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Abstract
Microsporidia are obligate parasites that are closely related to Fungi. While the widely known “long-branch” Microsporidia
infect mostly metazoans, the hosts of “short-branch”Microsporidia are only partially characterized or not known at all. Here,
we used network analyses from Neotropical rainforest soil metabarcoding data, to infer co-occurrences between environmen-
tal lineages of short-branch microsporidians and their potential hosts. We found significant co-occurrences with several taxa,
especially with Apicomplexa, Cercozoa, and Fungi, as well as some Metazoa. Our results are the first step to identify potential
hosts of the environmental lineages of short-branch microsporidians, which can be targeted in future molecular and micro-
scopic studies.
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Environmental DNA sequencing studies have uncovered nu-
merous protistan parasitic groups in different environments.
For example, apicomplexans dominate soils in Neotropical
rainforests [1] and Syndiniales are likewise species-rich in
marine waters [2]. At least at larger taxonomic levels, it is
relatively straightforward to infer the hosts of these protistan
parasites: the apicomplexans mostly infect metazoans [3] and
the Syndiniales infect metazoans and other protists [4].
However, we do not always know so clearly who are the hosts
for other protistan parasite groups uncovered in environmental

DNA sequencing studies. One such example of this lack of
knowing who are the potential hosts are the “short-branch”
microsporidians [5].

The short-branch microsporidians form a basal clade lead-
ing up to the more widely known “ long-branch”
Microsporidia [5]. Long-branchMicrosporidia are mostly par-
asites of metazoans [6], but some can infect ciliates and other
protists [7]. While the long-branch Microsporidia have highly
reduced genomes and complex polar filaments that allow the
penetration of cells, the short-branch microsporidians have
less reduced genomes and they lack fully developed polar
filaments [5]. The short-branch microsporidians include the
partially characterized Paramicrosporidium that are parasites
of Saccamoeba limax [8] and Vannella [9], Mitosporidium
that are parasites of the crustacean Daphnia [10], as well as
Morellospora, an amoeba parasite from the same clade as
Mitosporidium [11], and Nucleophaga, a parasite of
Thecamoeba [12]. The short-branch microsporidians also in-
clude numerous environmental lineages recently uncovered in
a re-analysis of a metabarcoding study of Neotropical
rainforest soils [5] and other environments [5, 13].
Presumably all of these environmental lineages phylogeneti-
cally assigned to the short-branch microsporidians are like-
wise parasitic; it is unknown, though, who are their potential
microbial- or macro-organismic hosts, or where to even begin
to look for them in environments as species-rich as tropical
forests.
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A novel approach to evaluating the diversity of protistan
parasites and their hosts in metabarcoding datasets was recent-
ly demonstrated [14]. Using linear regression models, Singer
et al. [14] showed that the abundances of apicomplexans and
their metazoan hosts positively correlated across alpine sites in
Switzerland. That type of analysis is dependent in part,
though, on knowing what are the potential hosts through pre-
vious observations. Another approach to unravel potential
host-parasite relationships when the hosts are unknown is to
use co-occurrence network analyses. Although network anal-
yses based on co-occurrences do not confirm biotic interac-
tions [15], co-occurrence network can highlight potentially
interesting taxonomic groups as potential hosts.

We used a co-occurrence ne twork bui l t f rom
metabarcoding data from Mahé et al. [1]. Briefly, the data
came from soils collected in lowland rainforests in Costa
Rica, Panama, and Ecuador. The soils were amplified using
broad eukaryotic primers for the V4 region of SSU-rRNA
[16] and sequenced with Illumina MiSeq. After initial
cleaning steps, reads were clustered into operational taxo-
nomic units (OTUs) with swarm [17] and taxonomically
assigned using the PR2 database [18]. Most of the OTUs

were assigned to different protistan taxa, while others were
assigned to Fungi and Metazoa. From this original data, re-
finements of the taxonomic assignments placed 974 OTUs
into the short-branch microsporidia [5]. We calculated the
richness of these OTUs with vegan v.2.5-6 [19], and com-
pared the exclusive and shared OTUs by country with a
Venn diagram [20] in R v.3.6.3 [21].

