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ABSTRACT
Background. Small RNAs modulate plant gene expression at both the transcriptional
and post-transcriptional level, mostly through the induction of either targeted DNA
methylation or transcript cleavage, respectively. Small RNA networks are involved
in specific plant developmental processes, in signaling pathways triggered by various
abiotic stresses and in interactions between the plant and viral and non-viral pathogens.
They are also involved in silencing maintenance of transposable elements and en-
dogenous viral elements. Alteration in small RNA production in response to various
environmental stresses can affect all the above-mentioned processes. In rubber trees,
changes observed in small RNA populations in response to trees affected by tapping
panel dryness, in comparison to healthy ones, suggest a shift from a transcriptional to a
post-transcriptional regulatory pathway. This is the first attempt to characterise small
RNAs involved in post-transcriptional silencing and their target transcripts in Hevea.
Methods. Genes producingmicroRNAs (MIR genes) and loci producing trans-activated
small interfering RNA (ta-siRNA) were identified in the clone PB 260 re-sequenced
genome. Degradome libraries were constructed with a pool of total RNA from six
different Hevea tissues in stressed and non-stressed plants. The analysis of cleaved
RNA data, associated with genomics and transcriptomics data, led to the identification
of transcripts that are affected by 20–22 nt small RNA-mediated post-transcriptional
regulation. A detailed analysis was carried out on gene families related to latex
production and in response to growth regulators.
Results. Compared to other tissues, latex cells had a higher proportion of transcript
cleavage activity mediated by miRNAs and ta-siRNAs. Post-transcriptional regulation
was also observed at each step of the natural rubber biosynthesis pathway. Among the
genes involved in the miRNA biogenesis pathway, our analyses showed that all of them
are expressed in latex.Using phylogenetic analyses, we show that both theArgonaute and
Dicer-like gene families recently underwent expansion. Overall, our study underlines
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the fact that important biological pathways, including hormonal signalling and rubber
biosynthesis, are subject to post-transcriptional silencing in laticifers.

Subjects Bioinformatics, Genomics, Plant Science
Keywords Small RNA, miRNA, Degradome, Rubber tree, Crop epigenomics, Abiotic stress, Latex

INTRODUCTION
Small RNAs (sRNAs) modulate plant gene expression at both transcriptional and post-
transcriptional levels (Bazin & Bailey-Serres, 2015; Khraiwesh, Zhu & Zhu, 2012; Wang et
al., 2016). They include micro-RNAs (miRNAs) and small interfering RNAs (siRNAs),
originating from single-stranded hairpin or double-stranded RNA precursors, respectively
(Bologna & Voinnet, 2014). MiRNAs are preferentially expressed from MIR genes, and
consist of 20–22 nucleotides (nt) sRNAs. They are known to regulate gene expression
through either cleavage and degradation or translational repression of target mRNAs.
Small RNAs of 23–25 nt may either target their parent transcripts, or trigger RNA-directed
DNA methylation (RdDM) of the corresponding genes (Bologna & Voinnet, 2014).

The proteins involved in biogenesis are highly diversified among plant species, whichmay
explain the emergence of new functions and regulatory pathways (D’Ario, Griffiths-Jones
& Kim, 2017). The impact of sRNA-mediated regulations on plant phenotypes has been
illustrated through several examples, including association between increased apple fruit
size and MIR172 gene deregulation (Yao et al., 2016), and alleviation of siRNA-dependent
repression of FAD2 expression resulting in increased oil content in olive fruits (Unver
et al., 2017). In annual plant species, size classes and respective abundances of sRNA
transcriptomes may be affected by a variety of environmental stresses (Ferdous, Hussain &
Shi, 2015; Khraiwesh, Zhu & Zhu, 2012; Liu et al., 2017; Yang et al., 2017; Zhao et al., 2016).
Similar observations have been made in cultivated perennial species (Beule et al., 2015; Li
et al., 2017).

Previous work by our team on Hevea brasiliensis revealed alterations in the sRNA
transcriptome of latex cells in response to environmental cues (Gébelin et al., 2013b). This
tropical perennial crop is used for the production of latex containing natural rubber
(cis-1,4 polyisoprene) (Compagnon et al., 1986). Severe environmental constraints and
stresses associated with latex harvesting practices, such as wounding through tapping
or ethephon stimulation, cause physiological disorders leading to tapping panel dryness
(TPD). TPD is characterized by a halt in latex flow and in situ latex coagulation (for
a review Zhang, Leclercq & Montoro, 2017). In a previous study comparing healthy and
TPD-affected trees, we observed a shift in the respective proportions of different size
classes of sRNA in latex (Gébelin et al., 2012; Pramoolkit et al., 2014), the 24 nt size class
predominating in healthy trees, and the 21 nt size class in TPD-affected ones. This
observation led to the need to annotate small RNAs to decipher their biological activity,
in particular that of 20–22 nt (miRNA and ta-siRNA). Although not complete, previous
studies characterised endogenous miRNAs in Hevea, thereby enabling the identification of
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68 and 16 species-specific families, thanks to the availability of a reference transcriptome
from clone PB 260 (Gébelin et al., 2012; Gébelin et al., 2013b; Kanjanawattanawong et al.,
2014; Lertpanyasampatha et al., 2012). The aim of the present study was to complete the
annotation of Hevea microRNAs and ta-siRNAs thanks to the availability of genomic
sequences from clone PB 260 (Zhang et al., 2019). Previous computational prediction of
miRNA targets led to the identification of 1,788 sequences (Gébelin et al., 2012; Pramoolkit
et al., 2014). However, among these target miRNAs, few have been experimentally validated
so far (Gébelin et al., 2012; Pramoolkit et al., 2014). Therefore, the real impact of rubber
tree miRNAs on transcript regulation remains to be fully assessed.

