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Abstract 17 

The productivity of smallholder farming systems is held back by poor soil fertility, low input levels 18 

and erratic rainfall distribution in the sorghum-based cropping systems of the Sudano-Sahelian zone 19 

of West Africa. We assessed the sensitivity of current agricultural practices to climate change and to 20 

improved management practices: (i) increased fertilizer application combined with increased plant 21 

populations and (ii) use of improved sorghum varieties. We applied the Decision Support Systems for 22 

Agro-Technological Transfer (DSSAT) Cropping Systems Model, and the Agricultural Production 23 

Systems sIMulator (APSIM), for a multiple-farm assessment (i.e. diverse types of management and 24 

soils) in Koutiala (Mali) and Navrongo (Ghana), which are representative sites for West African 25 

sorghum production systems. Baseline climate data from observed weather (1980-2009) and future 26 

climates from five Global Circulation Models (GCMs: 2040-2069) in two Representative 27 

Concentration Pathways (RCP 4.5 and 8.5) were used as inputs for crop models. In Navrongo, under 28 

current management, sorghum yields either decreased or increased compared to the baseline, 29 

depending on the crop models and the GCMs; changes in management options induced a yield 30 

increase of up to 256%. The addition of genetic improvement resulted in further yield increases 31 

(24%). In Koutiala, sorghum yield changes for future climates ranged from -38 to +8% assuming 32 

current management. Shifting to an improved cultivar had a marginal effect on grain yields, while 33 

increased fertilizer rates resulted in grain yield increases ranging of 20% and 153% for DSSAT and 34 

APSIM, respectively, assuming the current climate. We conclude that in the Sudano-Sahelian zone of 35 

West Africa sorghum, as it is cultivated today, appears moderately vulnerable to climate change, 36 

while doubling fertilizer inputs with an adjusted planting density, in the current climate, would more 37 

than double yields. However, by exploring farm diversity we established that, under certain 38 

conditions, the effect of the future climate might be as important as the effect of management 39 

changes in the current climate, hinting at the importance of locally-relevant management practices. 40 
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Introduction  45 

Improved crop productivity is required in the current and future production systems of West Africa. 46 

In a changing environment, genetic and agronomic interventions are being developed to cope with 47 

the effect of climate change and the need for sustainable intensification. Challinor et al. (2014) 48 

summarized more than 1700 simulations evaluating the effect of climate change on crop yields and 49 

stated that adaptation at crop level (improved cultivars or management practices) would help to 50 

increase yield by an average of 7 to 15% for three major crops: wheat, rice and maize. In West Africa, 51 

Faye et al. (2018) showed that cereal yields would decrease by between 2 and 5% with a 52 

temperature increase of 1.5°C and 2°C, respectively. Sultan et al. (2013) indicated that crop yields 53 

would be impacted by up to -41%, due mainly to temperature changes. In Mali, Traore et al. (2017) 54 

assessed the effect of climate change on maize and pearl millet yields. They indicated a maize grain 55 

yield loss caused by climate change of up to 57%, which could be offset by applying recommended 56 

fertilizer doses. Similar conclusions were drawn for pearl millet, but with a lesser effect of climate 57 

change (-10% grain yields) on this drought-resilient crop. Likewise, Rurinda et al. (2015) 58 

demonstrated the importance of management practices to offset climate change effects on maize 59 

yields in southern Africa. 60 

Crop management is a key determinant for counterbalancing crop yield variability in low input 61 

farming systems (Tittonell and Giller, 2013). Sowing dates are important management decisions that 62 

can greatly influence crop yields (Guan et al., 2017) and yield simulations (Srivastava et al., 2016), 63 

particularly in the West African region, due to the high inter-annual variability of the onset of rains, 64 

with farmers’ sowing decisions influenced by both climatic and socio-economic factors (Mertz et al., 65 

2011). However, in most climate change assessment studies it is not often clearly discussed whether 66 

we should be focusing more on adaptation strategies, because of the potential effect of climate 67 

change on crop yields, or whether we should first address the issue of improving crop yield through 68 

appropriate management practices in the current production systems (Lobell, 2014). Indeed, the 69 

ability of these management practices to cope with the effects of climate change (i.e. adaptation 70 
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strategies) has often been assessed in the literature (Parkes et al., 2018; Sultan et al., 2013) and is 71 

undeniable. However, few studies have compared the effects of future climates on the current 72 

production system with the effects of improved management practices on the current production 73 

system (Lobell 2014 and Guan et al. 2017). Lobell (2014) and Guan et al (2017) both addressed the 74 

importance of distinguishing the impact of management practices in the current climate and their 75 

impact in a future climate. It is important to consider such a distinction, in order to define 76 

management practices that can first increase productivity, but also practices that can increase the 77 

resilience of the systems to climate change.  78 

Agriculture in the Sudano-Sahelian regions of West Africa is dominated by millet, sorghum, peanut 79 

and cowpea grown in annual rotation, or intercropped. Maize is also grown, but to a lesser extent. 80 

Very few farmers apply mineral fertilizers due to limited access to credit and agro-inputs, or an 81 

outright lack thereof. As a result, average yields of cereals and legumes are low. As mentioned by 82 

Lobell (2014), one of the biggest challenges to achieving food security in Africa remains management 83 

of poor soil fertility. Further, compared to maize, sorghum has been less modeled despite its higher 84 

drought tolerance and its importance as a staple for semi-arid dwellers.  A few exceptions can be 85 

found in the literature, but usually the studies (Sultan et al., 2014, Guan et al. 2017, Faye et al. 2018,) 86 

were carried out on a regional scale rather than on a local scale. One exception can be mentioned: 87 

Singh et al. (2014) showed that, under climate change, heat tolerance traits would contribute to yield 88 

gain increases at Cinzana (up to 9%) and Samanko (up to 7%). However, that study only considered 89 

one GCM (General Circulation Model) and cultivar adaptation options, and did not model the effect 90 

of altered agronomic management strategies, such as fertilizer rates, planting density and planting 91 

windows, which are important management practices for optimizing yields in the current sorghum 92 

production systems of the Sudano-Sahelian zone of West Africa. 93 

In most global or regional modeling studies, adaptation strategies are applied as a blanket 94 

recommendation regardless of context, while some management practices might have more 95 

potential in one location than in another (Descheemaeker et al., 2019). Hence, even though the 96 
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literature has clearly demonstrated that climate change affects sorghum crop yields and the 97 

potential of management practices to improve crop yields in the current West African farming 98 

systems (Sultan et al., 2014), the focus has rarely been on a local scale to assess locally-relevant 99 

management strategies. In this study, we assessed the potential of these strategies to improve 100 

sorghum production and assessed their variability across time and space using multiple farms (i.e. 101 

diverse levels of management and soils), comparing their effect with the effect of climate changes 102 

under the same current production systems.  103 

The main objectives of this research were to: (i) assess the effect of future climates on sorghum grain 104 

yields under current production systems in the Sudano-Sahelian regions of West Africa, (ii) assess the 105 

effect of improved management practices on sorghum grain yields, (iii) compare the effect of future 106 

climates and improved management strategies on sorghum grain yields in the current production 107 

systems, in order to guide the choice of locally-relevant options and help to direct policy-makers in 108 

prioritizing their action, and (iv) assess the level of agreement between the 2 most frequently used 109 

models in this area of study (i.e. uncertainty, which it is important to consider to guide policy makers 110 

in their recommendations).  111 

Materials and methods 112 

Study sites 113 

Our research focused on two study sites that were representative of the Sudano-Sahelian zone of 114 

