

The MORINGA Processing Chain: Automatic Object-based Land Cover Classification of Tropical Agrosystems using Multi-Sensor Satellite Imagery

Raffaele Gaetano, et al. CIRAD - UMR TETIS

Land Cover mapping in Tropical Agrosystems

- A growing demand for systematic Land Cover/Land Use mapping for the characterization and monitoring of complex agricultural systems:
 - ▶ Timely productivity evaluation, risk assessment, EWS for food security
 - ► Exploit the growing availability/variety of satellite imagery...
 - ▶ The "breakthrough" of ESA's SENTINEL missions
 - ...facing the need for automation and operational methods
- ► Goal : improve Land Cover mapping of tropical agricultural landscapes
 - ▶ Precise detection of the annual/seasonal cropland
 - Reliable identification of (at least) the main crop groups/types
 - **▶** Detection of **cropping practices**
 - irrigated vs. rainfed
 - mixed/sequential crops
 - ecological intensification
 - ▶ ...

A Need for Adaptation

- ▶ A set of **specific challenges** in Remote Sensing:
 - ► Significant cloud coverage (especially during cultural seasons)
 - ► Small to very small (<0.5 ha) plot sizes (smallholder farming)
 - ► Strong landscape fragmentation
 - ► Heterogeneity of cropping practices
 - ► Limited and noisy reference data
- ► Cope with the diversity of agricultural systems:

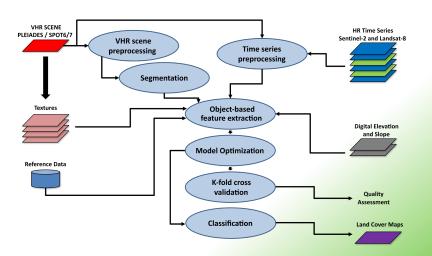
Madagascar

Brazil (Tocantins)

A Workflow for Automatic LULC Mapping

- Provide a common methodology and workflow for fine-scale Land Cover mapping of tropical agrosystems based on multi-sensor data fusion [1]
 - ▶ Use of dense HR satellite image time series (Sentinel-2, Landsat 8) to characterize vegetation dynamics and maximize non-cloudy observations
 - ▶ Integrate VHSR imagery (order of 1 m) to provide information on landscape and cropland structure at fine spatial scales
 - Leverage the OBIA paradigm and ensemble classification strategies to enable multi-resolution and multi-sensor data fusion
- ► The MORINGA processing chain: an automatic workflow covering from data pre-processing to map production and evaluation
 - ▶ an overall object-based methodology and a modular workflow to ensure efficient improvement strategies (new sensors, advances in AI, ...)
- ▶ Our major contribution to the French THEIA Land Surfaces Pole
 - ▶ Being integrated to THEIA's Land Cover SEC iota² platform [2]

Scheme of the MORINGA Processing Chain



The MORINGA chain: pre-processing modules

VHSR scene

- Radiometric corrections
- ▶ Orthorectification
- ► Pansharpening

HR time series

- ► Sensor specific:
 - ▶ L8: Conversion to TOA, cloud/shadow masking, pansharpening
 - ▶ S2 (L2A): Resampling and stack of 10- and 20-meter bands
 - $lackbox{lack}$ Ongoing developments for ${\sf Ven}\mu{\sf s}$ and ${\sf Sentinel-1}$ imagery
- ► Common time-series preprocessing:
 - ► Temporal gap-filling
 - ► VHR/HR co-registration

Preprocessing: Temporal Gap-filling

- ▶ Using the Orfeo Toolbox Temporal Gap-Filling remote module as in [2]
 - ▶ interval-weighted temporal interpolation using closest "clear" pixels
 - resamples different tiles over a unique temporal grid

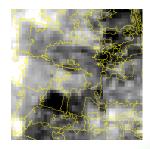
S2 RGB (2016/09/12)

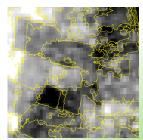
S2 NDVI (2016/09/12) (masked)