Unlike animal miRNAs, the main mode of action of plant miRNAs is through transcript
cleavage by endonucleolytic slicing (Arribas-Hernandez, Kielpinski & Brodersen, 2016),
thereby generating degradation products that are collectively known as ‘‘degradome’’.
To improve our knowledge of post-transcriptional regulatory mechanisms in the clone
PB 260 rubber tree, we generated and analysed six degradome libraries originating from
six different tissues to detect miRNA- and ta-siRNA-mediated cleaved targets. Their 3′

ends were then sequenced so that all sRNA-directed cleavage sites could be identified
simultaneously (German et al., 2009). The targets were then functionally annotated.

Here we discuss our results with a focus on the laticiferous tissue and the natural rubber
biosynthetic pathway. Our results suggest that laticiferous tissues have the highest level
of post-transcriptional regulation by mRNA cleavage, and that the natural rubber (NR)
biosynthetic pathway is under strong post-transcriptional silencing. These results could
be used to achieve functional validation in rubber trees, under the physiological stresses
associated with latex harvesting.

MATERIALS & METHODS
Plant material and RNA samples
The plant material used for this study comes from multiple origins but all from Hevea
clone PB 260. Samples were collected during in-vitro culture, from in-vitro plants, and from
juvenile budded plants grown in the greenhouse at CIRAD (Montpellier). Other samples
were collected from mature trees grown in the field at the Sembawa Rubber Research
Center in Indonesia and the Thailand Chachoengsao Rubber Research Centre.

Total leaf, bark and root RNAs were generated from juvenile plants subject to cold, high
light, drought, flooding, salinity and wounding stress by Gébelin et al. (2012). Total leaf
and bark RNAs from juvenile plant treated with hormones (ethylene, methyl jasmonate)
were generated by Duan et al. (2010) and Kuswanhadi et al. (2010). Total RNAs from latex
and bark of healthy and TPD affected mature trees were prepared by Gébelin et al. (2013b),
and total RNAs from male and female flowers by Piyatrakul et al. (2012). Total RNAs from
somatic embryos were generated by Piyatrakul et al. (2012). All these total RNAs from
in-vitro culture, juvenile and mature plants were used to build specific leaf, bark, root,
embryo, flower and latex degradome libraries.

Available data sets from five small-RNA-seq data were generated by (Gébelin et al.,
2012; Gébelin et al., 2013b; Kanjanawattanawong et al., 2014; Lertpanyasampatha et al.,
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2012) comprising juvenile plants, latex of healthy and TPD-affected trees, young and
fully developed leaves from mature trees. Complete tissue-specific (embryo, flower, latex,
leaf, bark, root) transcriptomes were generated by Duan et al. (2013) and Piyatrakul et al.
(2012).

Differential expression analysis of RNAseq data in latex from mature trees were
performed by Montoro et al. (2018). Pairwise comparisons were performed between
untreated and ethephon-treated healthy trees (WH vs EH) and between healthy and
TPD ethephon-treated trees (EH vs ET).

Nuclear genome resequencing of clone PB 260
Leaf nuclear DNAs from a budded clone PB 260 were sequenced by GATC (https:
//www.eurofinsgenomics.eu/) using Illumina pair-end sequencing (2 × 150 bp). About
280 million reads were generated, which correspond to a total of 84 Gb among which 62 Gb
were assembled through alignment against the clone Reyan7-33-97 reference genome (Tang
et al., 2016). The Bowtie tool (Langmead et al., 2009) was used to build a Burrows-Wheeler
transform index to map small RNA libraries with specific parameters [bowti e− f −v 1
-p 10−a−m 50 –best –strata (Langmead et al., 2009)]. The statistics used to resequence
the genome of clone PB 260 are detailed in (Zhang et al., 2019). The resequencing data are
available under project number PRJCA001333 in the GSA (Wang et al., 2017a) and BIG
Data Center (BIG Data Center Members, 2018).

