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Abstract: 24 

Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to 25 

respond to climate change and land degradation while simultaneously improving global food security 26 

(IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several 27 

ecosystem services to populations, notably an increase in crop productivity. While remote sensing has 28 

been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the 29 

woody component. We propose an original approach combining remote sensing, landscape ecology and 30 

statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the 31 

main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. 32 

Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and 33 

tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield 34 

estimation. The best model based on a combination of Green Difference Vegetation Index and number of 35 

trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 36 

28%). The best model based solely on vegetation productivity (no information on parkland structure) 37 

explained only 46% of the observed variability (RRMSE=34%). Secondly we investigated the drivers of the 38 

spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and 39 
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management factors derived from geospatial data. The GBM model explained 81% of yield spatial 40 

variability. Predominant drivers were soil nutrient availability (i.e. soil organic nitrogen and total 41 

phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield 42 

increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These 43 

findings have to be strengthened by testing the approach in more diversified and/or denser parklands . Our 44 

study illustrates that recent advances in earth observations open up new avenues to improve the 45 

monitoring of parkland systems in smallholder context.  46 
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 48 

1 Introduction 49 

Scientific and political spheres agree on the need to foster the inclusion or upholding of trees in 50 

agricultural systems, in order to tackle the social and environmental dimensions of the sustainable 51 

development goals (SDGs, United Nations, 2016). Agroforestry, i.e. the combination of trees and crops or 52 

pastures on the same piece of land (Nair, 1993) has been acknowledged as an option to respond to climate 53 

change and land degradation (IPCC, 2019). 54 

In sub-saharan Africa, around 40% of people in rural areas live in landscapes with more than 10% tree cover, 55 

often agroforestry systems (Zomer et al., 2014). In semi-arid West Africa, traditional parklands are 56 

characterized by the deliberated retention of trees on agricultural land (Boffa, 1999) due to the socio-57 

ecosystem services they provide (Sinare and Gordon, 2015). Parklands contribute to the conservation of 58 

natural resources and biodiversity, and improve soil fertility and agricultural productivity (Baudron et al., 59 

2019; Bayala et al., 2014; Duriaux Chavarría et al., 2018; Peltier, 1996). Trees compete with crops for 60 

resources but they can improve nutrient cycling, soil moisture retention and microclimate (e.g. Kho et al., 61 

2001; Sida et al., 2018).  62 

Studies on the impact of tree on crop productivity were generally conducted at tree-scale where crop 63 

performance under tree crown was compared with crop performance in a control area without tree 64 

influence (Bayala et al., 2015). Tree density in West African parklands is often very high and some tree 65 



species can influence crops beyond their crown (sometimes more than 100 m²/tree, Sileshi, 2016). Finding 66 

a control area without tree influence can thus be challenging, which can bias the quantification of trees 67 

influence on crops. In addition, parklands are composed of combinations of tree species with different 68 

densities and spatial arrangement. Synergies or antagonisms occur between trees and trees effect on crop 69 

performance is not likely to be additive. The direction and magnitude of the impact of trees on crop 70 

productivity depends on the dominant tree and crop species, and management practices. For instance, 71 

nitrogen-fixing Faidherbia albida, was found to improve millet and wheat yield (Bayala et al., 2012; Kho et 72 

al., 2001; Louppe et al., 1996; Sida et al., 2018) but not groundnut yield (Louppe et al., 1996). In Burkina-73 

Faso, millet performed better under Adansonia digitata than Parkia biglobosa, the latter being a shading-74 

tree (Sanou et al., 2012). The presence of Grevillea robusta in maize and wheat fields decreased fertilizer 75 

use efficiency while the presence of F.albida improved it (Sida et al., 2019). 76 

Though parklands have been the focus of researches for several decades, few studies have tackled the 77 

question of the landscape-scale effect of parklands on crop productivity. Research in Ethiopia on the 78 

effects of F.albida on barley yields according to different land use systems (Hadgu et al., 2009), and 79 

agricultural productivity along a forest-agriculture gradient (Baudron et al., 2019; Duriaux Chavarría et al., 80 

2018) are rare example. 81 

The inter-connection of social, environmental and economic challenges as committed by the SDG calls for 82 

systemic and integrated approaches in which landscape scale is particularly appropriate to inform decision 83 

making (Reed et al., 2016). Remote sensing provides physical measurements of temporal and spatial 84 

development of agroforestry systems (e.g. structure, biomass). It could help account for tree-crop 85 

interactions and the resulting impacts on crop productivity. Current statistical models establish 86 

relationships between remote sensing vegetation productivity indices and in-situ yields measurements or 87 

national agricultural statistics. Until recently, crop growth monitoring and crop yield mapping in 88 

smallholder agriculture have relied mainly on low spatial resolution images covering large areas (Leroux et 89 

al., 2019, 2016; Maselli et al., 2000; Mkhabela et al., 2005; Rasmussen, 1992). However, in agroforestry 90 

parklands across sub-Saharan Africa, accurate estimates of crop yields are hampered by landscape 91 

fragmentation, fields being often smaller than one hectare (Fritz et al., 2015). Diversity in soil conditions, 92 



crop management and tree conservation practices further amplifies inter and intra-field yield variability. 93 

New satellite or low-cost nanosatellite sensors with high spatial resolution (≤ 10 m) and high revisit 94 

frequency (< 2 weeks) are more suited to these complex and spatially variable agricultural systems. These 95 

new sensors open unprecedented opportunities to predict and map crop yield in smallholder context. A 96 

promising crop yield mapping at field level have been obtained for East and West African farming systems 97 

using Sentinel-2, Sentinel-1 and PlanetScope data  (Burke and Lobell, 2017; Jin et al., 2019, 2017; Lambert 98 

et al., 2018). However these studies masked out trees to capture ‘pure cropped pixels’ (Lambert et al., 2018) 99 

and thus masked-out the crop below tree crown and neglected the influence of the tree on crops beyond 100 

its crown projection. Though promising, these approaches have usually failed to fully reproduce the wide 101 

variability in observed crop yield in farmer fields in sub-Saharan Africa (e.g. Jin et al., 2019; Lobell et al., 102 