West Africa, where sorghum is one of the main staple crops. Navrongo (Upper East Region, Ghana) 115 

lies at 10.89°N and 1.09°W at an elevation of 198 m. Koutiala (Mali) is at 12.37° N and 5.47° W, at an 116 

elevation of 350 m. Agriculture remains the dominant economic activity at both sites and 117 

predominantly involves smallholders. The main difference between the two sites is the level of 118 

farming system intensification. Koutiala, being part of the cotton belt in Mali, benefits from better 119 

access to fertilizers, inducing a relatively better soil fertility status compared to the soils in Navrongo.  120 
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Navrongo features a unimodal rainfall pattern (annual mean total: 969 mm) beginning in May and 121 

ending in September/October. The minimum and maximum daily mean temperatures over this 122 

period are 19.2°C and 40.4°C respectively. The amount of annual rainfall is marked by high inter-123 

annual and intra-annual variability that influences vegetative production and has a negative effect on 124 

crop production. In Koutiala, the cotton zone of southern Mali, rainfall starts in May and ends in 125 

October, with an average annual rainfall of 935 mm, a moderate drought risk (20% inter-annual 126 

variability), with a mean daily temperature varying between 13.8°C and 36.6°C. Detailed 127 

meteorological records have been compiled by AGRHYMET Regional Center and National 128 

Meteorological Agencies. 129 

Crop models 130 

Two crop models were used for this ex-ante assessment study: (1) the Decision Support System for 131 

Agro-technology Transfer (DSSAT v. 4.6) Cropping Systems Model (Jones et al., 2003), and (2) the 132 

Agricultural Production Systems Simulator (APSIM v. 7.5) ( Holzworth et al. 2014). The DSSAT model 133 

was previously used in simulation studies in Ghana and Mali (Akinseye et al., 2017; MacCarthy et al., 134 

2010), and in the Sahel (Traoré et al., 2007). This version of the APSIM model was also calibrated and 135 

used in previous studies in West Africa (Akinseye et al., 2017; MacCarthy et al., 2009). For the model 136 

simulation set-up, we followed the Agricultural Model Intercomparison and Improvement Project 137 

(AgMIP) Regional Integrated Assessment (RIA) approach (Rosenzweig et al., 2013). Field information 138 

on crop yields was collected from a household survey at both sites, and we assessed the effect of 139 

future climates and of improved management practices on sorghum grain yields. 140 

Reference data 141 

The reference survey data used for Navrongo were collected in 2012 on 276 smallholder farms, 169 142 

of which cultivated sorghum. The survey data included observed yields, cost of manure and fertilizer 143 

applications, household size and geo-reference, and the sowing window. Within each planting 144 

window defined in the survey (from mid-May to mid-July), a sowing rule was then applied to 145 
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automatically trigger planting after 25 mm of accumulated rainfall in 2 rainfall events (Figure 1a). 146 

Neither manure nor fertilizer were applied on sorghum (information derived from the cost of manure 147 

and fertilizer applications). The observed sorghum yields ranged from 33 to 1090 kg ha-1 with a low 148 

average yield of 388 kg ha-1 (Figure 1b). 149 

FIGURE 1 150 

In the Koutiala district, we retrieved sorghum yields ranging from 90 to 1942 kg ha-1 (Figure 1b) from 151 

the RuralStruc World Bank survey undertaken in 2007. The average sorghum yields at this site were 152 

733 kg ha-1. Data were obtained from 153 households in six villages, namely Namapala, Try, Tonon, 153 

Signe (Sirakele), Gouantiesso and Kaniko, and included information about harvested yields and the 154 

total N applied (at farm level). The survey data did not include information about sowing dates or soil 155 

types for each household. As such information is essential for setting up crop models, we used 156 

expert-based rules to represent the diversity of farms and the heterogeneity typical of the low input 157 

farming systems of the Koutiala district. Sowing dates were randomized based on expert knowledge 158 

about farmer practices, where farmers planted cotton by  10 June, on average, followed by maize 7 159 

days later and sorghum 15 days after the cotton. Figure 1a shows the frequency of sowing dates for 160 

sorghum at both sites. 161 

   162 

For both sites, the soil data used for the study (Table 1) were those reported in the literature, 163 

supplemented with soil survey data. To assign a soil to each household, we allocated the soils 164 

according to the village location and farm location (i.e. identification of soils present in the village 165 

from a soil map produced by PIRT, 1983), and sorghum yield levels (i.e. better soil where sorghum 166 

yield was high). The models were initialized 30 days prior to the sowing window,to account for initial 167 

water conditions, which were not available in the survey data. This initialization period was sufficient 168 

in the study area context, as the planting date occurred at the beginning of the rainy season after a 169 

dry season of around 8 months. The initial N in the soils varied from 9 to 20 kg. ha-1,  values similar to 170 

those found in the region (Traore et al. 2017). 171 
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TABLE 1 172 

For Navrongo, the sorghum variety used was ICSVIII (calibration and validation: MacCarthy et al., 173 

2009, and MacCarthy et al., 2010). ICSVIII is an improved cultivar being promoted by agricultural 174 

research in the northern part of Ghana. ICSVIII is not photoperiod-sensitive. In Koutiala, the locally 175 

common sorghum variety CSM335 (calibration and validation: Akinseye et al., 2017) was assumed to 176 

be cropped by all the farmers. CSM335 is a long cycle cultivar taking up to 130 days to mature and is 177 

moderately photoperiod-sensitive. Table 2 shows the genetic coefficients and their values as used in 178 

the study. 179 

TABLE 2 180 

Management levels 181 

To test the effect of management practices on the current production systems, two management 182 

packages were simulated that included improved agronomy over the baseline practice, with and 183 

without improved genetics.  184 

Improved agronomy involved the addition of 30 kg N ha-1 over the baseline fertilization rate, 185 

combined with an increase in the plant population from 4 to 5.5 plants m-2. These changes in 186 

management practices were chosen after carrying out a sensitivity analysis (i.e. yield reaching a 187 

plateau) and taking into consideration the local context (i.e. affordability of and access to inputs). In 188 