MIR gene identification
MIR genes were identified on the PB260 resequenced genome. MITP (https://sourceforge.
net/projects/mitp/) was chosen with default parameters to identify hairpin structures
and miRNAs in available small RNA datasets (Gébelin et al., 2012; Gébelin et al., 2013b;
Kanjanawattanawong et al., 2014; Lertpanyasampatha et al., 2012). The small RNA–seq
data described in Gébelin et al. are available under project number PRJCA001333 in
the GSA (Wang et al., 2017a) and BIG Data Center (BIG Data Center Members, 2018).
MITP uses RNAfold in the Vienna RNA Package (Piyatrakul et al., 2014) to detect hairpin
structures. The longest hairpin sequences were further annotated using BLAST (Altschul et
al., 1990) against MirBase (Kozomara & Griffiths-Jones, 2011) and plant non-coding RNA
database (PNRD) (Yi et al., 2015) as references (Fig. 1).

Degradome libraries
Degradome libraries were constructed from a pool of total RNA from stressed and
non-stressed plants, representing six different Hevea tissues (leaf, root, latex, bark,
embryos and reproductive tissues) (see plant material), according to the protocol
described in (German et al., 2009), with major modifications to account for the different
sequencing techniques used (Miseq versus GAII in the 2009 publication). Briefly,
libraries were produced from 150 µg of total RNA. The 5′ RNA-adapter sequence is
RA5: 5′-GUUCAGAGUUCUACAGUCCGACGAUC- 3′. The 3′-adapter sequence is
5′-GTGACTGGAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTV-
3′. The primer sequences for library amplification are 5′ Adapter Primer (RP1: 5′

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA- 3′)
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Figure 1 Scheme representing the analysis process fordeciphering post-transcriptional regulations
in Hevea by miRNAs. Each step is commented on the ‘Results’ section. The pipelines or tools used for
the detection, classification and functional identification of miRNAs and their targets are shown in italic
styling.

Full-size DOI: 10.7717/peerj.8932/fig-1

with the 3′ Primer Adapter indexed (RPI1: 5′-CAAGCAGAAGACGGCATACGAGAT
CGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA- 3′, RPI2: 5′-CAAGCAGAA
GACGGCATACGAGATACATCG GTGACTGGAGTTCCTTGGCACCCGAGAATTCC
A-3′, RPI3: 5′-CAAGCAGAAGACGGCATACGAGATGCCTAA GTGACTGGAGTTCCT
TGGCACCCGAGAATTCCA-3′, RPI4: 5′-CAAGCAGAAGACGGCATACGAGATTGGTCA
GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-3′, RPI5: 5′-CAAGCAGAAGA
CGGCATACGAGATCACTGT GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-3′,
and RPI6: 5′-CAAGCAGAAGACGGCATACGAGATATTGGC GTGACTGGAGTTCCTT
GGCACCCGAGAATTCCA-3′). The degradome data are available under project number
PRJCA001333 in the GSA (Wang et al., 2017a) and BIG Data Center (BIG Data Center
Members, 2018). The number of sequences produced and statistics are listed in Table S1.

Detection and GO classification of cleaved target transcripts
Raw sequencing reads originating from degradome libraries were trimmed with Cutadapt
(Martin, 2011). The CleaveLand pipeline (Addo-Quaye, Miller & Axtell, 2009) was used
in Mode 1 (the mode that allows alignment of degradome data, creation of degradome
density file, and new small RNA query/transcriptome alignment with GSTAr) in order to
identify sRNA-generated transcript cleavage products (Fig. 2).
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Figure 2 Scheme representing the exploration of degradome libraries. CleaveLand pipeline is used in
order to detect miRNA-mediated cleaved targets, with transcriptome and small RNA dataset as input. The
abundance of reds starting at the cleavage site is define by the degradome category (see ‘Materials & Meth-
ods’).

Full-size DOI: 10.7717/peerj.8932/fig-2

The abundance of reads starting at the cleavage site is defined by the degradome category.
Category 4 has just one read at this position. Other categories have more than one read.
In category 3, the number of reads is below or equal to the average depth of coverage (all
positions that have at least one read) on the transcript. In category 2, the number of reads
is equal to the average depth of coverage on the transcript. In category 1, the number of
reads is equal to the maximum of the average depth of coverage on the transcript when
there is more than one position at the maximum value. In category 0, the number of reads
is equal to the maximum of the average depth of coverage on the transcript when there is
just one position at the maximum value. The outputs are presented in Tables S6, S9–S13
for miRNAs and S15, S17-21 for ta-siRNA).

Functional annotation of the identified targets was performed using InterProScan
(v5.18–57.0) in STANDALONE mode. GO classification was then extracted from the
resulting tabular output (Ashburner et al., 2000).

