Agritrop
Home

Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR sentinel-1

Ho Tong Minh Dinh, Ienco Dino, Gaetano Raffaele, Lalande Nathalie, Ndikumana Emile, Osman Faycal, Maurel Pierre. 2018. Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR sentinel-1. IEEE Geoscience and Remote Sensing Letters, 15 (3) : pp. 464-468.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Minh2018.pdf

Télécharger (1MB) | Request a copy

Quartile : Q1, Sujet : GEOCHEMISTRY & GEOPHYSICS / Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q2, Sujet : REMOTE SENSING

Abstract : Mapping winter vegetation quality is a challenging problem in remote sensing. This is due to cloud coverage in winter periods, leading to a more intensive use of radar rather than optical images. The aim of this letter is to provide a better understanding of the capabilities of Sentinel-1 radar images for winter vegetation quality mapping through the use of deep learning techniques. Analysis is carried out on a multitemporal Sentinel-1 data over an area around Charentes-Maritimes, France. This data set was processed in order to produce an intensity radar data stack from October 2016 to February 2017. Two deep recurrent neural network (RNN)-based classifiers were employed. Our work revealed that the results of the proposed RNN models clearly outperformed classical machine learning approaches (support vector machine and random forest).

Mots-clés Agrovoc : Télédétection, Imagerie par satellite, Index de végétation, Cartographie de l'occupation du sol, Traitement des données, Radar, Réseau de neurones

Mots-clés géographiques Agrovoc : Aquitaine

Mots-clés complémentaires : deep learning

Classification Agris : U30 - Research methods
F40 - Plant ecology
U10 - Computer science, mathematics and statistics

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Ho Tong Minh Dinh, IRSTEA (FRA)
  • Ienco Dino, IRSTEA (FRA)
  • Gaetano Raffaele, CIRAD-ES-UMR TETIS (FRA)
  • Lalande Nathalie, Envylis Cie (FRA)
  • Ndikumana Emile, IRSTEA (FRA)
  • Osman Faycal, IRSTEA (FRA)
  • Maurel Pierre, IRSTEA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/592815/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-04-06 ]