S2 NDVI (2016/09/12) (gapfilled)

Preprocessing steps: VHR/HR co-registration

- ► An independent module implemented using the **Orfeo Toolbox**
 - ▶ downsample the reference VHR band to the target resolution (e.g. S2)
 - automatically search for homologous points (using SIFT features)
 - ▶ build a new RPC-based sensor model for the HR image
 - perform a new orthorectification





After co-registration

Preprocessing steps: co-registration effects

- ▶ NDVI object means on a small sample area:
 - ▶ 6,5% mean difference w.r.t. the full NDVI dynamic
 - ▶ 8,5% mean difference w.r.t. the 2% NDVI dynamic
 - ▶ 15,5% mean difference w.r.t. the "crop" dynamic
 - ▶ Obviously, the smaller the object, the bigger the difference

Sample area (detail)

NDVI means without co-reg.

NDVI means with co-reg.

- ▶ VHSR scene segmentation
 - ▶ Baatz and Schaepe technique (Large-scale Generic Region Merging [3])
 - ▶ segmentation parameter to be assessed manually beforehand but...
 - ▶ ...for a fixed VHR sensor, low sensitivity to parameter selection

- ▶ VHSR scene segmentation
 - ▶ Baatz and Schaepe technique (Large-scale Generic Region Merging [3])
 - ▶ segmentation parameter to be assessed manually beforehand but...
 - ▶ ...for a fixed VHR sensor, low sensitivity to parameter selection
- ► Ground truth (GT) samples generation
 - original polygons are intersected with the segmentation
 - ▶ "multiplies" training samples and addresses intra-plot variability

- ▶ VHSR scene segmentation
 - ▶ Baatz and Schaepe technique (Large-scale Generic Region Merging [3])
 - ▶ segmentation parameter to be assessed manually beforehand but...
 - ▶ ...for a fixed VHR sensor, low sensitivity to parameter selection
- ► Ground truth (GT) samples generation
 - original polygons are intersected with the segmentation
 - "multiplies" training samples and addresses intra-plot variability
- ▶ Optimized computation of object statistics
 - ▶ an accurate multi-resolution zonal statistics tool has also been developed
 - scans HR images using the VHR grid no resampling needed

VHSR scene segmentation

- ▶ Baatz and Schaepe technique (Large-scale Generic Region Merging [3])
- segmentation parameter to be assessed manually beforehand but...
- ▶ ...for a fixed VHR sensor, low sensitivity to parameter selection

▶ Ground truth (GT) samples generation

- original polygons are intersected with the segmentation
- "multiplies" training samples and addresses intra-plot variability

Optimized computation of object statistics

- ▶ an accurate multi-resolution zonal statistics tool has also been developed
- scans HR images using the VHR grid no resampling needed

Object-based classification

- ▶ direct classification of the vector layer using Random Forest (OTB)
- ▶ automatic validation using k-fold cross validation, rasterized output

Benchmarking: a cross-site approach

- ▶ Tests on several contrasted study sites in tropical countries
 - ▶ Koumbia*, Hauts Bassins, Burkina Faso, 2016
 - Antsirabe*, Hautes Terres, Madagascar, 2016-17
 - Botucatu*. São Paulo. Brasil. 2017
 - Kandal province, Cambodia, 2017
 - ▶ Reunion Island, French Overseas Region, 2016-17