Prediction of trans-acting siRNA production sites
Small RNAs were aligned to the PB 260 genome assembly, and small RNAs that did not
match were discarded. As input sRNA files, we used trimmed reads from latex cells from
healthy and TPD-affected trees and juvenile plants, with a minimum sRNA abundance of
two, a p-value cut-off of 0.0001 and a length of 21 nt. Using the small RNAworkbench from
the University of East Anglia (http://srna-workbench.cmp.uea.ac.uk/; version 4.3.1 Alpha)
(Stocks et al., 2012), the 21-mers ta-siRNA loci were identified using the TA-SI Prediction
tool (p-value cut-off <0.0001). The algorithm for ta-siRNA enabled us to calculate phasing
probability based on hypergeometric distribution (Chen, Li & Wu, 2007). Coding potential
was estimated at each of the identified sites using the Coding Potential Calculator (CPC)
(http://cpc.gao-lab.org/) (Fig. 3).
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Figure 3 Scheme representing the analyses process for deciphering post-transcriptional regulations
inHevea by ta-siRNAs. Each step is commented on the ‘Results’ section. The pipelines or tools used for
the detection, classification and functional identification of ta-siRNAs and their targets are shown in italic
styling.

Full-size DOI: 10.7717/peerj.8932/fig-3

Annotation of the miRNA biogenesis and regulatory pathway and
phylogenetic analysis
A list of 95 Arabidopsis proteins involved in the RNA-mediated silencing machinery was
extracted from the TAIR database (https://www.arabidopsis.org/) (Matzke & Mosher,
2014). The amino acid sequences were used to retrieve putative orthologous sequences
using the SPALN pipeline with the parameters -O0 -Q4 -M5 -H180 (Iwata & Gotoh, 2012),
from the PB 260 genomic sequences and the reference Hevea brasiliensis transcriptome
(Piyatrakul et al., 2012). A set of 206 genes encoding putative AGO proteins from 23 plant
species, and 75 genes and putative DCL proteins from 17 plant species, was used to locate
candidate orthologous sequences in the rubber tree genome using the SPALN pipeline.
The presence of signatures corresponding to conserved domains for either of these protein
families, such as Piwi (PF02171), PAZ (PF02170) and Dicer dimerization (PF03368),
was ascertained in the filtered genes using Interproscan. Putative H. brasiliensis AGO and
DCL peptide sequences were classified through alignment against the corresponding full-
length amino acid sequences from Populus trichocarpa, Ricinus communis and Arabidopsis
thaliana (Daniel Rodríguez-Leal et al., 2016; Mukherjee, Campos & Kolaczkowski, 2013)
using MUSCLE (version 3.8.31) (Edgar, 2004a; Edgar, 2004b). Cleaning was performed
to remove gaps using trimAl (version 1.4) (Capella-Gutierrez, Silla-Martinez & Gabaldon,
2009), after which a phylogenetic tree was built using MrBayes (v3.2.6 x64).
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RESULTS
The analyses of miRNAs and of degradomes from data processing to functional annotation
by gene ontology are depicted in Fig. 1. The first step was to annotate the stem-loop
structures and the resulting miRNAs. The second step was to analyse the distribution of
predicted miRNAs according to size by comparing three conditions in juvenile plants, and
latex from healthy and TPD-affected trees. The third step was to analyse their cleavage
activities either using the tissue-specific transcriptomes or a list of well-characterised
rubber tree genes. Figure 3 shows the process of annotation of ta-siRNAs and their cleavage
activities.

Annotation of MIR genes forming RNA hairpin structures and
producing small RNAs
Hevea miRNAs and MIR genes (hairpin-forming sequences) were annotated based on
high-throughput sequencing data obtained from the five sRNA libraries and from the
resequenced genome of clone PB 260. The genome was mapped on the reference genome
of clone Reyan7-33-97 (Table S1). An atlas of 1,042 MIR genes, associated with miRNA
production, was generated (Fig. 1, Tables S2 and S3), and annotated.

Using both the MirBase and PNRD databases, only, respectively, 29 and 36 MIR
sequences matched known MIR sequences from different plant species (Table S4). This
study complements our previous analyses (Gébelin et al., 2012;Gébelin et al., 2013b), which
showed only eight conservedMIR genes annotated from juvenile plants, and four conserved
and 11 new MIR genes from latex of healthy and TPD-affected trees.

To perform a degradome analysis, Ahmed and co-workers (Ahmed et al., 2014)
recommend taking miRNA and isomiRNA (miRNA variants) pools into account. A
Hevea sRNAome containing 1,839 redundant sequences was constructed with 20–22 nt
sized sRNA sequences originating from MIR genes, with or without similarity to known
miRNAs (Fig. 1, Table S5). This file was used as input to compare miRNA size class
distribution across sRNA libraries, and to explore the degradome libraries to detect cleaved
target transcripts/miRNA pairs.

Determination of miRNA size class distribution and base preference
The distribution of unique miRNA accessions identified in small RNA libraries from
juvenile stressed plants, latex from healthy and TPD-affected tree tissues is shown in Fig. 4.
The total lengths ranged from 17 to 35 nucleotides. The distribution of the size classes
showed a major peak at 21 nt, which accounts for 24.4 to 25.2% of the total number of
predicted miRNAs (Fig. 4). Interestingly, this proportion was seen to be globally conserved
in the different libraries tested (Fig. 1, Tables S2 and S3). The 5′ nucleotide identity of a
miRNA guides the loading into AGO proteins (Rogers & Chen, 2012) (Frank et al., 2012;
Zha, Xia & Yuan, 2012; Yu, Jia & Chen, 2017). AGO1 is known to sort miRNA with a 5′

uracil, and AGO2, 4, 7 and 10 also showed slicing activity with no sorting priorities (Rogers
& Chen, 2012). Hevea predicted miRNAs 21-nt in size were further analysed for their 5′

base preference (Fig. 5). In the latex from healthy and TPD-affected trees, the 5′ nucleotide
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of predicted miRNA was mainly uracil, in contrast to the guanidine found in the latex from
juvenile plants.