Navrongo, we first improved the management practices (as it was a very low input system) and then 189 

we combined this intervention with the inclusion of an improved cultivar. In Koutiala, the first 190 

intervention package involved genetic improvements on the cultivar over the baseline cultivar, whilst 191 

the second intervention package was a combination of management and genetic modifications. This 192 

choice was made because of the differences in the current agricultural systems, with Koutiala having 193 

slightly more intensive farming systems, using fertilizer inputs in the main crop of cotton and maize. 194 

In Navrongo, much less fertilizer was used, hence we considered that adding fertilizer and improving 195 

management practices should be the first intervention put in place. 196 
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Genetic improvement was intended to create a cultivar that was heat stress-tolerant and had a 197 

higher grain yield potential. To that end, we altered the phenology and partitioning to simulate 198 

plants with shorter stems (shorter vegetative phase) to lessen the susceptibility to wind, and a higher 199 

reproductive mass ratio (longer reproductive phase, and higher grain weight) to improve the harvest 200 

index (Singh et al. 2014). Hence, we shortened the time from emergence to the end of the juvenile 201 

phase by 10 and 20% (for CSM 335 and ICVS III, respectively) and lengthened the photo thermal time 202 

from flowering to maturity by 10 and 20% (for CSM 335 and ICVS III, respectively), and we increased 203 

the relative partitioning of assimilates to the panicle (G2 in DSSAT and dm_per_seed in APSIM) by 204 

20% (Table 2). Additionally, the upper optimum temperature threshold of RGFILL (i.e. relative grain 205 

filling rate) was increased (from 35 to 37°C) for CSM 335 to lengthen the optimum period when grain 206 

filling occurred, thereby making it more tolerant of heat stress. 207 

Current and future climate data 208 

Baseline (1980-2009) and future (2040-2069) climates from 5 Global Circulation Models (GCMs) for 209 

each of the Representative Concentration Pathways (RCP), 4.5 and 8.5, were used as inputs for the 210 

crop models, following the Agriculture Models Inter-comparison and improvement Project (AgMIP) 211 

protocol (Rosenzweig et al. 2013, Ruane et al. 2015). The choice of using multiple climate scenarios is 212 

a way of considering climatic uncertainty related to these climate models (Corbeels et al. 2018). The 213 

historical data used in this study consisted mainly of daily observations of rainfall, solar radiation and 214 

temperatures available at the AGRHYMET Regional Center for the 1980-2010 period. When needed, 215 

missing data were replaced with corresponding AgMERRA time series data (Ruane et al., 2015), with 216 

bias adjustment according to a comparison between AgMERRA and the monthly climatology of the 217 

observed station. 218 

FIGURE 2 219 

For future climates, 5 GCMs were selected for each site from a total of 29 GCMs that best described 220 

the climate of each site following a quadrant approach (Ruane and McDermid, 2017), geared to 221 
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sampling 5 climate scenarios relevant to the region, and to representing the diverse possible climate 222 

scenarios (even if not equally probable). In this approach, a scatterplot combining the changes in 223 

temperature and precipitation (taking into consideration the number of rainy days), compared to the 224 

baseline, was plotted (Figure 2) to determine whether the GCM outputs leant towards relatively 225 

warmer and drier, warmer and wetter, cooler and wetter, cooler and drier, or average conditions for 226 

two Representative Concentration Pathways (RCP), 4.5 and 8.5. Hence, out of the 29 GCMs those 227 

best representing Hot/Wet, Hot/Dry, Middle, Cool/Wet and Cool/Dry future climate scenarios were 228 

identified to generate daily weather data for the 2 study sites (Figure 2). Table 3 provides the list of 229 

GCMs selected for Navrongo (Ghana) and Koutiala (Mali). All the selected GCMs simulated a 230 

significant increase in monthly temperatures at both sites, but the changes were not uniform across 231 

GCMs and sites. Overall, in the RCP 8.5 scenario temperatures were expected to increase by up to 232 

2.72°C and 3.10°C in Navrongo and Koutiala, respectively. For precipitation, the expected changes 233 

were more contrasting, with a 6% decrease in the driest scenario and a 15% increase in the wettest 234 

in Koutiala (resp. Navrongo: -3% and +12%). 235 

TABLE3 236 

Scenario analysis 237 

Baseline simulations (current climate and farmer practices) were used to validate input parameters 238 

and assess the ability of the models to reproduce the observed yield variability in the survey data (i.e. 239 

capturing farm diversity). Outputs from these simulations were used to assess yield variability due to 240 

management practices (across households) and due to climate (across years). To assess these 241 

variabilities, we computed the coefficients of variation across farms for all years (Vm) and across 242 

years for all farms (Vw), as follows: 243 

�� =  �� �
�� ∑ 
 ���� − �������������� �

�̅�
       Equation 1 244 

�� = ���
� ∑ 
 ��� − ������������ �

�̅�
       Equation 2 245 
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Where ℎℎ and � are the number of households and year respectively,  ����  is the average sorghum 246 

grain yield for each household, ���  is the average sorghum grain yield for each year ,and �̅ is the 247 

average grain yield across years and households. 248 

 249 

For the ex-ante assessment study, the two crop models were run for each combination of eleven 250 

future climates (baseline and ten future climates) and three management scenarios (current 251 

management practices and the two intervention packages) to assess the sensitivity of current 252 

sorghum production systems to future climates and (separately) improved management practices. 253 

First, we set out to assess the sensitivity of the current agricultural production systems to future 254 

climates (i.e. the production system remained in its current state). Second, we assessed the effect of 255 

the intervention packages in the current systems. For both questions, we calculated the average 256 

percentage change relative to the baseline yield. 257 

�ℎ���� ��  �!"� (%) = 100 ∗ )*+,-./�0 10/2�34 ��,5678.1,5�-, 10/2�34 ��,56
8.1,5�-, 10/2�34 ��,56 9  Equation 3 258 

Further, to understand differences between the two crop models under future climates, we 259 

conducted a sensitivity analysis of sorghum grain yields to prescribe incremental environmental and 260 

management changes (i.e. testing of model sensitivity to [CO2], temperature, water, and N 261 

conditions). For this, we followed the CTWN protocol from AgMIP (crop responses to changes in 262 

carbon dioxide concentration ([CO2]), temperature, water, and nitrogen, Ruane et al. 2017). Using an 263 

average farm selected on the basis of the closeness of simulated yields with the observed median for 264 

both crop models, we varied CO2 levels (360, 450, 540, 630, 720 ppm), temperatures (-2, 0, +2, +4, +6 265 

and +8°C), rainfall (25, 50, 75, 100, 125, 150, 175 and 200%) and nitrogen application rates (N= 0, 30, 266 