2019).  103 

Combining information on vegetation productivity and parkland structure derived from high spatial 104 

resolution, satellite images offers the opportunity to capture the variability in crop yield in parkland 105 

systems and to identify where and how crop productivity could be improved. Remote sensing have been 106 

extensively used to identify and analyzed yield gap (i.e. the difference between observed actual yields and 107 

water-limited yields) (e.g. Jain et al., 2017; Jin et al., 2019; Löw et al., 2017; Zhao et al., 2015). In Kenya, Jin 108 

et al. (2019) explained more than 70% of maize yield variability by edaphic drivers using remote sensing, 109 

crop process-based modelling and machine learning. In parkland systems, analyzing drivers of yield spatial 110 

variability could help assess relevant opportunities to optimize parkland management.  111 

The main aim of this study was to assess the role of trees in explaining spatial variations in millet yield in a 112 

case-study agroforestry parkland dominated by Faidherbia albida, in the Groundnut Basin of Senegal. To do 113 

so, we used high spatio-temporal resolution images (Sentinel-2, PlanetScope and RapidEye) and ground-114 

observations. More specifically, we addressed three questions: (i) Does information on parkland structure 115 

(i.e. number of trees per field, tree density, and percentage of tree cover) help improve the accuracy of 116 

millet yield prediction in parklands of central Senegal? (ii) What are the main drivers of the predicted 117 

spatial variability in millet yield?, and (iii) What is the relative influence of trees compared with the other 118 

identified drivers? 119 



We thus propose an original approach combining remote sensing, field data and statistical modeling. This 120 

approach was tested for an agroforestry parkland dominated by Faidherbia albida, in the Groundnut Basin 121 

of Senegal.  122 

2 Materials and Methods 123 

2.1 Study area 124 

The study was conducted in 2017 and 2018 in Senegal. The study area (~17 km²) is located in a village named 125 

Diohine. The village is at the centre of the main rainfed agriculture area of Senegal (Fig 1a), the “Old Groundnut 126 

Basin”. This name refers to the economic importance of groundnut in the region, since colonial times.  127 

The climate is sudano-sahelian, with annual rainfall ranging from 400 mm to 650 mm. An increasing trend in 128 

annual rainfall has been observed since the 1990’s  (Lalou et al., 2019), after a long period of low annual rainfall. 129 

The rainy season lasts from July to October, August and September being the wettest months. Annual rainfall 130 

was 490 mm and 447 mm in 2017 and 2018 respectively (see supplementary material S1 for in-season 131 

distribution). Soils are sandy, developed on quaternary wind sediments. Dominating sandy ‘dior’ soils are spread 132 

over flat and dune areas, while slightly more clayish ‘dek’ soils are located in inter-dunes and lowland areas 133 

(Lericollais, 1999).  134 

Livelihoods of rural populations are centered on small-scale rainfed agriculture with low external input use. The 135 

study area is characterized by tree-based cropping systems, hereafter referred as parklands. Faidherbia albida 136 

(also called ‘Kadd’ in Wolof or ‘Sas’ in Serer) cohabitates with crops. F.albida is a leguminous nitrogen-fixing 137 

species that relies on deep groundwater. Its  vegetation period spreads over the dry season whereas most other 138 

local plant species grow during the rainy season. F. albida sheds leaves at the end of the dry season which (i) 139 

reduces direct competition for light with crops compared with other tree species, and (ii) provides green 140 

manure that contributes to increase soil fertility and crop yield under tree crown. This ‘fertility hotspot’ is also 141 

termed the ‘albida effect’ (see the review of Sileshi, 2016). However, F.albida only represents 34% of trees in the 142 

region. The parkland is diversified with 24 species in total.  Adansonia digitata and Ziziphus mauritania account 143 

for 16% and 10% of species respectively. The main crops are pearl millet (Pennisetum glaucum (L.) R. Br.) (37% of 144 

study area) and groundnut (Arachis hypogaea L.) (22% of study area) (Fig 1b). Millet is grown for on-farm 145 

consumption while groundnut is a cash-crop. ‘Home fields’, close to homesteads, are mainly cultivated with 146 



continuous pearl millet while remote ‘bush fields’ are cultivated with pearl millet and groundnut in biennial 147 

rotation. In Diohine, unlike in most of the other villages in the region, ‘bush fields’ are still fallowed as part of a 148 

triennial rotation with pearl millet and groundnut. Other crops are sorghum (Sorghum bicolor (L.) Moench), 149 

cowpea (Vigna unguiculata L.) and bissap (Hibiscus sabdariffa), that can be cultivated as sole crop or 150 

intercropped with pearl millet. Pearl millet is mostly cultivated on ‘dek’ soils and generally sown in June, before 151 

the first rain and harvested from October to November depending on the cultivar (Fig 2). Crop management is 152 

performed with animal draught power except for less-endowed farmers who lack equipment. Mineral fertilizer 153 

use is low. 154 

2.2 Field data 155 

50 farmers’ fields (35 in 2017 and 15 in 2018) were monitored along a landscape gradient constituted of four 156 

landscape classes. The landscape classes were defined based on remote sensing and a set of biophysical 157 

variables (vegetation average productivity and inter-annual variability, evapo-transpiration, woody density 158 

and soil texture (Ndao et al., 2019, 2018))(Fig 1c). Class 1 corresponds to less productive areas 159 

characterized by saline soils. Class 2 is characterized by moderate vegetation productivity and low spatial 160 

heterogeneity in vegetation productivity while class 3 has a greater spatial heterogeneity in vegetation 161 

productivity indicating a more diversified landscape. Class 4 have a high woody cover and is dominated by 162 

hydromorphic soils.  Fields monitored in 2017 were mainly in landscape class 3. The landscape classes were 163 

defined after the 2017 cropping season. In 2018, fields were selected randomly with a number of fields per 164 

landscape class weighted by the share of the area of each class in the whole study area. Field boundaries 165 

and individual tree location and species were recorded with a Garmin GSMAP 64 GPS device. Due to a 166 