Detection of 136 cleaved target transcript/miRNAs pairs in the
degradome at the transcriptome level
The sequencing of the six degradome libraries, from six distinct tissues (leaf, bark, root,
flowers, latex and embryos), generated a total of 16 million single reads. The highest and
lowest numbers of cleaned reads were found in latex (134,611 reads) and embryo (9,283
reads) libraries, respectively. The distribution of the number of reads per library after the
cleaning process is shown in Table S1.

To validate the quality of the degradome libraries, we looked for the position of miRNA-
directed cleavage sites for three known target transcripts that had previously been identified
experimentally (Gébelin et al., 2012). We successfully detected SBP/CL2120Contig2
targeted by miR156/acc_480780, ARF/CL6582Contig1 by miR160/acc_370 and
chloroplastic CuZnSOD/CL4308Contig 2 by miR398/acc_420 (Fig. 6). Degradome
products corresponding to these known targets were detected in degradome libraries
only in certain tissues, suggesting post-transcriptional regulation could be tissue specific
(Table S6). For instance, cleavage products of the chloroplastic CuZnSOD were found in
latex and root libraries. Those of ARF were identified in libraries from bark, and those of
SBP in leaf and bark. Moreover, we checked for the statistical classification of the category
of degradome, which is based on coverage at the cleavage site compared to the total length
of the transcript. The three known miRNA-mediated cleaved targets belonged to the worst
degradome, i.e., category 4, consisting of only 1 read at the cleavage site (Fig. 6). This result
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reveals that even miRNA-mediated cleaved targets predicted in weak degradome category
can be biologically active.

At the transcriptome level, our analyses of the degradome products highlighted the
prevalence of post-transcriptional regulatory events in latex cells and reproductive tissues
in Hevea brasiliensis. Among the 136 transcript targets detected among all the tissues, 39
(28.7%) and 38 (27.9%) were detected in latex and reproductive tissues, respectively (Fig.
1, Table 1, Table S7). By contrast, the embryo degradome yielded the lowest number of
targets with only 4 (2.9%) detected. Only 26 target transcripts (19.1%) were cleaved by
knownmiRNAs (16 different accessions). ThemiRNAs involved inmRNA slicing exhibited
a tissue-specific activity pattern with very little overlap between tissues, as shown in the
Venn diagram (Fig. 7).

All the cleaved targets identified belonged to degradome categories 3 and 4 (meaning
only one or very few reads starting at the cleavage site), except for six mRNAs which were in
degradome category 0 (meaning the majority of reads started at the cleavage site). Among
them, functional domains were predicted in the putative peptides of only two of the targets
found in latex, CL5497Contig1, which included a leucine-rich repeat domain (cysteine-
containing subtype), and CL8280Contig1, which included an RNA-binding/CRM domain.
Gene ontology annotation strongly suggests that a wide range of biological processes
are under post-transcriptional regulation in different rubber tree tissues, including sugar
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Figure 6 T-plots generated by CleaveLand. Alignments show the cleavage site experimentally validated
(Gébelin et al., 2012), corresponding exactly to the cleavage site predicted by the degradome analysis
showed by a red point on the T-plot. (A) SBP (CL2120Contig2)/miR156 (acc_480780). (B) ARF
(CL6582Contig1)/miR160 (acc_370). (C) Chloroplastic CuZnSOD (CL4308Contig 2)/miR398 (acc_420).
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biosynthesis in leaves, ion transport in roots, protein imports and sugar metabolism in the
bark, and RNA metabolic processes in latex (Fig. 1, Table 1, Table S8).

Detection of 173 additional miRNA-mediated cleaved transcripts in
curated genes involved in laticifer differentiation and natural rubber
production
The occurrence of post-transcriptional regulation of genes involved in important
biological pathways of Hevea was then investigated in more detail. The gene families
have already been described by Duan et al. (2013), Kuswanhadi et al. (2010), Pirrello et
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Table 1 Number of identified cleaved targets by miRNAs and functional annotation by GO in the tissue-specific transcriptomes.