60, 90, 150, 180 kg ha-1). These levels represent plausible changes in environmental conditions that 267 

make it possible to test the sensitivity of crop models (Rosenzweig et al., 2013, Franke et al. 2019). 268 

Finally, to establish the relative magnitude of each factor (improved management versus future 269 

climate) on sorghum grain yields, we compared the effect of the intervention packages with the 270 

effect of future climates across farm strata. For current sorghum production systems, since fertilizers 271 
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were not applied, the main differences between farms arose from variable soil properties and sowing 272 

dates.  273 

 274 

Results 275 

Ability of the models to reproduce yield variability  276 

Table 4 shows that variability across farms (Vm) was greater than variability across years (Vw). The 277 

effect of management practices and soil (Vm) on grain yields amounted to 49% and 79% of variability 278 

in grain yields in the observed data for Koutiala and Navrongo, respectively. These variabilities were 279 

similarly simulated with both models for Koutiala, while for Navrongo, the observed variability is 280 

twice the simulated one by APSIM. With respect to weather, inter-annual variability (Vw) at both 281 

sites, APSIM appeared to simulate less variability in sorghum grain yields than DSSAT. The level of 282 

variability from year to year varied from 11% to 20%, thus Vw was less important compared to the 283 

variability associated with soil and management practices (from 49 to 79% in the observed data). 284 

In Navrongo, the simulated sorghum grain yields from DSSAT ranged from 233 to 1208 kg ha-1, with 285 

an average yield of 579 kg ha-1,  being slightly higher than the observed yields (Table 4). With APSIM, 286 

the simulated grain yields ranged from 315 to 843 kg ha-1, with an average yield of 490 kg ha-1. The 287 

simulated yield variability across farms (Vm) was 56% and 34% for DSSAT and APSIM, respectively, 288 

which was lower than the observed variability between farms (Table 4). In Koutiala, simulated 289 

sorghum grain yields from DSSAT ranged from 240 to 1357 kg ha-1, with an average yield of 757 kg ha-290 

1 and from 319 to 1498 from APSIM, with an average yield of 780 kg ha-1 among households. 291 

Variability across farms (Vm) was 38% and 42% for DSSAT and APSIM, respectively, similar to the 292 

observed variability among farms (Table 4).  293 

TABLE 4 294 

 295 

 296 
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 297 

Effect of future climates on sorghum grain yield 298 

Overall, the APSIM model simulated positive effects on sorghum grain yields for future climates for 299 

both sites (Figure 3). However, with the DSSAT model, the effect was largely negative in Koutiala, 300 

particularly for the warm cases (both wet and dry), and for some cases in Navrongo.  301 

In Koutiala, yield changes under future climates assuming unchanged management ranged (DSSAT) 302 

from -38 to -8% on average (Figure 3). Simulated grain yields ranged from 524 kg ha-1 for the warmer 303 

to drier case and 667 kg ha-1 for the cooler and drier case under RCP 4.5, compared to the simulated 304 

baseline yield of 757 kg ha-1. Under RCP 8.5, average yields ranged from 455 kg ha-1 (warmer/drier) to 305 

616 kg ha-1 (cooler/wetter), confirming the expected stronger yield reductions under RCP 8.5, 306 

compared to RCP 4.5. Generally, warmer cases resulted in greater yield reductions. For APSIM, yield 307 

changes ranged from 0 to +7%. Simulated yields for future climates ranged fromc799 kg ha-1 308 

(cooler/wetter) to 860ckg ha-1 (warmer/drier) under RCP 4.5, compared to the simulated baseline 309 

yield of 803 kg ha-1. Under RCP 8.5, average yields ranged from 774 kg ha-1 (warmer/wetter) to 866 310 

kg ha-1 (cooler/drier), representing more contrasting yield changes of -3 to +8%.  311 

In Navrongo, yield changes under future climates assuming unchanged management either 312 

decreased or increased compared to the baseline, depending on the crop model and the GCM. DSSAT 313 

simulations indicated slight reductions for 4 out of 5 GCMs, ranging from +1% to -7% relative to the 314 

baseline yield of 572 kg ha-1. Interestingly, the sole GCM featuring stable yield (+1%) corresponded to 315 

the warmer/drier case. Under RCP 8.5, yields ranged between 516 and 566 kg ha-1, amounting to a 316 

reduction of 9 % for the cooler/wetter case vs. stable to marginal gains of between 0 to 4 % in the 317 

remainder. The warmer/wetter case recorded the lowest yields under RCP 4.5. In APSIM, all the 318 

GCMs simulated slight to moderate yield gains (RCP 4.5: 1-5%; RCP8.5: 5-10%) relative to the 480 kg 319 

ha-1 baseline (Figure 3). Under RCP 4.5, the highest yields (520 kg ha-1) were predicted for the 320 

warmer/drier case, and the lowest yields for the cooler/wetter case.  321 
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FIGURE 3 322 

Overall, the results suggested a stronger negative impact of future climates on sorghum grain yields 323 

in Koutiala compared to Navrongo (Figure 3). This difference was even larger with DSSAT simulations. 324 

APSIM almost never predicted yield decreases, while DSSAT did in most cases, and mostly in Koutiala. 325 

The differences in model output can partly be explained by their differences in the sensitivity to 326 

phenology, and partly by the level of intensification at the sites. While APSIM will extend phenology 327 

due to nutrient stress, phenology in DSSAT is not sensitive to nutrient stress. Additionally, the future 328 

projected climates indicated an extension of rains into dryer months (in the baseline weather). 329 

Hence, the simulations in APSIM benefited from the extended rainfall in the future climate 330 

(compared to the baseline climate), resulting mainly in positive yield changes that the DSSAT 331 

simulations did not benefit from. 332 

The difference in yield impact between the two sites can also be explained by the fact that Koutiala is 333 

a relatively more intensive site with an average observed grain yield of 733 kg ha-1 compared to only 334 

388 kg ha-1 for Navrongo. Looking at the overall simulation points (Figure 4), the results from DSSAT 335 

showed that the higher the simulated grain yield was, the lower was the probability of a large gain or 336 

reduction due to future climates (i.e. the variability in grain yield change diminished), regardless of 337 

the climate outcome (drier/wetter/cooler/warmer). Additionally, higher grain yields were associated 338 

with lower variability in yield changes (inter-annual and across farms) in future climates. With APSIM, 339 

the future variability in yield changes was also slightly reduced with higher simulated yields (Figure 340 