GPS-reported accuracy of 3-m, the location of each individual tree was adjusted by photo-interpretation of 167 

Google Earth images (c). Within each field, three quadrats of 6-m²  were selected, avoiding field 168 

boundaries (> 3-m from the boundaries) and considering a contrasting range of distances to trees to cover 169 

the intra-field yield heterogeneity induced by trees. Aboveground millet biomass was harvested within 170 

each quadrat at crop maturity. Grain yield (dry matter) was measured after drying.  171 



 172 

2.3 Satellite data preprocessing 173 

Pearl millet cultivation occurs in the rainy season from May to October. High temporal resolution data are 174 

required to capture crucial changes in crop biomass on short time steps. We used optical images with high 175 

temporal resolution including Sentinel-2, PlanetScope and RapidEye data over 2017 and 2018 growing 176 

seasons to benefit from the high revisit capacity of each satellite and increase the probability of having 177 

cloud-free images over each growing season (Fig 2). 178 

 179 

Sentinel-2A and 2B time series for the two growing season (temporal resolution of 5-days) were obtained 180 

from the Theia processing center at CNES (https://theia.cnes.fr/atdistrib/rocket). Sentinel-2 data were 181 

processed to level L2A using the MAJA processor providing ortho-rectified images, corrected from 182 

atmospheric disturbances and a cloud and cloud shadow mask (Hagolle et al., 2010). Among the 12 183 

spectral bands provided by Sentinel-2, visible (blue, green, red), near infrared (NIR) and shortwave infrared 184 

(SWIR-2) bands, with a pixel size of respectively 10-m, 10-m and 20-m, were used.  SWIR-2 band was 185 

resampled to 10-m spatial resolution using the nearest neighbor method. 186 

Planet images were freely obtained from the PlanetScope constellation of nanosatellites  operated by the 187 

Planet company (Planet-Team, 2018) as part of the Planet’s Education and Research program. The 188 

PlanetScope constellation is currently composed of approximately 130 satellites and captures daily visible 189 

(blue, green, red) and NIR images (Planet-Team, 2018). We used the Level 3B PlanetScope Analytic Ortho 190 

Scene products, provided orthorectified with an approximately 3-m pixel size and a positional accuracy 191 

below 10-m Root-Mean-Square-Error (RMSE). The Planet data was converted to Top Of Atmosphere (TOA) 192 

reflectance using at-sensor radiance and supplied coefficients with each scene. 193 

 

Fig 1  

 

Fig 2  



As for Planet images, RapidEye images were acquired through the Planet’s Education and Research 194 

program. The RapidEye system is a constellation of five satellites with identical sensors and providing five-195 

band multispectral images (blue, green, red, red-edge and NIR). We used the Level 3A RapidEye Analytic 196 

Ortho Tile Product with an ortorectified pixel-size of 5-m. The RapidEye data were converted to TOA 197 

reflectance using at-sensor radiance and supplied coefficient with each scene (Planet-Team, 2018). 198 

From the initial set of images acquired during 2017 and 2018 growing seasons, only cloud-free images 199 

covering the sampled fields were used for millet yield estimation. We used a total of 25 images in 2017 and 200 

31 images in 2018. Overall 2018 growing season was fully covered (Fig 2), with at least one cloud-free 201 

acquisition each month, while in 2017 no cloud-free images were available in September during millet grain 202 

filling. 203 

2.4 Processing of multisources satellite time series 204 

Six proxies of vegetation productivity were derived from the time series of multisource high spatial 205 

resolution optical images and three remote-sensing based proxies of parkland structure were derived from 206 

PlanetScope images at the beginning of the cropping season. 207 

2.4.1 Proxies of vegetation productivity 208 

Six vegetation indices (VI) were tested as proxies of vegetation productivity (Table 1). Excepted for the 209 

Normalized Difference Water Index that relies on Short Wavenlength Infra-Red (SWIR) only available for 210 

Sentinel-2, all VI were computed for each image of the multisource time series (Sentinel-2, RapidEye, 211 

PlanetScope). Mean VI values were computed for each of the monitored fields. 212 

Table 1  

 

To eliminate residual radiometric noise in VI time series due to poor atmospheric conditions, cloudiness 213 

masks and cross-sensors inconsistencies, field-scale VI time series were interpolated on a daily basis with a 214 

Whittaker smoother (Eilers, 2003). This usually results in a better match of the VI time series with crop 215 

growth (Duncan et al., 2015). VI cumulated over different periods in the growing season help account for 216 

asynchronic crop growth between fields due to space and time variability in environmental characteristics 217 

and management strategies  (e.g. Leroux et al., 2019; Mkhabela et al., 2005; Rasmussen, 1992). Such 218 



accumulations help remove signal short-term variations and improve estimates robustness. Two 219 

phenological parameters reflecting changes in plant growth were derived from smoothed daily profile of 220 

NDVI for each field based on a relative threshold method: (i) the onset of the greenness (SOS) and (ii) the 221 

end of the senescence (EOS). We used a modified version of the R software “greenbrown” package (Forkel 222 

et al., 2013) that allows to account for asymmetrical threshold between SOS and EOS. The two thresholds 223 

were tuned for each cropping season by comparing estimated SOS and EOS with the observed dates of 224 

emergence and senescence in the 50 surveyed fields. Overall, SOS and EOS were estimated with a mean 225 

absolute error below 10-days, except for EOS in 2017 (12-days; supplementary material S2). Overall 226 

accuracy of SOS and EOS estimates was greater for 2018 for which a more dense time series was available 227 

particularly around emergence in July (Fig 2). Errors were within the range of the satellite temporal 228 

acquisition and we assumed that the estimated phenological parameters were relevant to assess crop 229 

development variations in the study area. To identify the period that maximizes accuracy of yield 230 

estimates, the six smoothed vegetation productivity proxies were cumulated over different periods from 231 

