	of	
stay-green	drought	 tolerance	alleles	 into	some	guinea	 landraces.	
Genome	 scans	 comparing	older	 landrace	 collections	with	 recent	
collections	may	 shed	more	 light	 on	whether	more	 recent	 selec-
tion	(e.g.	1970s–2000s)	has	occurred,	as	demonstrated	in	Sahelian	
pearl	millet	(Vigouroux	et	al.,	2011).

4.3 | Prospects for genomic dissection and 
improvement of climate adaptation

Improving	adaptation	of	staple	crops	to	the	Sahelian	and	Soudanian	
zones	 is	 critical	 for	 smallholder	 farmers	 and	 a	major	 challenge	 for	
African	 plant	 breeders.	Despite	 advances	 in	 genotyping	 platforms,	
genomic	 tools	 for	crop	adaptation	 in	sub-Saharan	countries	 remain	
lacking.	This	study	generated	substantial	genomic	resources	(213,916	
SNPs	 among	 which	 145,235	 SNPs	 have	MAF	>	0.05)	 representing	
high-quality	markers	 useful	 for	 the	 genomic	dissection	of	 adaptive	
and	complex	traits.	High	rates	of	SNPs	with	low	frequency	minor	al-
leles	 (about	60%	of	 the	data	had	MAF	<	0.05)	were	detected.	One	
possible	 explanation	 may	 be	 related	 to	 the	 fact	 that	 these	 acces-
sions	are	mostly	landraces	grown	in	their	center	of	origin;	thus	high	
number	of	rare	polymorphisms	might	be	segregating	at	intermediate	
frequency	in	the	germplasm.	In	the	USDA-NPGS	Ethiopian	sorghum	
collection,	 similar	 patterns	 of	MAF	were	 found	where	 60%	 of	 de-
tected	SNPs	had	MAF	<	0.05	(Cuevas,	Rosa-Valentin,	Hayes,	Rooney,	
&	Hoffmann,	2017).	Overall,	the	Senegalese	sorghum	landraces	rep-
resent	a	useful	genetic	resource,	harboring	useful	variation	for	ma-
turity	and	inflorescence	morphology,	as	well	as	resistant	sources	to	
grain	mold	and	anthracnose	(Cuevas,	Prom,	&	Rosa-Valentin,	2018).

The	 moderate	 decay	 of	 LD	 observed	 within	 the	 germplasm	
(Figure	 S2b)	 is	 consistent	with	 the	 predominance	 of	 inbreeding	 in	
sorghum	 (Hamblin	 et	 al.,	 2005).	 Studies	 in	 sorghum	 have	 found	 a	
comparable	LD	pattern,	decaying	to	its	background	level	at	~150	kb	
(Mace	et	al.,	2013;	Morris	et	al.,	2013).	The	population	structure	of	

the	Senegalese	sorghum	 landraces	would	be	expected	 to	 increase	
spurious	association	and	reduce	the	power	of	GWAS	(Brachi,	Morris,	
&	Borevitz,	2011).	Indeed,	the	number	of	associations	for	photope-
riod	 sensitivity	 was	 reduced	when	 applying	 the	 regional	 mapping	
approach	 excluding	 durra	 accessions,	 presumably	 due	 to	 fewer	
spurious	associations.	Future	 studies	with	West	African	multi-par-
ent	 mapping	 populations	 could	 breakup	 confounding	 LD	 and	 im-
prove	power	 to	detect	 climate-adaptive	 loci	 (Bouchet	et	al.,	2017;	
McMullen	et	al.,	2009).

The	stay-green	loci	may	be	useful	to	improve	for	drought	adapta-
tion	in	the	Sahel	via	marker-assisted	selection.	Circadian	clock-related	
genes	influence	crop	yield	under	abiotic	stress	(Bendix,	Marshall,	&	
Harmon,	2015)	and	photoperiodic	flowering	loci	identified	may	con-
tribute	to	early	maturity	and	drought	escape	in	the	Sahel.	Taken	to-
gether,	our	findings	suggest	a	complex	oligogenic	basis	of	adaptation	
to	Sahelian	versus	Soudanian	 climate,	underpinned	by	variation	 in	
conserved	 floral	 regulatory	 pathways	 and	 variation	 in	 other	 path-
ways	that	are	more	poorly	understood.	Whole-genome	resequenc-
ing	 of	 African	 crop	 diversity	 for	 GWAS	 and	 genome	 scans	 could	
facilitate	identification	of	causal	variants	in	the	molecular	pathways	
that	underlie	climate	adaptation.
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