Tissue-specific
transcriptome/
Degradome
libraries

Number of
targets

Biological process

Latex 39 Proteolysis, nitrogen compound metabolic process, response to stress, metabolic process, ATP synthe-
sis coupled proton transport, regulation of RNA metabolic process

Root 11 Protein phosphorylation, cation transport, cell cycle, signal transduction
Leaf 31 Carbohydrate metabolic process, glycolytic process, DNA methylation, transcription, DNA-templated,

regulation of transcription, DNA-templated, translation, protein phosphorylation, proteolysis, photo-
synthesis

Bark 13 Carbohydrate metabolic process,(1->3)-beta-D-glucan biosynthetic process, glycolytic process, glu-
tamine biosynthetic process, nitrogen compound metabolic process, signal transduction, photosystem
II assembly, malate transport, photosynthesis, protein import

Embryos 4 –
Reproductive tissues 38 Regulation of transcription, DNA-templated, translation, photosynthesis, oxidation–reduction process
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Figure 7 Venn diagram built with sRNA accessions withslicing activity. Six tissue-derived degradome
libraries were tested (leaf, bark, root, reproductive tissues, latex, embryo).

Full-size DOI: 10.7717/peerj.8932/fig-7

al. (2014), Piyatrakul et al. (2012), Putranto et al. (2015a), Putranto et al. (2015b), Tang
et al. (2016), Venkatachalam, Thulaseedharan & Raghothama (2007) and Venkatachalam,
Thulaseedharan & Raghothama (2009) (Fig. 1, Table 2, Tables S9 to S13). In the present
study, a high proportion of transcripts were found to be cleaved by miRNA, including
genes with functions related to ethylene biosynthesis (23 genes out of 34 tested including
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Table 2 Identified targets cleaved by miRNA (with redundancy) from gene sequence lists in the de-
gradome libraries.

Gene list/Degradome libraries Latex Root Leaf Bark Embryos Reproductive
tissues

NR biosynthesis 18 10 13 29 3 6
AP2/ERF super family 19 6 10 8 0 11
JA biosynthesis and signalling 5 3 10 5 3 6
TPD-related genes 1 2 2 3 0 1
ET biosynthesis and signalling 8 7 15 20 1 6

members of the ACO, ACS, ETR, CTR and EIN3 gene families), jasmonate biosynthesis
(30 out of 50 genes tested, including aMYC transcription factor), and hormone signalling
pathways (54 out of 149 including HbERF-IXb02; HbERF-VIIa07; HbERF-VIIa2; HbERF-
VI05 HbERF-VIIa8, HbRAV-03; HbERF-VIIa5). In addition, among the 596 genes selected
for their likely involvement in rubber biosynthesis pathway (Tang et al., 2016), 56 had
degradation products compatible with post-transcriptional regulation (HbMVK1,2,3;
HbMVD1,2; HbREF3,7,8; HbSRPP2; HbACAT3; HbHMGR1; HbHMGS1,2; HbPMD2 and
HbGSP3 genes).

With respect to TPD-associated genes (Venkatachalam, Thulaseedharan & Raghothama,
2007; Venkatachalam, Thulaseedharan & Raghothama, 2009), nine out of 12 genes showed
evidence of post-transcriptional regulation in all tissues tested, with the exception of
embryo. Among them, transcripts produced by HbTOM20, which encoded a translocase
of the outer mitochondrial membrane, were cleaved by both miR396 and miR395.
Moreover, a gene similar to HbTCTP, which has multiple functions and is associated
with stress/hormone responses and TPD, may be cleaved by two newly identified miRNAs
(Pyoung96216 and health13399; Table S13). The latter completes our previous study in
which HbTCTP transcripts were degraded by two distinct sRNAs, miRf12236-akr and
miR1023b-3p (Deng et al., 2016).

Unlike reports in the literature (Chen, 2004), we found no evidence of AP2/ERFs
transcripts targeted by miR172 in our experimental conditions. Instead, these transcripts
were targeted by other known miRNAs (miR156, miR167, miR9386 and miR396) and by
97 newly identified miRNAs. Examples of the good quality of the detection of miRNA-
mediated cleaved transcription factors (HbMYC, HbRAV-03, HbERF-VIIa8 and HbERF-
VIIa5), with a degradome category of 0, in a T-plot generated by CleaveLand, can be seen
in Fig. 8.

Identification of putative ta-siRNA-producing loci and their targets
In addition to miRNAs, another type of 21-nt small RNA may also target transcripts to
induce their degradation. Trans-acting siRNAs (ta-siRNAs) are generated through the
processing of a double-stranded RNA precursor, transcribed from a TAS gene targeted
by a single 22-nt miRNA or by two 21-nt miRNAs (Bologna & Voinnet, 2014), through
cleavage sites spaced at 21-nt intervals along its sequence (Komiya, 2017). Putative Hevea
loci producing ta-siRNAs were identified by mapping sequenced 21-nt sRNAs on the
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Figure 8 T-plots generated by CleaveLand pipeline for miRNA/transcription factor pairs with a de-
gradome category 0 (many readsstarting at the cleavage site). (A) HbMYC. (B) HbRAV-03. (C) HbERF-
VIIa8. (D) HbERF-VIIa5.
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assembled PB 260 genomic sequences (Fig. 3). This step led to the localisation of 88
non-redundant putative loci with the ta-siRNA originating from the latex of healthy
mature trees, none from TPD-affected mature trees, and 12 from juvenile plants (Table
S14, Fig. 3).