SOS to EOS, with a 5-days time step and 5-days time shift. 232 

2.4.2 Proxies of parkland structure 233 

Three variables were tested as proxies of parkland structure: number of trees per field, tree density, and 234 

percentage of tree cover (hereafter refereed as woody cover). PlanetScope images with a resolution of 3-m 235 

were adapted to detect individual trees or cluster of trees. Number of trees per field, tree density per ha 236 

and woody cover were derived from PlanetScope image on 18 June 2017, i.e. at the beginning of the rainy 237 

season, when most tree species have their leaves and crops have not started growing. NDVI (see Section 238 

2.4.1), indicator of green vegetation, was used to get a binary classification, i.e. “tree” (NDVI >0.16) or “no 239 

tree” (NDVI<0.16) at pixel level.  This threshold value was obtained by visual screening. For each field, the 240 

number of trees was computed by detecting the number of patches of connected pixels based on the 241 

Queen’s case contiguity measure. The estimated number of trees was in line with the observed number of 242 

trees in farmers’ fields (R²=0.78, P<0.001 with mean absolute error of 2.09). Tree density per ha was 243 

obtained by dividing the number of trees by field area. Woody cover was computed as the ratio of the 244 

number of tree pixels to the total number of pixels in the field. Due to the limited spectral resolution of 245 



PlanetScope images, the identification of tree species was not feasible and therefore information related 246 

to parkland tree species composition was not included in the analysis. 247 

2.5 Statistical analysis 248 

2.5.1 Remote-sensing based models to estimate millet yield 249 

Remote-sensing based regression models were calibrated with and without proxies of parklands structure 250 

(see 2.4.2) as input variables in addition to proxies of vegetation productivity proxies (see 2.4.1). For each 251 

vegetation productivity proxy (i.e. each six VI integrated over different periods), four linear regression 252 

models were calibrated: one model with vegetation productivity proxy alone and three models using an 253 

interaction term between vegetation productivity proxy and each of the three parkland structure proxies 254 

independently (i.e. woody cover, number of trees and tree density). More than 680 models were thus 255 

tested. 256 

The models were calibrated using a 5-fold cross validation approach. Coefficient of determination (cv-R²) 257 

and relative root mean square error (cv-RRMSE) were computed for each linear regression. To account for 258 

uncertainties in the dataset (i.e. measurement errors and residual noises in remote sensing observations), 259 

model parameters were optimized using the random sample consensus (RANSAC) algorithm. RANSAC 260 

allows to estimate iteratively model parameters from dataset that contains outliers (Fischler and Bolles, 261 

1981). The minimum number of observations required to fit the models were set to 80% corresponding to 262 

40 farmer fields. 263 

2.5.2 Millet yield map and yield spatial variability analysis 264 

A land use and land cover (LULC, Fig 1b) map of the study area was used to locate millet fields in 2018. The 265 

LULC map was derived from ground surveys and Sentinel-2 and PlanetScope images. The classification was 266 

achieved using a Random Forest algorithm (Breiman, 2001) implemented within the Moringa processing chain 267 

developed in the framework of the Theia Scientific Expertise Centre for land cover (https://www.theia-268 

land.fr/en/ceslist/land-cover-sec/). The classification produced a LULC map with 85 % overall accuracy and with 269 

77 % F-Score for millet (Ndao et al., 2019). Millet patch, defined as contiguous individual fields with similar 270 

biophysical and management characteristics, were obtained from an intersection of (1) object-based 271 



segmentation of the study area into homogeneous patches using the multi-temporal PlanetScope NDVI 272 

data and (2) 2018 land cover and land use map. A majority voting was applied to extract the main LULC 273 

class in each patch. Millet yields were estimated for the entire study area in 2018 with the final best 274 

remote-sensing based model (see previous subsection).  Proxies of vegetation productivity and parkland 275 

structure were computed for each millet patch. 276 

Yield spatial variability (YH) was calculated by adapting equations proposed in Lobell and Azzari (2017) and 277 

Jin et al. (2019): 278 

�� = ��95 − ��	
� �⁄ 95(Eq.2) 279 

where Y95 is the 95th percentile of estimated yields across millet patches over the study area and Yest is 280 

the  estimated yield of each millet patch. The 95th percentile of estimated yield was considered as the 281 

greatest attainable yield over the study area with current conditions. 282 

A gradient boosting machine (GBM) algorithm (Friedman, 2001) was used to disentangle the contribution 283 

of biophysical and management factors in explaining crop yield variability. GBM is an ensemble learning 284 

technique that combine a large numbers of simple trees to optimize predictive performance and minimize 285 

overfitting risks (Friedman, 2001). GBM is a non-parametric approach that handles qualitative and 286 

quantitative variables. It is relatively insensitive to outliers and able to account for non-linear interactions 287 

between dependent and independent variables or between independent variables. Variables that 288 

contribute most to prediction accuracy can be identified with a relative influence measure. Functional 289 

relationships between predicted variables (yield variability in this study) and the independent variables can 290 

be obtained by visualizing the partial contribution of each independent variables, accounting for the 291 

average effect of the other variables (Friedman and Meulman, 2003).  The R software and the “gbm” 292 

package (Greenwell et al., 2019) were used. The main parameters of the GBM model were set based on a 293 

grid search iterating over all possible combinations of parameters and assessing the top-performing 294 

combination (See supplementary material S3). 295 

 296 



The driving factors used as independent variables in the GBM model to explain the estimated yield spatial 297 

variability were (1) parkland structure within the millet patches and in their surrounding areas, (2) crop 298 

water and nutrient stress and (3) soil characteristics (Table 2). Parkland structure in field surrounding 299 

landscape can influence for instance pest regulation by natural enemies (Soti et al., 2019). To account for 300 

this effect, mean woody cover and tree density (with no tree species distinction) in a buffer zone of 500-m 301 

around each patch were calculated. Overall water stress over the growing season was derived from S2-302 