Koumbia

Antsirabe

Botucatu

JECAM site

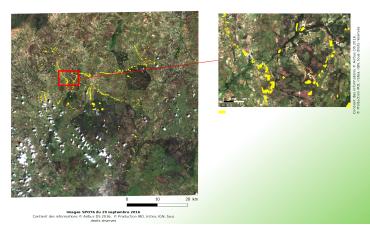
Benchmarking: a cross-site approach

- ▶ A common dataset specification for each study site
 - ▶ A single VHSR (SPOT6/7) scene at the peak of the growing season
 - ▶ S2 (L2A)¹ and L8 (L1) time series covering at least the growing season
 - ▶ Comparable agrosystem nomenclatures at multiple levels
 - ► Crop/Non-crop, Land Cover, Crop groups, Crop types
 - ➤ A suitable reference dataset (field + photointerpretation) with a minimum required surface per class (around 30ha).
- ► A common set of features extracted from each image (VHR/TS)
 - ▶ OLI reflectances (L8), 10- and 20-meter bands (S2)
 - ▶ NDVI, NDWI, BRI, MNDVI, MNDWI, Red-edge NDVI (S2 only)
 - ➤ Textural indices (Haralick) extracted from VHR panchromatic band at two relevant scales (intra and inter-plot)
 - ▶ Digital Elevation Model (SRTM-30m), Slopes

¹Provided by CNES via the THEIA Pôle, precessed using the MAJA processor [4]

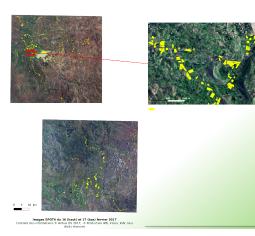
Study sites: Koumbia (Burkina Faso)

- ▶ 1650 Km², 1190 reference polygons
- ▶ #classes over levels: 2, 6, 12, 20
- ▶ Issues : fragmented landscape, trees in crops, scattered rainfalls



Study sites: Antsirabe (Madagascar)

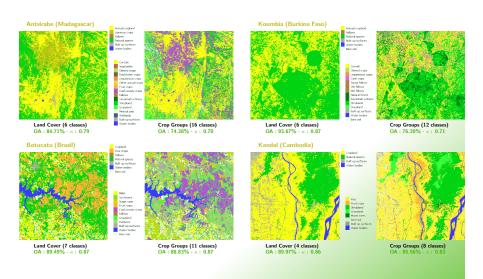
- ▶ 7200 Km², 1178 reference polygons
- ▶ #classes over levels: 2, 6, 16, 18
- ► Issues : fragmented landscape, very small plots



Study sites: Reunion Island

- ▶ 2512 Km², 2650 reference polygons
- ▶ #classes over levels: 2, 8, 14, 24
- ▶ Issues : strong reliefs, large majority of sugar cane

Results: Cross-site overall



Results: Antsirabe (Madagascar)

Crop vs. Non-crop

Class	F-Score
Crop	0.8984±0.0329
Non-crop	0.8865 ± 0.0356
Overall Acc.	89.66% ± 3.05%
Карра	0.7853 ± 0.0563

Land Cover

Class	F-Score
Annual cropland	0.8741 ± 0.0396
Ligneous crops	0.8132 ± 0.0580
Fallows	0.4786 ± 0.2193
Natural spaces	0.8221 ± 0.0398
Built-up surfaces	0.8977±0.0859
Water bodies	0.9713±0.0374
Overall Acc.	84.71% ± 4.38%
Kappa	0.7932 ± 0.0549

@Crop Type : OA 71.12% - κ **0.67**

Crop Groups

Class	F-Score
Cereals	0.7850 ± 0.0295
Vegetables	0.5443±0.2003
Oilseed crops	0.5566 ± 0.1367
Root/tuber crops	0.4401 ± 0.1143
Leguminous crops	0.0000 ± 0.0000
Other annual crops	0.4769 ± 0.1500
Fruit crops	0.4171 ± 0.0687
Cash woody crops	0.8333±0.0296
Fallows	0.6830±0.1214
Savannah w/trees	0.2109 ± 0.0888
Shrubland	0.5524 ± 0.1657
Grassland	0.6221±0.0938
Mineral soils	0.8077 ± 0.1090
Wetlands	0.7491±0.1508
Built-up surfaces	0.9201 ± 0.0577
Water bodies	0.9713±0.0374
Overall Acc.	74.38% \pm 5.06%
Карра	0.6959 ± 0.0479

