Agritrop
Home

Light use efficiency in pure and mixed Eucalyptus and Acacia mangium plantations with different stocking densities

Rosada De Oliveira Ivanka, Le Maire Guerric, Laclau Jean-Paul, Brandani Carolina, De Moraes Gonçalves Jose Leonardo, Guillemot Joannès, Guerrini Iraê Amaral, Bouillet Jean-Pierre. 2019. Light use efficiency in pure and mixed Eucalyptus and Acacia mangium plantations with different stocking densities. Pesquisa Florestal Brasileira (39), n.spéc., Résumé : p. 303. IUFRO World Congress 2019 "Forest Research and Cooperation for Sustainable Development". 25, Curitiba, Brésil, 29 September 2019/5 October 2019.

Journal article ; Article de revue à comité de lecture Revue en libre accès total
[img]
Preview
Published version - Anglais
License Licence Creative Commons.
ID594408.pdf

Télécharger (96kB) | Preview

Url - éditeur : https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2043/900

Abstract : Competition for light in mixed-species plantations is a main limiting factor for tree growth. Understanding the light absorption and light use efficiency for each species at different planting densities and spatial arrangement of trees is essential for improving these plantations management. The study was conducted in Itatinga-SP, Brazil. A complete randomized block design was set up with 4 blocks and I O treatments per block with pure and mixed plantations of Eucalyptus grandis (E) and Acacia mangium (A), a N2-fixing species (NFS). The treatments were composed with different planting densities (6 m x 3 m, 3 m x 3 m and 3 m x 2 m) and arrangements (I 00% A, I 00% E, 50% A and 50% E, 33% A and 67% E) between species. Tree growth and biomass were monitored at 38, 45 and 52 months after planting. The absorbed photosynthetically activeradiation (APAR) for each tree was simulated with the MAESTRA model. The leaf area of each tree, leaf angle distributions and leaf area density was estimated in situ to parameterize the model. Hemispherical photos were taken over the same period of time (every 2 months) and used to test MAESTRA simulations and validate the light interception simulations. Computed Light Use Efficiency (LUE) for trunk wood production was estimated as the ratio of the wood growth and the MAESTRA simulated APAR, showing contrasted patterns of LUE for each treatment. The results will give insights to choose the best design, decreasing light competition and improving the association between eucalyptus and NFS, for a more sustainable management of pure and mixed forest plantations.

Mots-clés Agrovoc : forêt tropicale, adaptation aux changements climatiques, Changement climatique, séquestration du carbone, Cycle hydrologique, Eucalyptus, Acacia mangium

Mots-clés géographiques Agrovoc : Brésil

Classification Agris : K01 - Forestry - General aspects
P40 - Meteorology and climatology
U30 - Research methods

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Auteurs et affiliations

  • Rosada De Oliveira Ivanka, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Le Maire Guerric, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0002-5227-958X
  • Laclau Jean-Paul, CIRAD-DG-Direction générale (FRA) ORCID: 0000-0002-2506-214X
  • Brandani Carolina, Universidade Federal de São Carlos (BRA)
  • De Moraes Gonçalves Jose Leonardo, Universidade de São Paulo (BRA)
  • Guillemot Joannès, CIRAD-PERSYST-UMR Eco&Sols (BRA) ORCID: 0000-0003-4385-7656
  • Guerrini Iraê Amaral, UNESP (BRA)
  • Bouillet Jean-Pierre, CIRAD-PERSYST-UMR Eco&Sols (MDG)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/594408/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-08-08 ]