NDWI, overall nutrient stress over the growing season was derived from CIGreen and cover heterogeneity 303 

over the growing season was derived from the mean variance Haralick feature (Haralick and Shanmugan, 304 

1973). To investigate the effects of soil characteristics on the estimated yield spatial variability, the recently 305 

released AfSoilGrids database (Hengl et al., 2017, 2015) was used. AfSoilGrids product are generated using 306 

machine learning algorithms with soil samples from more than 50 0000 sites and a set of soil covariables used as 307 

proxies for soil forming processes (landform, vegetation, lithology and climate). The accuracy of the prediction 308 

was assessed using a 5-fold cross validation. Most of nutrients content are predicted with a coefficient of 309 

determination greater than 0.5 (e.g. 0.61 for soil organic carbon, 0.66 for organic nitrogen and 0.85 for total 310 

phosphorus).Soil texture, soil organic carbon content, organic nitrogen and total phosphorus in the topsoil 311 

(0-30 cm) were extracted for each millet patch. All independent variables were aggregated at millet patch 312 

scale using median value. 313 

Table 2  

3 Results 314 

3.1 Millet yield estimation with remote sensing 315 

3.1.1 Effects of parkland structure and vegetation productivity proxies, and integration 316 

period on millet yield  317 

Proxies of Vegetation productivity explained at least 50% (i.e. R²>0.50) of millet yield variability (except 318 

NDWI) (Fig 3a). NDVI and GDVI were the VI with the highest explanatory power corresponding respectively 319 

to 32% and 27% of models with R²>0.50. Greater accuracy was achieved when proxies for parklands 320 

structure (i.e. number of trees, tree density and woody cover) were combined as explanatory variables in 321 

the linear regression models (excepted for GDVI where some models based only on vegetation 322 



productivity proxies exhibited R² above 0.50). Number of trees within fields was the prominent parkland 323 

structure variable (46% of models with R²>0.50). The VI integration periods that maximized yield estimates 324 

accuracy were 5 to 15 days periods starting ~45 days after emergence and ending ~80 days after 325 

emergence (Fig 3b). 326 

3.1.2 Remote sensing-based model to estimate millet yield  327 

Observed yields ranged from 351 kg/ha to 3278 kg/ha with standard deviation of 675 kg/ha. Depending on 328 

the vegetation productivity proxy, best models explained between 48 % and 70 % of millet yield variability. 329 

RRMSE varied from 36 % (RMSE=446 kg/ha) to 28 % (RMSE=348 kg/ha) (Fig 4a) and was substantially 330 

improved when proxies of parkland structure were included. The best improvement was observed for 331 

PSRINIR with a 10% decrease in RRMSE when considering parkland structure (Fig 4a and Fig 4b). 332 

Fig 4.  

The greatest R² was reached when GDVI was integrated over the 15 days between 50 and 65 days after 333 

emergence and combined with the number of trees within fields (Fig 4a and Fig 4c). For this latter, yields 334 

estimated with that best model agreed fairly well with field data (slope = 69, offset = 0.94). Marginal 335 

boxplots (Fig 4c) showed that observed and simulated yield had similar distribution. By comparison, the 336 

corresponding model without parkland structure information failed to reproduce the greatest yields (Fig 337 

4d). 338 

Fig 5  

3.2 Drivers of yield spatial variability in parkland 339 

Fig 5 shows the spatial patterns in estimated millet yields. Estimated yields at patch level over the study 340 

area for 2018 were small: median estimated yield was 720 kg/ha and 75% of the patches had a yield below 341 

980 kg/ha (Fig 5a). Three spatial patterns were evidenced by Fig 5. Firstly, crop yield variation was high 342 

even between adjacent patches (Fig 5a). Yield ranged from less than 10 kg/ha to 2750 kg/ha (coefficient of 343 

variation = 61%). When effects of trees were not included, spatial variability was smaller (coefficient of 344 

variation = 36%), estimated yields ranging from 45 kg/ha to 2040 kg/ha with a median yields of 842 kg/ha 345 

 

Fig 3.  



(Fig 5c). With this model, yield estimates in patches with high tree density and low tree density (see tree 346 

class on Fig 1b) were respectively smaller and greater than yield estimates with the model accounting for 347 

tree effect. Secondly, best yields were achieved close to the houses of Diohine and Kotiokh, at the extreme 348 

south-west of our study area, corresponding to what it is commonly called ‘the fertility ring’. Patches at the 349 

south-east of Diohine on predominantly salines soils had low yields (Fig 5a). Thirdly, the size of the yield 350 

gap (i.e. the deviation from the 95th percentile) was substantial. The greatest estimated yields (95th 351 

percentile) in 2018 was 1912 kg/ha (Fig 5b). The majority of patches had yield between 53 % and 73 % of 352 

this best estimated yield (median value of 63 %).  353 

GBM predictions of millet yield spatial variability were fairly accurate (R²=0.81) (Fig 6a). A substantial 354 

proportion of the explained variance was due to three factors (with relative influence>15%) including soil 355 

characteristics (soil organic nitrogen and total phosphorus) and woody cover in the surrounding landscape 356 

of patches (Fig 6b). Yields in millet patches with soil organic nitrogen below 900 ppm tended to be lower 357 

than the highest estimated yields in the 2018 conditions and the probability to reach the highest yields 358 

increased with the soil organic nitrogen content (Fig 6c). A woody cover of ~30 - 40% in the surrounding 359 

landscape of patches maximized the positive impact of trees on crops. The probability of high deviation 360 

from the 95th percentile decreased with increase in woody cover until 30-40% woody cover and then 361 

increased for woody cover higher than 40% (Fig 6d).   362 

Fig 6  

4 Discussion 363 

4.1 Integrating information on parkland structure improves yield prediction 364 

Our study combined for the first time parkland structure variables with vegetation productivity proxies.  365 

