Machine and deep learning based identification of organs within LiDAR scans of tree canopies :

Application to the estimation of apple production.

Artzet Simon, Juan-Pablo Rojas-Bustos, Benoît Pallas, Evelyne Costes, Frederic Boudon

H2020 INVITE project

Context - Demonstrate applicability of phenotypic tools in field test conditions for variety testing

- INVITE : INnovations in plant Varlety Testing in Europe
- Test a set of phenotyping tools for tree performance during variety evaluation
- Setup a novel software tools based on machine learning to automatically achieve measurement from images or LiDAR

Context - Collection of diversity - Apple tree LiDAR scan

Context - Previous work on architectural characterisation

Coupel-Ledru et al. 2019

Goal - Apple Detection

State of the art of LiDAR phenotyping and 3D recognition

LiDAR Phenotyping

- Machine learning methods start to be applied
 - Illia Ziamtsov et Saket Navlakha, 2019
- Only on commercial orchard
 - Gene-Mola et al., 2019
 - Tsoulias et al., 2020

3D recognition

- Deep learning outperform machine learning
 - Guo, Wang, Hu, Liu et al., 2020
- Best prediction model are only applied to outdoor and indoor objet like car, building, table, etc.
 - **Hu et al.**, 2020

Hu et al. 2020

Comparison between machine and deep learning pipelines

Data

Field & Synthetic

Dataset - LiDAR scans and meta-data

RAW SCAN:

- 2018 and 2019 : 320 tree scanned
 - Core collection of 250 genotypes
 - Trees not pruned

Harvest data

- Total weight of the fruits per tree
- Mean weigth of fruits (based on 50 fruits)
 - Number of fruits
 - Used for pipeline validation
- Genotype, date, ...

LiDar Information

- X, Y, Z
- Reflectance
- Deviation
- Amplitude

Two LiDAR acquisition protocols

Point density - Top view

Point density - Top view

Challenge for fruit detection

- LiDAR noise
- Tree, leaf and branch occlusion :
 - Variational density
- Wind
 - Apple shape deformation
 - Branch and leaf duplication
- Trees are not pruned
 - $\circ\,$ Almost all trees are mix together

Synthetic data - MappleT + PlantGL - LiDAR Simulation

Boudon et al., 2014

DataSet - Labeled data for Training & Test

Field - 10/320 labeled trees

- 9/290 from 4 Scans LowRes
 - Number of points : ~ 10M
- 1/31 from 11 Scans HiRes
 - Number of points : ~ 2.5M
- Synthetic N (100/250) simulate trees
 - Scan every 90° VeryHiRes
 - Number of points : **12M**

Umbalanced data : Apple point are underrepresented, a hundred times less that the other point

Synthetic - VeryHiRes Noised

Methods

Two pipelines based on machine and deep Learning

Two pipelines based on machine and deep Learning

Two pipelines based on machine and deep Learning

3D Geometric Features - Fast Point Features Histogram (FPFH)

Point Characterization

Rusu et al., 2009, 2011

Random Forest - Neural Network

Point Classification

Unsupervised Clustering - DBSCAN

Goals

- Filtering remaining noise
- Identifying each apple instance
 - Count total apples
 - Measure size of apple

Methods

- DBSCAN
 - Cluster size
 - Euclidean distance
 - Growing method
- Hyperparameter optimization
 - Grid Search

Point Clustering

Deep learning - RandLA-Net

Figure 7. The detailed architecture of our RandLA-Net. (N, D) represents the number of points and feature dimension respectively. FC: Fully Connected layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling, DP: Dropout.

Figure 3. The proposed local feature aggregation module. The top panel shows the location spatial encoding block that extracts features, and the attentive pooling mechanism that weights the most important, based on the local context and geometry. The bottom panel shows how two of these components are chained together, to increase the receptive field size, within a residual block.

Hu et al., 2020

Results

Results - Model Validation

Results - Model Validation

Results - DBSCAN from perfectly labeled synthetic

<u>*Pipeline : Ground truth*</u> <u>*classification + DBSCAN*</u>

Synthetic - VeryHiRes $R^2 = 0.92$ coef: 0.91 Point Clustering Number of detected clusters VervHiRes Number of actual fruits 800

Results - Deep learning pipeline

<u>Pipeline : RandLA-Net + DBSCAN</u>

Results - Deep learning pipeline

<u>Pipeline : RandLA-Net + DBSCAN</u>

Conclusion

- Importance of the acquisition protocol and LiDAR resolution
- Even with few data, results are promising :
 - Deep learning outperfom machine learning
 - With more training data we can expect better results
- Deep instance segmentation
- Try our method on commercial apple tree orchard
 - Compare with other methods

For any questions or more detail please contact us at :

- simon.artzet@gmail.com
- frederic.boudon@cirad.fr

References

- Costes et al., 2008, Functional Plant Biology 35, 936-950, https://doi.org/10.1071/FP08081
- Coupel-Ledru et al., 2019, Horticultural Research, 6-52, https://doi.org/10.1038/s41438-019-0137-3
- Boudon et al., 2014, Annals of Botany 114, 4, 853-862, https://doi.org/10.1093/aob/mcu062
- Pradal et al., 2009, Graphical Models 71, 1-21, https://doi.org/10.1016/j.gmod.2008.10.001
- Ziamtsov et Navlakha, 2019, Plant Physiology 181, 1425-1440, https://doi.org/10.1104/pp.19.00524
- Gene-Mola et al., 2019, Biosystems Engineering 187, 171-184, https://doi.org/10.1016/j.biosystemseng.2019.08.017
- Tsoulias et al., 2020, Remote Sens 12, 2481, https://doi.org/10.3390/rs12152481
- Qi et al., 2017, IEEE CVPR, 77-85, https://doi.org/10.1109/CVPR.2017.16
- Rusu et al., 2009, IEEE, 3212-3217, https://doi.org/10.1109/ROBOT.2009.5152473
- Rusu et al., 2011, IEEE, 1-4, https://doi.org/10.1109/ICRA.2011.5980567
- Pedregosa et al., 2011, Journal of Machine Learning Research 12, 85, 2825-2830, http://jmlr.org/papers/v12/pedregosa11a.html
- Guo, Wang, Hu, Liu et al., 2020, IEEE, 1-1, https://doi.org/10.1109/TPAMI.2020.3005434
- Hu et al., 2020, IEEE, 11105-11114, https://doi.org/10.1109/CVPR42600.2020.01112.
- Breiman, 2001, Machine Learning 45, 5-32, https://doi.org/10.1023/A:1010933404324