4). This result suggested a greater sensitivity of low crop yield fields to future climates.  341 

FIGURE 4 342 

To further explain the differences between the two models, we conducted an analysis of grain yield  343 

sensitivity to key climatic variables and the level of nitrogen applications (Figure 5). While model 344 

responses to CO2 (i.e. no response as expected for a C4 crop with low N input) and rainfall (i.e. water 345 

stress response when rainfall was reduced by a factor over 2) were similar (Figure 5a&b), DSSAT was 346 

more sensitive to temperature increases, with reduced grain yields starting as early as +2°C. For 347 
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APSIM, yield reductions were only observed for temperature increases of +8°C (Figure 5c). This 348 

protracted response of APSIM to rising temperature resulted in a marginal grain yield decline, 349 

whereas DSSAT yields declined sharply. Conversely, we found that APSIM was more sensitive to 350 

increased nitrogen fertilization rates, with a clear response in sorghum grain yields from 800 kg ha-1 351 

to 4 t ha-1 (Figure 5d). These results will be further addressed later to explain the model differences 352 

in the discussion section. 353 

FIGURE 5 354 

Effect of improved management on sorghum grain yields 355 

In the current climate in Koutiala, shifting to the proposed improved variety demonstrated marginal 356 

effects on grain yields, regardless of which crop model was used (Figure 6). Meanwhile, increased 357 

fertilization rates and planting density boosted average grain yields by 20% in DSSAT and 153% in 358 

APSIM (Figure 6). For Navrongo, improved agronomy (higher fertilization rates and planting 359 

densities) resulted in average grain yields of 1616 kg ha-1 (DSSAT) and 1539 kg ha-1 (APSIM), 360 

respectively corresponding 256% and 236% gains over the baseline yields (Figure 6). The addition of 361 

genetic improvement resulted in further average yield increases of 12 and 24% for DSSAT and APSIM 362 

respectively.  363 

The difference in yield impact between the two sites due to improved agronomy can partly be 364 

explained by the difference in the observed absolute crop yield level at both sites (Figure 1b). In 365 

Koutiala, the average observed grain yield was 733 kg ha-1 (with a maximum yield of 1942 kg ha-1) 366 

compared to an average of 388 kg ha-1 (with a maximum yield of 1090 kg ha-1) for Navrongo. Further, 367 

we can see in Figure 1b that Navrongo had a higher frequency of lower yields than Koutiala, 368 

re-enforcing the higher percentage yield change in Navrongo than in Koutiala. Indeed, in Navrongo 369 

the response to higher fertilization rates was greater than that in Koutiala, because the yield gap was 370 

already higher, mainly due to the lower fertility and shallower soil depth. 371 

FIGURE 6 372 
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Our study showed that, in the current sorghum production systems, management practices have 373 

more effect on grain yield than the potential effect of future climates. It appeared that, whatever the 374 

crop model used, the benefits of improved management practices (increased fertilizer rates, 375 

improved planting density) will always be greater than the effect of future climates. 376 

However, Figure 7 shows the yield change due to future climates in relation to the yield change 377 

resulting from improved management for all the simulated data points, according to soil types, 378 

future climate cases, and crop models. The red dashed line is the critical region below which positive 379 

yield changes arising from improved management could not compensate for the potential yield 380 

losses due to future climates. When comparing all yield changes (not averages) in the current 381 

production systems due to future climates and those due to improved management, we found that 382 

yield changes due to management practices did not always offset the yield changes due to climate 383 

change (Figure 7). The ability of changes due to management practices to offset those due to climate 384 

change depended on the soil type. For almost all the simulations with APSIM (except in very few 385 

cases), the changes due to improved management will compensate for the negative yield change due 386 

to future climates. With the simulations from DSSAT, the picture was slightly different. Although, in 387 

most cases, the yield changes due to improved management were greater  than the negative yield 388 

changes due to future climates (above the red line), a small proportion of the data points still 389 

remained below the red dashed line. We found this was mostly the case for soils with a higher level 390 

of initial nitrogen (ITML840104, ITML840107, ITML840106, and ITML840102, Table 1 and Figure 7). 391 

These results suggested that soils with low fertility (most of the cases in West Africa) would be more 392 

responsive to the recommended improved management practices. On better soils, we found that the 393 

effect of improved management would not increase sorghum grain yields well enough to 394 

compensate for the potential effect of future climates.  This further supported our findings in Figure 395 

4, which showed that at potential low-yield sites future climate effects could vary greatly and there 396 

was a need to first get the management practices right before being able to understand the effect of 397 
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future climates on sorghum grain yields. No major differences in the effect of improved management 398 

were observed according to sowing dates (data not shown). 399 

FIGURE 7 400 

Discussion 401 

Multi-farm assessment study: choice of scale and model 402 

The agricultural modeling community has developed climate impact protocols and conducted 403 

multiple inter-comparisons of models to evaluate and demonstrate applications within the 404 

Agricultural Model Inter-comparison and Improvement Project (AgMIP; Rosenzweig et al., 2013; 405 

Ruane et al., 2017). The same methodology was applied in this study to (i) conduct a multi-farm level 406 

assessment of the impact of climate change to capture farm heterogeneity, taking into account 407 

differences in crop management practices and soils (Freduah et al. 2019), as well as (ii) comparing 408 

different crop model simulations (Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015). 409 

This analysis revealed that the variability among farmers was greater than the variability due to intra-410 

annual weather variability (Table 4), supporting previous studies showing the high intra-village 411 

variability of crop yields (Traoré et al. 2011). This variability in grain yields was the consequence of 412 

the different soil types and management practices captured in the household surveys. This was an 413 

important result for being able to identify where the effect of future climates on sorghum grain 414 

yields was strongest, thus aiding in targeting management strategies according to the context. We 415 

demonstrated that for soils with higher initial N, the effects of improved management were likely to 416 

be lower relative to those with low initial N, especially when using the DSSAT model (almost all 417 

simulations were under the red dashed line in Figure 7 for those soils). For simulations with APSIM, 418 

the effects of improved management were also evident, but to a lesser extent on those soils with 419 

higher initial N than the others. Hence, the future climate effect on sorghum grain yields might be 420 

greater or more visible than the effect of improving crop management when soil fertility is higher 421 