We found that a model combining GDVI index integrated over 50-65 days after emergence and within-field 366 

number of trees explained 70% of millet yield variability (RMSE=348 kg/ha). Regardless of the vegetation 367 

productivity proxies considered, including proxies of parkland structure improved the accuracy of remote 368 

sensing based models (Fig 3a and Fig 4c). A major challenge in agroforestry parkland modelling is to 369 

account for the interaction between trees spatial arrangement and crops. Thus, trees and crops spatial 370 



arrangement at plot or landscape scale, and their management (e.g. pruning) influences competition for 371 

resources (Luedeling et al., 2016) and hence field-scale crop productivity. For instance, fruit trees such as 372 

Adansonia digitata are mainly found closed to homesteads due to their crucial role for food security. In 373 

addition, the influence of certain species such as F.albida extends beyond the canopy projection area due 374 

to large lateral root system (Sileshi, 2016). This creates spatial variability in the availability of water and 375 

nutrient for crops and consequently intra-field yield variability. The remote-sensing based model proposed 376 

in this study accounted for this variability and fully captured the wide range of observed millet yields in the 377 

study area. This is a strong improvement compared with previous studies conducted in similar landscape 378 

that overlooked parkland structure information (e.g. Burke and Lobell, 2017; Jin et al., 2019; Lobell et al., 379 

2019). 380 

Green Difference Vegetation Index (GDVI) outperformed the well-known Normalized Difference 381 

Vegetation Index (NDVI; Fig 4a). Contrary to NDVI, GDVI is based on the green wavelength that is more 382 

sensitive to variations in leaf chlorophyll concentration than the red wavelength (Daughtry et al., 2000; 383 

Gitelson et al., 2005). Leaf chlorophyll concentration is a proxy of canopy nitrogen content and hence crop 384 

productivity. Yield variability was better captured by GDVI than NDVI for maize yield estimation in Kenya 385 

(Burke and Lobell, 2017; Jin et al., 2019).  386 

The 5 to 15 days periods starting around 45 days after emergence and ending around 80 days after 387 

emergence maximized the accuracy of yield estimates (Fig 3b). For the short-cycle (90 days) souna millet 388 

grown in the study area, it extends over the end of the panicle initiation and the grain filling phase. Millet 389 

growth, grain number per unit area and grain filling are particularly sensitive to water, thermal and 390 

nitrogen stresses during these periods. Leroux et al. (2016), Maselli et al. (2000) and  Rasmussen (1992) 391 

also reported that millet yield estimates accuracy was maximized when considering flowering and grain 392 

filling periods in Niger and Burkina Faso. 393 

Spatial variability in estimated pearl millet yield was large for our study area. Yield in half of the patches 394 

could be increased by more than 60% to close the gap with the highest attainable yield observed in the 395 

landscape (Fig 5). The highest attainable yield (i.e. the 95th percentile) was 1912 kg/ha,  similar to the one 396 



observed by Affholder et al. (2013) in the same region. Remote sensing based yield estimates evidenced a 397 

clear spatial pattern in millet yield variability: greater yields were found close to the main village. This 398 

finding is consistent with the ring cultivation scheme often found across Sub-saharan Africa: farmers 399 

allocate more manure and labour to ‘home fields’ causing soil fertility to decrease from homesteads to 400 

bush fields (Affholder, 1995; Manlay et al., 2004; Prudencio, 1993; Tittonell et al., 2013). 401 

4.2 Soil fertility drives yield spatial variability in parklands 402 

Spatial variability of crop yields in Sahelian smallholder farming systems is caused by variability in 403 

environmental and management factors across farms. Quantifying and explaining yield spatial variability 404 

can inform improvements in agricultural practices toward an increase in crop yield.  405 

Yield varied largely over short distances in our study area. By combining remote sensing and machine 406 

learning, we unravelled the contribution of fine-scale variation in biophysical and management-related 407 

factors to explain yield spatial variability. Agronomic variables (i.e. soil nutrient and nutrient stress) 408 

prevailed over landscape variables (Fig 6b and Fig 6c). Low mineral fertilizer inputs use and low soil fertility 409 

are major crop yield limiting factors across sub-Saharan Africa (e.g. Beza et al., 2017; Mueller et al., 2012) 410 

and more generally in family farms across the tropics (Affholder et al., 2013). Mineral and/or organic 411 

fertilizer was applied on half of the monitored field of our study only, with a maximum input of 65 kgN/ha, 412 

i.e. a rather low amount compared with the amount of N required to close cereal yield gaps in the region 413 

(ten Berge et al., 2019). Soil organic nitrogen and total phosphorous content were the most important 414 

drivers of yield variability. Without mineral fertilizer inputs, organic nitrogen strongly drives the amount of 415 

mineral N available for crop growth. Total phosphorus is related to available P for which sub-optimal values 416 

can undermine nitrogen use efficiency (Tounkara et al., 2020). Overall, our remote sensing-based study 417 

corroborates conclusions of current knowledge on sustainable intensification in sub-Saharan Africa. 418 

Integrated soil fertility management, i.e. optimal and efficient use of organic and mineral fertilizer, could 419 

improve crop productivity (Vanlauwe et al., 2015). However, in complex parkland, the boosting effect of 420 

fertilizer on crop productivity can be offset depending on tree-crop combinations (Sida et al., 2019). 421 