Representative sequences from all eukaryotic OTUs were
used to construct a co-occurrence network with the
NetworkNullHPC script (https://github.com/lentendu/
NetworkNullHPC). In this network, the OTUs are
represented as nodes, and a statistically significant
Spearman correlation between two OTUs is represented by
an edge between them. The network contains only OTUs
with a significant co-occurrence with at least one other
OTU, using a set of null models following Connor et al.
[22]. The resulting co-occurrence matrix was analyzed in R
with tidyverse v.1.3.0 [23] and igraph v.1.2.4.2 [24], then
explored and visualized with Gephi v.0.9.2 [25] using the
Yifan Hu layout. The network was filtered for short-branch
microsporidians and their correlating nodes, then further ex-
plored with a Sankey diagram made in networkD3 v.0.4

Fig. 1 Co-occurrence network
with OTUs as nodes and
correlations as edges; the node
size illustrates the abundance of
the OTU. Mitosporidian OTUs
are highlighted in turquois and
paramicrosporidian OTUs in red
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[26]. Spearman correlation was used as a value to link short-
branch microsporidia and their correlating nodes in the
Sankey diagram as it is a ponderation between the number
of edges and the strength of the correlation among nodes.
Additionally, we ran networks analysis separatly for the 15
registered in our general network Microsporidia OTUs. For
each of these Microposridia we just include plots that they
are present (Fig. S1).

The co-occurrence network consisted of 14,329 edges in-
volving 368 nodes (approximately 2.40% of all OTUs in the
dataset). Costa Rica had the highest richness of short-branch
Microsporidia, and the highest number of exclusive OTUs
(Figs. S2 & S3). However, just 15 widespread microsporidian
OTUs were present in the network, corresponding to approx-
imately 1.54% of all their OTUs in the dataset (Fig. 1). Of these
OTUs, 11 had a closest taxonomic assignment to the
Paramicrosporidium, and four to theMitosporidium, although
the OTUs likely form independent environmental lineages
(Table S1). Filtering the co-occurrences for correlations only
associated with these 15 short-branch microsporidian OTUs
resulted in 1223 edges involving 244 nodes, with 768 edges

belonging to OTUs assigned to the “paramicrosporidium” and
455 edges to OTUs assigned to the “mitosporidium” (Fig. 2;
Tables S2 and S3). Although all known hosts from the studied
clades are either Metazoa or Amoebozoa [8–10], the three
most prominent groups co-occurring with the short-branch
microsporidians are the Cercozoa, Fungi, and Apicomplexa.
The two largest groups in the cercozoans to form co-
occurrences were the largely bacterivorous testate amoebae
in the Thecofilosea and Euglyphida. Within the Fungi, the
largest groups were the Chytridiomycota and the
Ascomycota, that are mostly found in those tropical soils in
yeast-forming stages [27]. Most of the apicomplexans were in
the Gregarinasina, which are parasites of invertebrates and
dominated the soil protistan communities in the tropical forests
[1]. Some other groups that also co-occurred with the short-
branch microsporidians included the already known hosts
Amoebozoa and Metazoa, and also Endomyxa, Ciliophora,
and Oomycota. The few metazoans in the networks were
assigned to the Nematoda and Annelida (Table S4).

Although we found protists, fungi, and metazoans co-
occurring with the short-branch microsporidians, the network

Fig. 2 Sankey diagram showing
the edges between microsporidian
OTUs (left) and their target OTUs
(right) in the co-occurrence
network. Edges with
paramicrosporidian OTUs are
marked in red, those with
mitosporidian OTUs are colored
as turquoise
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analyses do not directly demonstrate that they are actual hosts.
Co-occurrences can be inferred because of similar environ-
ment preferences, and actual biotic interactions may not have
been inferred because the signal was too weak in the data [15].
Additionally, some of the co-occurrences here could have
been inferred just because the cercozoans, fungi, and
apicomplexans were extremely OTU-rich in the dataset.
Potentially more of the short-branch microsporidians could
have metazoan hosts, but the use of the SSU-rRNA environ-
mental sequences likely underestimated their diversity,
highlighted by the low proportion (1.54%) of short-branch
Microsporidia OTUs registered in our network. Yet, we in-
ferred co-occurrences between four annelids and one nema-
tode, which are known to be involved in host-parasite associ-
ations with long-branch Microsporidia [e.g., 28, 29].

Even in light of these potential limitations, the co-
occurrence networks here highlight taxa that should be eval-
uated further for being the hosts of the environmental linages
of short-branch microsporidians in complex Neotropical
rainforest communities. These additional observations could
include fluorescence in situ hybridization (FISH) probes de-
signed for the short-branch microsporidians and used on cell
isolates of cercozoans, fungi, apicomplexans, and possibly
metazoan. Furthermore, the co-occurrence network approach
proposed here can be used to identify potential hosts of other
parasiticprotists uncovered in environmental DNA sequenc-
ing studies of in different complex environments.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00248-020-01657-9.
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