Agritrop
Home

Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination

Laurent Céline, Bravin Matthieu, Crouzet Olivier, Pelosi Céline, Tillard Emmanuel, Lecomte Philippe, Lamy Isabelle. 2020. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of the Total Environment, 709:135927, 11 p.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Post-print version - Anglais
Access restricted to CIRAD agents jusqu'au 2 January 2022.
Use under authorization by the author or CIRAD.
STE_Laurent_pre-proof.pdf

Télécharger (3MB) | Request a copy
[img] Version Online first - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
594417.pdf

Télécharger (1MB) | Request a copy

Url - jeu de données : https://doi.org/10.18167/DVN1/C7WTZB

Abstract : Long-term organic fertilizer (OF) application on agricultural soils is known to induce soil Cu and Zn contamination, along with pH and organic matter changes, which in turn alter the soil Cu and Zn availability. Our study was aimed at assessing Cu and Zn availability in long-term OF-amended soils by distinguishing the importance of increased contamination levels versus pH and organic matter changes in soil. Seventy-four soil samples were collected over time from fields corresponding to three soil types upon which no, mineral, or organic fertilization had been applied over a decade, and thus exhibited a gradient of Cu and Zn contamination, pH, and organic matter concentration. Soil Cu and Zn contamination (i.e. total and DTPA-extractable Cu and Zn concentration), soil solution chemistry (i.e. pH and dissolved organic matter concentration and aromaticity) and Cu and Zn availability (i.e. total concentration and free ionic activity in solution and DGT-available concentration in soil) levels were measured. The Windermere humic aqueous model (WHAM) was used to estimate Zn2+ activity and dissolved organic matter (DOM) binding properties in soil solution. Regardless of the soil type, organic fertilization increased Cu and Zn contamination in soil, in addition to the pH and the DOM concentration, aromaticity and binding properties in soil solution. The pH increase prompted a decrease in the total Zn concentration and Zn2+ activity in soil solution. The concomitant pH increase and DOM concentration, aromaticity and binding properties boosted the total Cu concentration but decreased the Cu2+ activity in soil solution. DGT-available Cu and Zn varied very little between the three fertilization modalities. Our results suggest that pH and DOM changes were able to regulate Cu and Zn availability in long-term OF amended soils by exerting a protective effect that offset the concomitant increase in soil Cu and Zn contamination.

Mots-clés Agrovoc : Écotoxicité, Cuivre, Zinc, Engrais organique, Matière organique du sol, Sorption du sol, Oligo-élement, Bioremédiation

Mots-clés géographiques Agrovoc : Réunion

Mots-clés complémentaires : spéciation chimique

Mots-clés libres : Ecotoxicity, Livestock residues, Sorption, Speciation, Trace elements

Classification Agris : T01 - Pollution
F04 - Fertilizing
P33 - Soil chemistry and physics

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Agence(s) de financement européenne(s) : European Commission

Auteurs et affiliations

  • Laurent Céline, CIRAD-PERSYST-UPR Recyclage et risque (REU) - auteur correspondant
  • Bravin Matthieu, CIRAD-PERSYST-UPR Recyclage et risque (REU) ORCID: 0000-0002-1436-7837
  • Crouzet Olivier, INRA (FRA)
  • Pelosi Céline, INRA (FRA)
  • Tillard Emmanuel, CIRAD-ES-UMR SELMET (REU)
  • Lecomte Philippe, Université de Montpellier (FRA) ORCID: 0000-0003-1040-7886
  • Lamy Isabelle, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/594417/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-11-09 ]