Maintenance and regeneration of agroforestry parklands can also be a relevant entry point for integrated 422 

soil fertility management and sustainable intensification. 423 

4.3 Trees no longer benefit to crops above 40% woody cover in surrounding landscape 424 

Our results showed that landscape woody cover (i.e. the share of field area covered by tree crown 425 

projection) in the surrounding landscape of patches was an important driver of yield variability (Fig 6b). 426 

Parklands are outstandingly anisotropic landscapes, and hold a large diversity of trees with specific 427 

densities. Processes occurring outside fields are likely to impact within-fields crop yield (Luedeling et al., 428 

2016). Impacts of landscape-scale woody cover on regulating services in West Africa include pests 429 

biological control (Soti et al., 2019), water flow regulation (Smith et al., 1997), wind erosion control 430 

(Leenders et al., 2007) and carbon storage (Takimoto et al., 2008). F.albida was found to be the only 431 

species positively impacting cereals in diverse parklands across West Africa Bayala et al. (2012). F.albida 432 

can substantially improve nitrogen, phosphorous and soil organic carbon balances in agrosystems (e.g. 433 

through deep capture and improved nutrient cycling) particularly in low-fertility and below-average rainfall 434 

conditions  (Sileshi, 2016; Sinare and Gordon, 2015). In Northern Ethiopia, total nitrogen and available 435 

phosphorus increased with F.albida cover (Hadgu et al., 2009). Using remote sensing to map woody shrub 436 

cover, Lufafa et al. (2008) evidenced an increase in above ground biomass carbon in Senegal concomitant 437 

with woody cover. Our analysis suggested that a 30-40% landscape woody cover maximizes the positive 438 

impact of trees on crops (Fig 6d). Above 40% and depending on tree species, it is likely that trees compete 439 

more strongly with crop for nutrient, water and light. For instance, the positive tree-scale effects of 440 

F.albida (e.g. Kho et al., 2001; Louppe et al., 1996; Sida et al., 2018) can be mitigated at landscape scale 441 

depending of the share of F.albida, the number of trees and the diversity of trees in the field: Hadgu et al. 442 

(2009) have shown that for Eucalyptus camaldulensis parklands in Ethiopia, F.albida’s positive impact on 443 

barley yield were offset by the nutrient and water demand of E.camaldulensis. 444 

Our analysis points to the need to strengthen remote sensing-based models with information related to 445 

tree species. In West Africa, most studies conducted on individual trees mapping using very high spatial 446 

resolution images focused on tree density and woody cover (Herrmann et al., 2013; Karlson et al., 2014; 447 



Schnell et al., 2015). Despite the launch of new satellites at a spatial and spectral resolution suited for tree 448 

species mapping (e.g. Worldview-2/3), few studies were conducted in the African context so far. The study 449 

of Karlson et al. (2016) in Burkina Faso and Madonsela et al. (2017) in South-Africa are useful exceptions. 450 

Mapping tree species in the diverse West African parklands requires multi-seasonal images to discriminate 451 

tree species according to their phenological development. New satellite images at high spatial (5-m), 452 

spectral (12 bands) and temporal (2-days) resolutions (e.g. Venμs) open new avenues for tree species 453 

mapping in complex agricultural landscape. Additional improvements would entail the strengthening of 454 

individual trees identification. We used a threshold approach based on PlanetScope NDVI images. With the 455 

spatial resolution of PlanetScope images (3-m) and the parkland density observed in some fields (> 30 456 

trees/ha), the number of trees was underestimated in some cases due to the identification of clusters of 457 

trees rather than individual trees. An approach combining very high spatial resolution images (e.g. 458 

Worldview or Pleiades) with an object-based image analysis could help to improve tree crown delineation 459 

(Karlson et al., 2014) 460 

4.4 Implication for agricultural policies in West Africa 461 

Specific policies aiming at improving cash availability (e.g. with subsidized short-term credit or subsidized 462 

fertilizers) and reducing risk exposure (e.g. with drought insurance) would incentivize farmers to 463 

adequately fertilize their fields, which could contribute to poverty reduction in the Senegalese groundnut 464 

basin (Ricome et al. 2017). Our study shows that such policies could also target tree density management 465 

as it also contributes to millet productivity. For example, the promotion of farmer managed natural tree 466 

regeneration (Haglund et al., 2011) with trainings and capacity building could deserve more attention.  467 

However, increasing landscape woody cover above 40% seems to provide limited additional benefits to 468 

millet productivity, indicating that areas with woody cover below this threshold should be prioritized. This 469 

study was conducted in a small F.albida parkland in central Senegal. The robustness of our approach needs 470 

to be tested in larger areas across sub-Saharan Africa with more diverse and contrasting household 471 

resource endowment, occurrence of pest and diseases, tree density and diversity, and landscape woody 472 

cover. Despite this limitation, our study shows that high-resolution remote sensing images can help 473 

understand the drivers of yield spatial variability over fine spatial scale . We believe that that further 474 



developing this approach in combination with socio-economic information could contribute to frame 475 

location-specific recommendations for soil fertility and biodiversity management options in agroforestry 476 

parklands. 477 

5 Conclusion 478 

Agroforestry attracted the attention of policies as an entry point to address climate change and food 479 

security challenges (IPCC, 2019). Reliable assessment of crop yields under parkland systems are urgently 480 

needed to inform global debates and foster local policy interventions. Few studies have tackled the 481 

challenge to assess the effects of agroforestry parklands on crops production beyond tree scale. By 482 

adopting landscape scale as an entry point and using cutting-edge remote sensing images, modelling 483 

approaches and ground observation in the Groundnut Basin of Senegal, our study adds to the existing 484 

literature that points to the relevance of agroforestry in addressing societal and environmental challenges 485 

in Africa.  486 

We proposed a remote sensing-based model that allowed accurate crop yield estimations in agroforestry 487 

parklands, applied to a case study of Central Senegal. The model integrated variables related to parkland 488 

structure, a current common omission when dealing with yield estimation in smallholder agriculture with 489 

remote sensing. The model explained 70% of observed millet yield variability. The yield map generated by 490 

this model showed that half of fields had yields that could be increased by more than 60%. Soil Organic N , 491 

total P and woody cover in the surrounding landscape of fields were identified as the most important 492 

drivers of millet yield spatial variability. Interestingly, there was a landscape woody cover threshold above 493 

which crops no longer benefit from the presence of trees. Our study confirms that soil fertility 494 

improvement should be the core focus of policies aiming at promoting sustainable intensification of millet 495 

production in the region. But we also show that parkland maintenance and regeneration should not be 496 

overlooked. Tree species mapping to account for the full complexity of agroforestry parkland systems at 497 

landscape scale is a critical issue that now has to be addressed by the remote sensing community. 498 
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Figure 1 