(Dimes et al. 2009). This result confirmed the outputs from a regional study by Faye et al. (2018), 422 
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which concluded that under intensification scenarios, yield losses due to climate change will be 423 

higher for maize and sorghum than yield losses under the current production systems. However, it is 424 

key to note that regional studies (Faye et al., 2018; Sultan et al. 2014) usually use climate, soil, and 425 

crop management inputs that can cause uncertainties in crop model outputs, due to a lack of 426 

information about the local context (i.e. diversity of soils, diversity of varieties, and management 427 

practices). It remains important to be able to properly define the diversity of conditions (cultivar, soil, 428 

management practices) on global and regional scales. Faye et al., (2018) and Gbegbelegbe et al. 429 

(2017) already demonstrated the importance of considering different cultivars to capture yield 430 

variability at regional and global level. In this study, we added the importance of considering soils 431 

and management practices too, reflecting the farm heterogeneity existing in the West Africa region. 432 

Model differences and improvement 433 

Another advantage in applying this methodology was the use of two different crop models to 434 

evaluate the level of uncertainty in our assessment. The uncertainty of the simulation outputs for a 435 

given crop model is related to differences in model sensitivity to temperature, CO2, rainfall, and N. 436 

Our study indicated that DSSAT had high sensitivity to temperature, while APSIM responded more 437 

strongly to nitrogen application (Figure 5), confirming the results of Faye et al. (2018). Such model 438 

behavior explains the minor response of APSIM to future climates, while with DSSAT, in most cases, 439 

we simulated a negative effect of future climates, due mostly to an increase in temperature, resulting 440 

in yield losses in the warmer future climate cases. Bassu et al (2014) also demonstrated that the 441 

negative response of maize yields to rising temperatures could be a significant challenge for local 442 

food production. Likewise, the literature (Sultan et al.,2013, Faye et al. 2018) showed that sorghum 443 

grain yield losses increased as temperatures increased, confirming the important role of this factor in 444 

reducing crop yields, as simulated by DSSAT in this study. The difference in model outputs could be 445 

attributed to differences in the optimum temperature functions used for sorghum in the two models. 446 

In the version of the models used for this study, DSSAT stopped the photosynthesis process when the 447 

temperature reached 44°C, while for APSIM the threshold temperature was 50°C. Further, to create a 448 
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more heat-tolerant cultivar, we changed the upper threshold value to the response curve of the 449 

effect of temperature on relative grain filling rate in DSSAT, while with the version of APSIM that we 450 

used (v.7.5) the effect of high temperature shock on seed set was not yet included. Interaction during 451 

this work with APSIM modelers did indeed lead to improvement of the model, with the addition of 452 

CO2 , fertilization effects and the effect of high temperature shock on seed set for version 7.10. These 453 

different responses of the two crop models to environmental variables (temperature, nitrogen, 454 

water) call for care in the choice of models and model improvements when carrying out a climate 455 

impact assessment study and reinforce the importance of justification for the use of a particular crop 456 

model for a study (Challinor et al., 2018). Many climate change impact assessment studies have been 457 

carried out in the West Africa region with different crop models (Amouzou et al., 2019; Faye et al., 458 

2018; Roudier et al., 2012; Sultan et al., 2014; Traore et al., 2017, this study), but there is rarely a 459 

clear explanation for the choice of the model used, and whether the version of the crop model used 460 

included the key elements discussed here. For low input cropping systems, it also appears essential 461 

to choose crop models that can accurately simulate nitrogen dynamics and responses to crop 462 

phenology, and also ensure that they have been properly tested. 463 

Recommendation for action: better agronomy rather than breeding 464 

While trying to capture climate model uncertainty (Corbeels et al. 2018) by including 10 different 465 

future climates ( 5GCM * 2 RCP), we can still conclude that sorghum, as it is cultivated today, is 466 

moderately vulnerable to future climates (compared to improved management, Figures 3 and 6). In 467 

addition, we showed that the higher the simulated grain yields were, the less variability there was in 468 

simulating the effect of future climates on sorghum grain yields, irrespective of the climate cases. 469 

This suggests a need to explore the increase in sorghum yields through improved agronomic 470 

practices, before thinking about the effect of climate change. In other words, if farmers maintain 471 

their current management practices and yield levels, climate change will be largely inconsequential 472 

due to the over-riding constraint of fertility on crop yields (Dimes et al. 2009). There is an urgent 473 

need to improve sorghum productivity by improving access to inputs through subsidies (Falconnier et 474 
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al. 2018). With this research, we clearly showed the importance of management practices that 475 

outweigh the impact of climate change on sorghum in the semi-arid region of West Africa. To 476 

reinforce this statement, the simulation outputs, independent of the crop models used, clearly 477 

showed the strong effect of improved management practices on sorghum grain yields (Figure 6). We 478 

can say that doubling fertilizer inputs today, with adjusted planting densities, will more than double 479 

sorghum yields, and that increasing smallholder use of fertilizers and improved management 480 

practices is more important today than improved varieties ( Figure 6). The percentage increases in 481 

yields were within those reported by other studies in similar environments. An on-station study by 482 

Naab et al. (2015) reported a high N response (increases) of 314% in maize yields averaged over 4 483 

years when comparing yields without N fertilizer with those that received 60 kg N ha-1. Similarly, in 484 

on-farm research carried out by MacCarthy et al. (2009), sorghum yields increased from an average 485 

of 705 kg ha-1 without N fertilizer applications to an average of 2212 kg ha-1 with the application of 40 486 

kg N ha-1 on a bush farm, which resulted in roughly a 214% increase in sorghum yields. 487 

Further, we showed that the additional effect of using an improved cultivar resulted in a relatively 488 

lower yield increase compared to the intervention package without improved cultivar use. This was 489 

probably because the farming systems in this study area were under-optimized. However, with 490 

expected socio-economic changes and assumable greater investment in soil quality (Dimes et al. 491 

2009, Falconnier et al. 2018), drought or heat tolerant varieties might become more important under 492 

future climates. Hence, there is an urgent need to prioritize better agronomy in these systems. As 493 

Giller et al. (2017) mentioned, improving crop cultivars will widen the yield gap, hence we need to 494 

focus first on better agronomy to address the immediate needs for crop yield improvement, given 495 

that improved cultivars can only perform under good management practices. However, we should 496 

not fall into the trap of just advising better agronomy. It is essential to target our recommendation 497 

according to the context and adapt management practices according to the heterogeneity of farms. 498 

As shown in this research, improved management has more impact on poor soils than on good soils, 499 

and the effect of future climates seemed more variable in the low potential sites. Hence, it is 500 
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important to target those sites first to improve current crop yields. In addition, even though we only 501 

looked at the biophysical aspects that can improve crop yields in this research, the heterogeneity 502 

found on the farms we studied (i.e. the context) was also the reflection of socio-economic 503 

circumstances (i.e. access to fertilizers), which should be considered in further studies. As indicated 504 

by Tittonell et Giller (2013) “The lack of immediate response to increased inputs of fertilizer and 505 

labour in such soils constitutes a chronic poverty trap for many smallholder farmers in Africa” (p79). 506 