Results: Koumbia (Burkina Faso)

Crop vs. Non-crop

Class	F-Score
Сгор	0.9235±0.0144
Non-crop	0.9578±0.0074
Overall Acc.	$94.56\% \pm 0.98\%$
Карра	0.8815 ± 0.0215

Land Cover

Class	F-Score
Annual cropland	0.9182 ± 0.0130
Fallows	0.0765 ± 0.1122
Natural spaces	0.9667±0.0086
Built-up surfaces	0.8070 ± 0.0825
Water bodies	0.9913±0.0174
Bare soil	0.5419 ± 0.2014
Overall Acc.	$93.67\% \pm 0.98\%$
Карра	0.8759 ± 0.0200

QCrop Type : OA 72.02% - \kappa 0.66

Crop Groups

Class	F-Score
Cereals	0.7555 ± 0.0362
Oilseed crops	0.4996 ± 0.0410
Leguminous crops	0.3998 ± 0.0762
Cash crops	0.7636 ± 0.0418
Fallows	0.1915 ± 0.1510
Natural forest	0.8030 ± 0.1528
Savannah w/trees	0.2523 ± 0.2066
Shrubland	0.7953 ± 0.1173
Grassland	0.8137 ± 0.0618
Built-up surfaces	0.8269 ± 0.0597
Water bodies	0.9913 ± 0.0174
Bare soil	0.5829 ± 0.1928
Overall Acc.	76.20% \pm 5.01%
Карра	0.7096 ± 0.0610

Results: Botucatu (Brasil)

Crop vs. Non-crop

Class	F-Score
Сгор	0.9264±0.0174
Non-crop	0.9225 ± 0.0101
Overall Acc.	92.52% \pm 1.25%
Карра	0.8489 ± 0.0244

Land Cover

Class	F-Score
Cropland	0.8411 ± 0.0604
Tree crops	0.9575 ± 0.0268
Fallows	0.2338 ± 0.2826
Natural spaces	0.9176 ± 0.0316
Built-up surfaces	0.9421 ± 0.0349
Water bodies	0.9979 ± 0.0033
Bare soil	0.6468 ± 0.0688
Overall Acc.	$89.49\% \pm 2.21\%$
Карра	0.8663 ± 0.0263

Crop Groups

0 p p -	
Class	F-Score
Millet	0.7310±0.0470
Soy beans	0.0000 ± 0.0000
Sugar cane	0.8981±0.0273
Fruit crops	0.9371±0.0371
Cash woody crops	0.9530 ± 0.0268
Fallows	0.2179 ± 0.2950
Grassland	0.9464±0.0209
Pastures	0.8548 ± 0.0514
Built-up surfaces	0.9333±0.0364
Water bodies	0.9979 ± 0.0033
Bare soil	0.6808±0.0459
Overall Acc.	88.83% ± 1.29%
Карра	0.8694 ± 0.0138

@Crop Type : OA 87.72% - κ 0.86

19/24

Results: Kandal province (Cambodia)

Crop vs. Non-crop

Class	F-Score
Crop	0.8618 ± 0.0591
Non-crop	0.9475±0.0177
Overall Acc.	92.44% ± 2.72%
Карра	0.8097 ± 0.0755

Land Cover

Class	F-Score
Cropland	0.8849 ± 0.0490
Natural spaces	0.9211±0.0494
Built-up surfaces	0.8208 ± 0.1142
Water bodies	0.9807±0.0201
Overall Acc.	89.97% ± 5.05%
Карра	0.8653 ± 0.0669

Crop Groups

or of or other	
Class	F-Score
Rice	$0.8585{\pm}0.1000$
Fruit crops	0.8683±0.0622
Shrubland	0.8525 ± 0.0780
Grassland	0.8208 ± 0.1400
Mixed trees	0.6529 ± 0.1163
Bare soil	0.7107±0.1848
Built-up surfaces	0.8695 ± 0.0868
Water bodies	0.9807±0.0201
Overall Acc.	85.56% ± 6.20%
Карра	0.8310 ± 0.0732