Annotation of the loci showed that two loci correspond to sequences coding for
calcium-dependent protein kinase 1 (CDPK1) gene, and that 46 match the intron of
farnesyl diphosphate synthase (FINT1), a gene containing a transposon (Zhang, Leclercq
& Montoro, 2017). Finally, up to four ta-siRNA-producing loci were found in repeat-rich
regions such as putative retrotransposons () and unannotated genomic scaffolds (0 to
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Table 3 Identified targets cleaved by ta-siRNAs in the tissue-specific transcriptomes and their functional annotation by GO.

Tissue-specific
transcriptome/
Degradome
libraries

Number of
targets

Biological process

Latex 12 Carbohydrate metabolic process, response to stress, transmembrane transport
Root 1 –
Leaf 6 Cell morphogenesis, nucleoside metabolic process, ATP synthesis coupled proton

transport, ATP hydrolysis coupled proton transport, oxidation–reduction process
Bark 4 Translation, clathrin coat assembly
Embryos 1 –
Reproductive tissues 1 –

38) (Table S14). No known TAS gene was identified in the Hevea genomic sequence.
Degradome analysis showed that the number of cleaved targets (15) was lower than
miRNAs (Fig. 3, Table 3). Most ta-siRNAs cleaved fewer targets than miRNAs. Most of
these targets were found in the leaf (6) whereas only one target was found in latex (Table
3 and Table S15). An important accumulation of cleavage products was observed for
the CL7Contig17 transcript, which could point to highly efficient ta-siRNA-mediated
processing in the latex of TPD-affected trees (accession TPD_latex_scaffold0858_100404).
No targets corresponding to ta-siRNAs derived from coding sequences were identified.

Annotation of the ta-siRNA targets (Fig. 2, Table 3 and Table S16) showed that these
targets were either involved in different biological processes, linked to those in which
miRNA targets played a role, or that their mode of post-transcriptional regulation differed,
depending on the nature of the tissue. For instance, most transcripts involved in sugar
metabolism and transmembrane transport were regulated by ta-siRNAs in latex, while in
bark, they were regulated by miRNA (Table 3, Tables S15 and S16). Moreover, compared
to miRNA targets, more ta-siRNA targets were involved in rubber synthesis, hormone
signalling and laticifer differentiation (HbREF8, HbHMGS1, JAZ6, Topless,MED25, CTR2,
and HbMYB gene families; Tables S17 to S21). Overall, most of the targets cleaved by
ta-siRNAs differed from those cleaved by miRNAs. A target cleaved by both types of sRNA
required two distinct sites.

Identification and regulation of genes involved in microRNA biogene-
sis and regulatory functions in latex cells
MiRNA production requires MIR gene multi-step processing, which involves several
multigene families. To annotate them in Hevea, 27 protein sequences involved in miRNA
biogenesis and activity in Arabidopsis (Naqvi et al., 2012) were used as queries. Among
them, 24 unique loci encoding putative orthologues were identified in the Hevea reference
genome (Tang et al., 2016) using a sequence similarity search, including members of
the AGO, DCL, HST, HEN1, SDN and SE families. Analysis of AGO and DCL gene
families showed that each of them included four paralogous clades, in accordance with
previous reports (Fang & Qi, 2016; Fukudome & Fukuhara, 2017). Compared to other
plant genomes, Hevea brasiliensis exhibits several AGO genes (13, including five putative
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Figure 9 Phylogenetic tree forHevea and other plants of AGO andDCL proteins. The Hevea amino
acid sequences were aligned with the full-length amino acid sequences of genes in Populus trichocarpa Rici-
nus communis and Arabidopsis thaliana to construct a phylogenetic tree by MrBayes (v3.2.6 x64). (A) AGO
proteins. (B) DCL proteins.
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AGO5 orthologues and two putative AGO6 orthologues; Fig. 9A, Fig. S1), comparable
in size to that of the recently duplicated Populus trichocarpa genome (15 genes including
three AGO5 and one AGO6) (Lei et al., 2012). This means this gene family is bigger
and more diversified than in the genomes of Ricinus communis (eight AGO genes) and
Arabidopsis thaliana (10 genes). It was difficult to assign AGO2/3 (two genes found in
Hevea: mRNA00000107 and mRNA00000478) and AGO4/8/9 (only one gene found in
Hevea: mRNA00000007). By contrast, the DCL gene family of Hevea (five genes, including
two putative DCL2 orthologues; Fig. 9B, Fig. S2) was in the same size range as that of both
Ricinus communis and Arabidopsis thaliana (four genes each), while being smaller than that
of Populus trichocarpa (six genes including two DCL2 orthologues).

