Agritrop
Home

Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa

Falconnier Gatien N., Corbeels Marc, Boote Kenneth J., Affholder François, Adam Myriam, MacCarthy Dilys Sefakor, Ruane Alex C., Nendel Claas, Whitbread Anthony M., Justes Eric, Ahuja Lajpat R., Akinseye Folorunso M., Alou Isaac N., Amouzou Kokou A., Anapalli Saseendran S., Baron Christian, Basso Bruno, Baudron Frédéric, Bertuzzi Patrick, Challinor Andrew J., Chen Yi, Deryng Delphine, Elsayed Maha L., Faye Babacar, Gaiser Thomas, Galdos Marcelo, Gayler Sebastian, Gérardeaux Edward, Giner Michel, Grant Brian, Hoogenboom Gerrit, Ibrahim Esther S., Kamali Bahareh, Kersebaum Kurt Christian, Kim Soo-Hyung, Van Der Laan Michael, Leroux Louise, Lizaso Jon, Maestrini Bernardo, Meier Elizabeth A., Mequanint Fasil, Ndoli Alain, Porter Cheryl, Priesack Eckart, Ripoche Aude, Sida Tesfaye S., Singh Upendra, Smith Ward N., Srivastava Amit, Sinha Sumit, Tao Fulu, Thorburn Peter J., Timlin Dennis, Traoré Bouba Sidi, Twine Tracy E., Webber Heidi. 2020. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa. Global Change Biology, 26 (10) : pp. 5942-5964.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Version Online first - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Falconnier_et_al_2020_GCB.pdf

Télécharger (2MB) | Request a copy
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
596377.pdf

Télécharger (2MB) | Request a copy

Abstract : Smallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.

Mots-clés Agrovoc : Modélisation des cultures, Modèle de simulation, Changement climatique, Zea mays, Rendement des cultures, Système d'exploitation agricole, Exploitant agricole, Petite exploitation agricole, Engrais azoté, Agriculture faible niveau intrants

Mots-clés géographiques Agrovoc : Afrique au sud du Sahara

Mots-clés libres : Crop simulation model, Ensemble modelling, Model intercomparison, Smallholder farming systems, Uncertainty

Classification Agris : P40 - Meteorology and climatology
U10 - Mathematical and statistical methods

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Auteurs et affiliations

  • Falconnier Gatien N., CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0003-3291-650X - auteur correspondant
  • Corbeels Marc, CIRAD-PERSYST-UPR AIDA (KEN)
  • Boote Kenneth J., University of Florida (USA)
  • Affholder François, CIRAD-PERSYST-UPR AIDA (MOZ)
  • Adam Myriam, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-8873-6762
  • MacCarthy Dilys Sefakor, University of Ghana (GHA)
  • Ruane Alex C., NASA (USA)
  • Nendel Claas, Leibniz Centre for Agricultural Landscape Research (DEU)
  • Whitbread Anthony M., ICRISAT (TZA)
  • Justes Eric, CIRAD-PERSYST-UMR SYSTEM (FRA) ORCID: 0000-0001-7390-7058
  • Ahuja Lajpat R., USDA (USA)
  • Akinseye Folorunso M., ICRISAT (MLI)
  • Alou Isaac N., University of Pretoria (ZAF)
  • Amouzou Kokou A., APNI (CIV)
  • Anapalli Saseendran S., USDA (FRA)
  • Baron Christian, CIRAD-ES-UMR TETIS (FRA)
  • Basso Bruno, MSU (USA)
  • Baudron Frédéric, CIMMYT (ETH)
  • Bertuzzi Patrick, INRA (FRA)
  • Challinor Andrew J., University of Leeds (GBR)
  • Chen Yi, Chinese Academy of Sciences (CHN)
  • Deryng Delphine, Humboldt University (DEU)
  • Elsayed Maha L., CLAC (EGY)
  • Faye Babacar, University of Bonn (DEU)
  • Gaiser Thomas, Universität Bonn (DEU)
  • Galdos Marcelo, University of Leeds (GBR)
  • Gayler Sebastian, Hohenheim University (DEU)
  • Gérardeaux Edward, CIRAD-PERSYST-UPR AIDA (FRA)
  • Giner Michel, CIRAD-PERSYST-UPR AIDA (FRA)
  • Grant Brian, Agriculture and Agri-Food Canada (CAN)
  • Hoogenboom Gerrit, University of Florida (USA)
  • Ibrahim Esther S., Leibniz Centre for Agricultural Landscape Research (DEU)
  • Kamali Bahareh, Leibniz Centre for Agricultural Landscape Research (DEU)
  • Kersebaum Kurt Christian, Leibniz Centre for Agricultural Landscape Research (DEU)
  • Kim Soo-Hyung, University of Washington (USA)
  • Van Der Laan Michael, University of Pretoria (ZAF)
  • Leroux Louise, CIRAD-PERSYST-UPR AIDA (SEN) ORCID: 0000-0002-7631-2399
  • Lizaso Jon, Universidad Politecnica de Madrid (ESP)
  • Maestrini Bernardo, MSU (USA)
  • Meier Elizabeth A., CSIRO (AUS)
  • Mequanint Fasil, University of Hohenheim (DEU)
  • Ndoli Alain, CIMMYT (ZWE)
  • Porter Cheryl, University of Florida (USA)
  • Priesack Eckart, Institute of Biochemical Plant Pathology (DEU)
  • Ripoche Aude, CIRAD-PERSYST-UPR AIDA (MDG)
  • Sida Tesfaye S., CIMMYT (ETH)
  • Singh Upendra, International Center for Soil Fertility and Agricultural Development (USA)
  • Smith Ward N., Ottawa Research and Development Center (CAN)
  • Srivastava Amit, University of Bonn (DEU)
  • Sinha Sumit, University of Leeds (GBR)
  • Tao Fulu, Chinese Academy of Sciences (CHN)
  • Thorburn Peter J., CSIRO (AUS)
  • Timlin Dennis, USDA (USA)
  • Traoré Bouba Sidi, IER (MLI)
  • Twine Tracy E., University of Minnesota (USA)
  • Webber Heidi, Leibniz Centre for Agricultural Landscape Research (DEU)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/596377/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-20 ]