Results: Reunion Island (France)

Crop vs. Non-crop

Class	F-Score
Crop	0.9726±0.0042
Non-crop	0.9690 ± 0.0039
Overall Acc.	97.10% \pm 0.37%
Карра	0.9416 ± 0.0074

Land Cover

Class	F-Score
Cropland	0.9491 ± 0.0059
Tree crops	0.8553 ± 0.0156
Grassland	0.9060 ± 0.0227
Natural spaces	0.9456 ± 0.0084
Bare Soil	0.9424 ± 0.0329
Built-up surfaces	0.9697 ± 0.0167
Water	0.9779 ± 0.0222
Shadows	0.9562 ± 0.0430
Overall Acc.	$93.79\% \pm 0.47\%$
Карра	0.9217 ± 0.0055

Crop Groups

·		
Class	F-Score	
Vegetables	0.7159 ± 0.0368	
Sugar cane	0.9595 ± 0.0127	
Geranium	0.2050 ± 0.0876	
Fruit crops	0.8382±0.0234	
Planted forest	0.8630 ± 0.0386	
Meadows	0.9065 ± 0.0212	
Natural forest	0.9313±0.0098	
Shrubland	0.8452 ± 0.0315	
Herbaceous savannah	0.7332 ± 0.0963	
Bare soil	0.9460 ± 0.0359	
Built-up surfaces	0.9527 ± 0.0119	
Greenhouses	0.5263 ± 0.1251	
Water	0.9772 ± 0.0225	
Shadows	0.9541±0.0432	
Overall Acc.	$91.47\% \pm 0.70\%$	
Карра	0.8995 ± 0.0080	

@Crop Type : OA 90.22% - κ 0.88

Results: Reunion Island (France)

▶ A set of "delivered" products in Open Access



Reunion Island 2017 LC Map

34 classes @CropGroups, OA 86.28%

- ► Available via THEIA at https://www.theia-land.fr
- ► Other finalized products have been delivered in specific projects (Antananarivo Metropolitan Area, Haiti Cayes, ...)

Conclusions and perspectives

- ► The MORINGA processing chain : from the JECAM Experience to a hands-on tool for land cover mapping of tropical agrosystems
 - ▶ Fully automatic, developed in Python, using the Orfeo Toolbox
 - ▶ Open source, code publicly available: https://gitlab.irstea.fr/raffaele.gaetano/moringa.git
 - ▶ Being integrated as a specific workflow of the *iota*² platform
- ► Conceived to evolve : many ongoing developments and perspectives
 - ▶ integration of other sensors' imagery (*Venµs*, *Sentinel-1*)
 - ▶ improvement of the classification strategy (hierarchical classifiers)
 - → enabling the use of prior knowledge on crop surfaces (crop models) and landscapes (spatial modelling)
 - → integrating novel Deep Learning approaches for pre-processing (e.g. gapfilling) and classification

Acknowledgements and References

- V. Lebourgeois, S. Dupuy, E. Vintrou, M. Ameline, S. Butler and A. Bégué, "A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data", Remote Sensing, 2017, 9(3), 259
- [2] J. Inglada, A. Vincent, M. Arias, B. Tardy, D. Morin, and I. Rodes, "Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series", Remote Sensing, 2017, 9(1), 95
- [3] P. Lassalle, J. Inglada, J. Michel, M. Grizonnet, J. Malik, "A Scalable Tile-Based Framework for Region-Merging Segmentation", IEEE Trans. Geoscience and Remote Sensing, 2015, 53(10), 5473-5485
- O. Hagolle, M. Huc, D. Villa Pascual, G. Dedieu, "A Multi-Temporal and Multi-Spectral Method to Estimate
 [4] Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VEN μS and Sentinel-2 Images", Remote Sensing, 2015, 7(3), 2668-2691