 507 

Concluding remarks 508 

Many studies in the literature (Sultan et al. 2014, Challinor et al.2014, Faye et al. 2018) have shown 509 

that climate change will undeniably affect crop productivity in West Africa. However, our study 510 

showed that this statement needs to be taken with caution, especially for sorghum crops. In this 511 

multi-farm ex-ante assessment at local level, we showed that sorghum is a climate-resilient crop, 512 

with future climates having little effect on its yields. However, there is an urgent need for better 513 

agronomy to boost its yields in the semi-arid regions of West Africa. The results of the study showed 514 

that not only will  (1) a change in management practices (such as the addition of fertilizers and 515 

planting density) more than double grain yields, but also (2) that  inter-farm yield variability is greater 516 

than inter-annual weather variability. Further, for ex-ante analysis and in particular for the climate 517 

change study, it is important to consider the choice of crop model, as this study revealed the high 518 

sensitivity of DSSAT to temperature, while APSIM responded more strongly to nitrogen application. 519 

This will be very important to take into consideration when interpreting results, as uncertainty from 520 

model outputs needs to be considered when conveying a message to stakeholders. In the current 521 

sorghum production systems in the semi-arid regions of West Africa, our study clearly showed 522 

(irrespective of the crop models) that the effect of management practices was greater than the effect 523 

of future climates on sorghum grain yields. 524 
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Figure 1: Sowing dates cumulative frequency (A) and observed sorghum grain yield frequency (B) for 

both study sites, showing earlier sowing in Navrongo than in Koutiala; and higher frequency of low 

grain yield in in Navrongo than in Koutiala. 
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Figure 2: Scatterplot of change in temperature and precipitation in JJAS period describing the AgMIP 

criteria of the selection of the 5 GCMs in Navrongo station in Ghana, Koutiala (Mali). In green are 

climate scenario classified as relatively cooler and wetter than the average; in blue scenario relatively 

cooler and drier; in yellow relatively hotter and wetter; in red relatively hotter and drier; and in black 

average scenario (middle). The numbers correspond to the number of climate scenario in each 

categories ( i.e. cool-wet ). Letters corresponds to a specific GCM (A:ACCESS1-0/ B:bcc-csm1-1/ 

C:BNU-ESM/ D: CanESM2/ E: CCSM4/ F: CESM1-BGC/ G: CSIRO-Mk3-6-0/ H: GFDL-ESM2G/ I: GFDL-

ESM2M/ J: HadGEM2-CC/ K: HadGEM2-ES/ L: inmcm4/ M: IPSL-CM5A-LR/ N: IPSL-CM5A-MR/ O: 

MIROC5/ P: MIROC-ESM/ Q: MPI-ESM-LR/ R: MPI-ESM-MR/ S: MRI-CGCM3/ T: NorESM1-M) 

 

 

 

  



 

Figure 3: Climate change impact (in percent of change) on sorghum productivity simulated by two 

crop models (APSIM and DSSAT) for the current systems in Koutiala and Navrongo. 

 

  



Figure 4: Response of yield change (%) relative to baseline grain yield (kg.ha-1) for all climate scenario 

and all sites for two RCP simulated by two crop models (APSIM, DSSAT). 

 

 

  



Figure 5: Sensitivity of the crop models to CO2, temperature, water/rainfall, and nitrogen (CTWN) in 

Koutiala, Mali: a. Response to elevated CO2 under 180 kg N ha-1 fertilizer applied, b. response to 

rainfall changes, c. Response to temperature changes, d. response to N application.  The boxplots 

represent the inter-annual variability simulated by APSIM (red) and DSSAT (blue), while the lines 

repesent the mean sorghum grain yield simulated by APSIM (yellow) and DSSAT (green). 

 

  



Figure 6: Yield changes for sorghum grain in percent simulated by two crop models (APSIM and 

DSSAT), for different intervention packages under current climate at Navrongo and Koutiala study 

sites. 

 

 

  



Figure 7: Yield change due to climate change vs yield change due to intervention packages yield for 

all climate scenarios simulated by two crop models, represented by soil type. The red dashed line 

represents the limit beyond which increases due to intervention packages can compensate (over the 

line) the potential effect of climate change on the current cropping systems.  

 



 Table 1. Soil parameters used in simulations for the Navrongo, Ghana, and Koutiala Mali. The shaded soils are soils with higher initial N. 

Location Soil ID L 

(cm) 

SLL 

(cm3/cm3) 

SDUL 

(cm3/cm3) 

SAT 

(cm3/cm3) 

BD 

(g/cm3) 

OC 

(%) 

pH NH4 

(mg/kg) 

NO3 

(mg/kg) 

Navrongo GHNA01 

 

5 0.052 0.176 0.352 1.43 0.3 5.5 1 0.5 

15 0.052 0.176 0.352 1.43 0.3 5.5 1 0.5 

30 0.052 0.176 0.321 1.45 0.29 5.3 0.5 0.5 

50 0.073 0.192 0.32 1.45 0.25 5.3 0.5 0.5 

GHNA02 

 

5 0.082 0.213 0.352 1.56 0.39 6.2 1 0.5 

15 0.082 0.213 0.352 1.56 0.39 6.2 1 0.5 

30 0.09 0.209 0.321 1.58 0.36 5.9 0.5 0.5 

50 0.11 0.205 0.32 1.56 0.32 5.9 0.5 0.5 

GHNA03 5 0.054 0.131 0.353 1.67 0.58 5.1 2 0.5 

15 0.054 0.131 0.353 1.67 0.58 5.1 1 0.5 

30 0.094 0.119 0.359 1.74 0.56 5.4 1 0.5 

50 0.106 0.192 0.369 1.83 0.45 5.3 0.5 0.5 

Koutiala ITML840101 10 0.05 0.15 0.45 1.39 0.2 5.4 0.05 0.5 

25 0.05 0.15 0.45 1.39 0.2 5.4 0.05 0.5 

60 0.123 0.234 0.417 1.48 0.1 6.2 0.05 0.5 

110 0.181 0.283 0.406 1.51 0.1 5.8 0.05 0.5 

ITML840102 10 0.153 0.271 0.427 1.45 0.448 5.6 0.3 1.5 

45 0.153 0.271 0.427 1.45 0.448 5.6 0.3 1.5 

70 0.173 0.302 0.438 1.42 0.372 5.3 0.3 1.5 

100 0.172 0.3 0.438 1.42 0.343 5.3 0.3 1.5 

ITML840103 16 0.056 0.117 0.395 1.54 0.29 5.5 0.3 0.7 

23 0.089 0.151 0.374 1.6 0.26 5.4 0.3 0.7 

32 0.106 0.17 0.367 1.62 0.25 5.6 0.3 0.7 

57 0.122 0.183 0.36 1.64 0.19 5.7 0.3 0.7 

83 0.117 0.179 0.364 1.63 0.15 5.9 0.3 0.7 

110 0.114 0.174 0.361 1.64 0.14 5.9 0.3 0.7 

135 0.117 0.179 0.364 1.63 0.13 8.2 0.3 0.7 

150 0.104 0.164 0.361 1.64 0.12 8.3 0.3 0.7 

160 0.105 0.17 0.368 1.62 0.12 8.4 0.3 0.7 

 