The transcripts of the putative Hevea DCL1 and AGO1 orthologues (mRNA00000029
and mRNA00000323, respectively; Fig. 10) were identified, and their expression response
in response to ethephon stimulation and TPD occurrence was analysed (Montoro et
al., 2018) (Table S22). DCL1 expression was significantly downregulated as a result of
ethephon treatment (1,591 vs. 659 reads), but not according to TPD. A very high level
of expression was observed for AGO1 across all conditions tested (>19,000 reads). While
putative members of the Serrate, Hasty and SDN gene families were found to have
variable expression levels depending on the family member, no evidence was found for
regulation in either stressed or TPD conditions (Fig. 10, Table S22). In latex, putative
orthologous transcripts were detected for each gene involved in either miRNA biogenesis
or its regulation. This suggests that the components of themiRNAmachinery are functional
in this tissue. However, whether these different genes play the same roles in rubber as in
model plant species remains to be determined. Indeed, Hevea AGO and DCL gene families
likely expanded due to whole genome duplication (Deng et al., 2016).

DISCUSSION
The aim of this study was to identify MIR genes and their corresponding miRNAs in
genomic sequences of Hevea clone PB 260. In the second step, the targets of these miRNAs
were identified by analysing the degradome in different tissues. In a previous study
(Gébelin et al., 2012), we described a surge in the accumulation of 21-nt sRNAs in the
latex of TPD-affected rubber trees. Thanks to our miRNA annotation, we now show that
these 21-nt sRNAs were not miRNAs derived fromMIR genes. Therefore, miRNAs do not
contribute to the 21 nt surge in sRNAs observed in TPD-affected trees. These 21 nt sRNAs
could be classified as siRNAs, and may correspond to epigenetically-activated siRNA
(easiRNA) (Borges & Martienssen, 2015). These siRNAs may be responsible for target
transcript degradation through a pathway that is not directly dependent on miRNA-based
cleavage (Bologna & Voinnet, 2014). This result underlines the relevance of analysingHevea
sRNAs beyond only the miRNA-based regulation pathways, in particular those produced
by transposable elements.

Degradome analyses are generally performed with pooled tissue samples or with a single
tissue. The present work highlighted tissue-specific regulation thanks to the parallel analysis
of six tissue degradome libraries. Negative co-regulation ofmiRNA expression and its target
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Figure 10 Analysis of miRNA biogenesis inHevea brasiliensis. Transcripts encoding miRNA biogenesis
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is an important step in demonstrating the post-transcriptional control mechanism. For
example, in response to saline stress, cleavage of chloroplastic CuZnSOD transcripts was
correlated with upregulation of miRNA398 expression in bark and in roots (Gébelin et al.,
2013a), but not in leaves. This regulation was not found in relation with the other stresses
tested (drought, wounding, flooding, cold, high light intensity (Gébelin et al., 2013a)). In
the degradome analysis, the target chloroplastic CuZnSOD was identified only in roots and
bark with a small number of transcripts at the cleavage site, in perfect agreement with the
results of co-regulation analyses. Although preliminary, our study enabled us to validate
the link between degradome analysis and co-regulation analysis. It also underlines the need
to account for the spatio-temporal dimension as well as the physiological context involving
a case-by-case study.

We also demonstrated the partial conservation of sRNA machinery and targets in
Hevea. Conservation of miRNA-target pairs between plant lineages is well described
(Cuperus, Fahlgren & Carrington, 2011). However, in a previous study, we showed partial
conservation between Hevea and Arabidopsis miRNA binding sites for genes encoding
ROS-scavenging enzymes (Gébelin et al., 2012; Zhang et al., 2019). Another example of
partial conservation between plant is the targeting of AP2/ERF transcripts by miR172,
which is well-documented in different plant species (Aukerman & Sakai, 2003;Wang et al.,
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Figure 11 A simplified natural rubber biosynthesis pathway showing the miRNA cleaving the target
transcripts.miRNAs found only in latex are shown in bold.

Full-size DOI: 10.7717/peerj.8932/fig-11

2017b), but in the present study, we did not observe such regulation in any of the well-
characterised AP2/ERF transcripts in Hevea (Piyatrakul et al., 2012; Putranto et al., 2015a).

MiRNA-guided cleavage of TAS transcripts, which triggers the subsequent production
of ta-siRNA of 21-nt increments, is the standard model of ta-siRNA production established
in Arabidopsis. Our data suggest that considerable ta-siRNA production occurred in Hevea
in conjunction with post-transcriptional cleavage of their target transcripts, whereas no
TAS genes were identified in the rubber genome sequence. Other authors have proposed
that, even in Arabidopsis, concurrent mechanisms may exist for ta-siRNA production (Yu
et al., 2018; Yu et al., 2015).
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CONCLUSION
This study provided several new insights into Hevea concerning miRNA biogenesis and
activity, tissue-specific post-transcriptional regulation in response to abiotic stress, and
the impact of Hevea speciation with the whole genome duplication shared with cassava.
The divergence observed from annual plant species suggests enhanced adaptation to
stress in Hevea, particularly in laticifers, which are subjected to recurrent combinatorial
stresses. Concerning the post-transcriptional regulation observed for sucrose metabolism
in bark and in each step of the natural rubber biosynthesis pathway (Fig. 11), intra- and
interspecific comparison of rubber-producing plants is needed to decipher the impact of
post-transcriptional regulations in response to stress in the context of rubber production.
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