 

Fig 1 Main characteristics of the study site : a) location of the study area, b) main land use in 

2018 (Ndao et al., 2019), c) location of farmers fields in the four landscape classes defined from 

a remote sensing based stratification (Ndao et al., 2018), each polygon representing a 

landscape class and d) tree species composition of each landscape class.  

 

 

 

 



 

 

 

 

Figure 2 

 

Fig 2 Acquisition dates of the satellite images with regard to pearl millet management 

calendar. 

  



 

 

 

Figure 3 

 

 

Fig 3. millet yield estimates accuracy according to (a) proxies of vegetation productivity and parkland 

structure when linear regression models are calibrated with and without proxies of parkland structure 

(i.e. number of trees, tree density and woody cover), (b) integration period for models combining GDVI 

and number of trees.  Only models with cross-validation R² > 0.50 (p-value<0.001) are displayed in (a) 

(i.e. 15% of tested models). Effect of integration period on yield estimate accuracy for other vegetation 

productivity proxies can be found in supplementary material S4. 



 

 

 

Figure 4 

 

Fig 4. 5-fold cross validation R² (bars) and RRMSE (red dots) for the best model calibrated (a) 

with vegetation productivity proxies and parkland structure proxies and b) vegetation 

productivity proxy only. All models have a p-value below 0.001. c) Comparison between 

observed and predicted yields for the final best model (GDVI integrated of 50 to 65 days after 

emergence combined with the number of trees). d) Comparison between observed and 

predicted yields for the best model without parkland structuring information (GDVI integrated 

over 50 to 65 days after emergence). The red dashed line represents the 1:1 line and the black 

dashed line represents the regression line. 

 



 

 

 

Figure 5 

 

Fig 5 Millet yield over the study area at patch scale using remote sensing information. (a) Millet 

yield estimated for 2018 with the best model integrating parkland structure information (GDVI 

integrated over 50 to 65 days after emergence combined with the number of trees). (b) 

Corresponding variability of millet yield (% difference to the 95th percentile). (c)Millet yield 

estimated for 2018 using the best model without parkland structure information (GDVI 

integrated over 50 to 65 days after emergence). 



 

 

 

Figure 6 

 

Fig 6 Effects of biophysical and management factors on spatial millet yield variability. a) 

Prediction performance of millet yield variability with GBM model. b) Relative influence of input 

variables in the GBM model, ranked by order of influence. Partial dependance plot of c) total 

soil organic nitrogen content and d) woody cover in surrounding landscape of millet patches. 

The partial dependance plot depicts the marginal effect of total nitrogen or landscape woody 

cover on the predicted millet yield variability (i.e. the probability of being far from the 95th 

percentile). 



Table 1 Vegetation indices (VI) used to estimate millet yield: NDVI (Normalized Difference Vegetation 

Index), GDVI (Green Difference Vegetation Index), MSAVI2 (Modified Soil Adjusted Vegetation Index), 

PSRINIR (Plant Senescence Reflectance Index -NIR), NDWI (Normalized Difference Water Index) and 

CIGreen (Green Chlorophylle Index). P: PlanetScope, S: Sentinel-2 and R: RapidEye. NIR, R, G and SWIR 

stand respectively for Near Infra Red, Red, Green and Short-Wavelength Infra Red. 

VI Formulation Sensor Type of variable Reference 

NDVI (NIR-R)/(NIR+R) P,S,R Vegetation 

productivity 

(Tucker, 1979) 

GDVI NIR-G P,S,R Vegetation 

productivity 

(Tucker, 1979) 

MSAVI2 (2*NIR+1-

sqrt((2*NIR+1)^2-

8*(NIR-R)))/2 

P,S,R Vegetation 

productivity 

(Qi et al., 1994) 

PSRINIR (R-B)/NIR P,S,R Vegetation 

productivity 

(Merzlyak et al., 

1999) 

NDWI (NIR-

SWIR)/(NIR+SWIR) 

S Water stress (Gao, 1996) 

CIGreen NIR/G-1 P,S,R Nutrient stress (Gitelson et al., 2003) 

 
 
 
 
 
 
 
 
 
 
 
 



Table 2 Explanatory variables used in the gradient boosting tree (GBM) regression analysis. Parkland 

structure proxy used to estimate yield in the final model were discarded from the analysis to avoid 

redundancy of information. 

Variable name Description Unit 

Dependent   

Patch YH Yield spatial variability % 

Independent   

Landscape Woody Cover Mean woody cover in a 500 m buffer zone around the 

patch 

% 

Landscape Tree density Mean tree density in in a 500 m buffer zone around the

patch 

Number/ha 

Nutrient stress Mean CIGreen over the growing season Dimensionless 

Water stress Mean NDWI over the growing season Dimensionless 

Cover heterogeneity Heterogeneity of crop cover  over the growing season Dimensionless 

Soil texture Category of soil texture Type 

Soil Organic Content Total soil organic content in the 0-30 cm depth ‰ 

Total Nitrogen Total soil organic nitrogen ppm 

Total Phosphorus Total soil phosphorus ppm 

 