 



Location Soil ID L 

(cm) 

SLL 

(cm3/cm3) 

SDUL 

(cm3/cm3) 

SAT 

(cm3/cm3) 

BD 

(g/cm3) 

OC 

(%) 

pH NH4 

(mg/kg) 

NO3 

(mg/kg) 

Koutiala ITML840104 7 0.087 0.184 0.437 1.41 0.91 6.4 0.5 2 

16 0.091 0.174 0.407 1.5 0.6 5.9 0.5 2 

30 0.165 0.255 0.4 1.52 0.6 5.2 0.5 2 

40 0.22 0.32 0.411 1.49 0.54 5.1 0.5 2 

54 0.24 0.343 0.416 1.48 0.46 5.2 0.5 2 

68 0.249 0.356 0.427 1.45 0.41 5.3 0.5 2 

105 0.207 0.301 0.399 1.53 0.32 5.4 0.5 2 

ITML840105 10 0.066 0.139 0.405 1.51 0.384 6.3 0.2 1 

20 0.066 0.139 0.405 1.51 0.384 6.3 0.2 1 

35 0.086 0.162 0.392 1.55 0.273 5.4 0.2 1 

50 0.133 0.22 0.389 1.56 0.221 5.4 0.2 1 

70 0.22 0.316 0.4 1.53 0.221 5.4 0.2 1 

120 0.242 0.341 0.411 1.5 0.157 5.8 0.2 1 

ITML840106 10 0.05 0.15 0.45 1.39 0.3 5.4 0.1 0.7 

25 0.05 0.15 0.45 1.39 0.3 5.4 0.1 0.7 

60 0.123 0.234 0.417 1.48 0.2 6.2 0.1 0.7 

110 0.181 0.283 0.406 1.51 0.1 5.8 0.1 0.7 

ITML840107 7 0.087 0.184 0.437 1.41 0.8 6.4 0.5 1.8 

16 0.091 0.174 0.407 1.5 0.5 5.9 0.5 1.8 

30 0.165 0.255 0.4 1.52 0.5 5.2 0.5 1.8 

40 0.22 0.32 0.411 1.49 0.4 5.1 0.5 1.8 

54 0.24 0.343 0.416 1.48 0.3 5.2 0.5 1.8 

68 0.249 0.356 0.427 1.45 0.3 5.3 0.5 1.8 

105 0.207 0.301 0.399 1.53 0.2 5.4 0.5 1.8 
 

L = Depth of the soil layer, SLL = soil lower limit or wilting point, SDUL = soil drained upper limit or field capacity,SAT = saturated water content, BD = bulk density, OC = organic carbon. 

 

 

 

 

 

 



Table 2. Model parameters of Sorghum used in simulations. Values with a * are values of parameters that did not change for our virtual cultivars; and in bold 

the ones that changed. 

 

Model Codes Definitions ICSVII  CSM335 

baseline improved  baseline improved 

DSSAT P1 Thermal time from seedling emergence to the end of the 

juvenile phase during which the plant is not responsive to 

changes in photoperiod (expressed in degree days). 

470 376  450 495 

P5 Thermal time from beginning of grain filling to physiological 

maturity (expressed in degree days).  

620 744  440 484 

PHINT Phyllochron interval; the interval in thermal time (degree 

days) between successive leaf tip appearances.  

 

65.0 65.0*  60 60* 

P2O Critical photoperiod or the longest day length (in hours) at 

which development occurs at a maximum rate. At values 

higher than P2O, the rate of development is reduced. 

12.6 12.6*  12.6 12.6* 

P2R The extent to which phasic development leading to panicle 

initiation (expressed in degree days) is delayed for each 

hour increase in photoperiod above P2O. 

0.01 0.01*  500 500* 

G1 Scaler for relative leaf size  21.0 21.0*  0.8 0.8* 

G2 Scaler for partitioning of assimilates to the panicle (head)  7.0 8.4  1.0 1.2 

  Duration – emergence to end of juvenile 100 120  220 242 

APSIM  Duration – end of juvenile to panicle initiation 280 280*  140 140* 

 Duration – flag leaf to flowering stage 231 231*  170 170* 

 Duration, flowering to start of grain filling 59 70.8  80 88 

 Duration, flowering to maturity 650 650*  420 420* 

dm_per_seed Grain number determination (g/grain)  0.00083 0.00099  0.00083 0.00099 

 

 

 

 

 

 



 

Table 3. List of the selected GCMs for Navrongo (Ghana), Koutiala (Mali) according the AgMIP protocol. 

 

 

 

 

 

 

 

 

 

Table 4. Source of variation in observed and simulated baseline sorghum grain yield among farms (Vm) and due to inter-annual weather variability (Vw) at 

Koutiala and Navrongo sites. 

Region  Grain yield in 

kg.ha-1(range) 

Vm Vw 

Koutiala Observed 733 (90-1942) 49% - 

Koutiala APSIM 780 (319-1498) 42% 12% 

Koutiala DSSAT 757 (240-1357) 38% 17% 

Navrongo Observed 388 (33-1090) 79% - 

Navrongo APSIM 490 (315-843) 34% 11% 

Navrongo DSSAT 579 (233-1208) 56% 20% 

 

Navrongo, Ghana 

 Cool/Wet Hot/Wet Middle Cool/Dry Hot/Dry 

RCP8.5 CCSM4 CMCC-CMS GFDL-ESM2 BNU-ESM MPI-ESM-MR 

RCP4.5 CCSM4 CMCC-CM MRI-CGCM3 bcc-csm1-1 CMCC-CMS 

Koutiala, Mali 

 Cool/Wet Hot/Wet Middle Cool/Dry Hot/Dry 

RCP8.5 MIROC5 ACCESS1-0 GFDL-CM3 MPI-ESM-MR CCSM4 

RCP4.5 CCSM4 ACCESS1-0 MRI-CGCM3 CMCC-CMS CESM1-BGC 




