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Plant diseases have a significant impact on global food security and the world’s

agricultural economy. Their early detection and classification increase the chances of

setting up effective control measures, which is why the search for automatic systems

that allow this is of major interest to our society. Several recent studies have reported

promising results in the classification of plant diseases from RGB images on the

basis of Convolutional Neural Networks (CNN). These studies have been successfully

experimented on a large number of crops and symptoms, and they have shown

significant advantages in the support of human expertise. However, the CNN models

still have limitations. In particular, CNN models do not necessarily focus on the visible

parts affected by a plant disease to allow their classification, and they can sometimes

take into account irrelevant backgrounds or healthy plant parts. In this paper, we therefore

develop a new technique based on a Recurrent Neural Network (RNN) to automatically

locate infected regions and extract relevant features for disease classification. We show

experimentally that our RNN-based approach is more robust and has a greater ability to

generalize to unseen infected crop species as well as to different plant disease domain

images compared to classical CNN approaches. We also analyze the focus of attention

as learned by our RNN and show that our approach is capable of accurately locating

infectious diseases in plants. Our approach, which has been tested on a large number

of plant species, should thus contribute to the development of more effective means of

detecting and classifying crop pathogens in the near future.

Keywords: plant disease classification, deep learning, recurrent neural network, automated visual crops analysis,

precision agriculture technologies, crops monitoring, pests analysis, smart farming

1. INTRODUCTION

Plant diseases are a major threat to agricultural production, causing severe food recessions
and affecting crop quality (Bhange and Hingoliwala, 2015). To detect plant diseases in crops,
plant pathologists generally use molecular and serological methods or measurements of various
parameters, such as morphological change, temperature change, change in transpiration rate,
or volatile organic compound emission from infected plants (Fang et al., 2015). Although it
is an effective means of controlling plant diseases, consulting experts is nonetheless a costly
and time-consuming process, especially since it is not always easy to bring an expert in time
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before the disease spreads to the crops. In recent years, automated
classification of plant diseases has been addressed by the
computer vision community to compensate for the lack of
human expertise. Researchers used deep learning techniques
to automatically identify diseases in individual crops, such as
banana (Selvaraj et al., 2019), coffee (Kumar et al., 2020), grape
(Liu et al., 2020), cassava (Ramcharan et al., 2017), tomato
(Durmuş et al., 2017; Fuentes et al., 2017; Liu and Wang,
2020), and apple (Liu et al., 2017), as well as in multi-crops
(Mohanty et al., 2016; Ferentinos, 2018; Too et al., 2018). In most
cases, researchers fine-tune off-the-shelf Convolutional Neural
Networks (CNNs) (Saleem et al., 2019).

Although the evaluated CNN methods in these publications
appear to be effective and seem to learn relevant feature
representations of the diseases, they unfortunately also learn
irrelevant disease characteristics such as background noise
(Mohanty et al., 2016; Atabay, 2017) or uninfected plant parts
(Ferentinos, 2018; Toda and Okura, 2019; Lee et al., 2020).
For example, (Atabay, 2017) has shown that a CNN trained on
tomato plant diseases has neuron activations that fall mostly
in the background. Unfortunately, it has been shown that
background suppression with image segmentation does not
give better results than an ordinary colored background with
CNN (Mohanty et al., 2016), confirming a dependence
of background characteristics for disease identification.
Even worse, Ferentinos (2018) showed that a CNN tends
to be confused between similar crops of different disease
classes. It is thus indicated that a CNN model, which is
supposed to learn the visual representation of plant diseases,

FIGURE 1 | The learned attention maps by our proposed approach on two diseases that have contaminated leaves. The visualizations highlight the infected regions.

(A) Powdery mildew disease, on cherry plant. (B) Cedar apple rust disease, on apple.

tends to be biased toward irrelevant crop characteristics.
Region-based deep neural networks can help to focus on
contaminated parts (Fuentes et al., 2017, 2019), but such
a technique involves labor-intensive annotations of disease
locations and also depends heavily on prior knowledge of
plant diseases.

Henceforth, these observations have motivated us to go
beyond existing practices by exploring a new technique for
identifying plant diseases that allows us to automatically learn the
regions of interest in the plant image, which correspond to the
infected regions, and then to identify the diseases. Inspired by
recent work on multi-organ plant identification that has shown
the ability of an attention-based Recurrent Neural Network
(RNN) to locate relevant regions of plant structures without
any prior human annotation (Lee et al., 2018), we have adapted
this approach to learn visual representations of plant diseases
and show that discriminating infected regions of a plant can be
successfully located and highlighted for disease identification, as
illustrated in Figure 1.

Our contribution in this paper is three-fold: firstly, to our
knowledge, this is the first time that the RNN-based approach
is being explored to learn representations of plant diseases at
that scale and that a comparison of identification performance
is made against the widely used CNN approaches in this
field. Second, we show quantitatively that the RNN approach
outperforms the CNN approaches. Finally, we also show
qualitatively that the RNN approach is able to detect precisely the
infected regions through the neuron activations. The source code
of our computational implementation is provided on an open
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online repository to facilitate its long-term accessibility and use
by the scientific community1.

2. MATERIALS AND METHODS

2.1. Attention-Based RNN Model
A recurrent neural network (RNN) is a class of neural networks
where connections between nodes of a layer form a directed
graph along a sequence of variables (e.g., a temporal sequence).
The recurrent connections typically allow for modeling of the
relationship between the current state of a variable and the
previous states (similarly to a Markov chain). The RNN-based
approach has received much attention because of its ability to
handle sequential data to make predictions, such as in language
translation (Sutskever et al., 2014) or action recognition (Du
et al., 2018; Song et al., 2018). Improved RNN models, such
as Long Short-Term Memory networks (LSTMs) or Gated
Recurrent Units (GRU), enable training on long sequences,
overcoming problems like vanishing gradients. Recently, a few
publications have shown the effectiveness of RNN approaches to
sequentially process variable-length data of fixed sizes, such as a
picture. For example, it has been shown that a RNN architecture
based on GRU can efficiently model dependencies between
different images of plant observations Lee et al. (2018) or that
LSTM can be used to capture discriminating regions of images
for fine-grained classification (Zhao et al., 2017). Attention is a
mechanism that can be combined in the RNN to allow it to focus
on certain parts of the input when predicting a certain part of
the output, thus enabling an easier learning and of higher quality.
For instance, RNN with attention mechanism was used in Ren
and Zemel (2017) to capture the spatial structure in images and
produce detailed instance segmentation.

Inspired by these previous works, we combine in a RNN an
attention mechanism with Gated Recurrent Units to dynamically
push salient plant disease characteristics to the forefront in order
to strengthen the model in learning disease characteristics for
identification. Figure 2 shows the framework of the proposed
architecture. First, a CNN trained on a plant disease classification
task is used as a visual features extractor: a plant image is thus
encoded as CNN features (i.e., a tensor of feature maps at a given
output of a chosen convolutional layer). These CNN features
can be considered as a new smaller image of activations with as
many channels as filters used in the convolution layer. This new
image is then sliced into sub-parts of the same size to get local
activations in many regions covering all of the image. These new
local CNN features can then be used to build a sequence and
feed an RNN based on GRUs, enabling an attention mechanism
to locate important parts or components in the CNN features.
It extends the effective pixel neighborhood in each sub-part and
maximizes the information gain across several sub-parts of the
CNN features. Finally, prediction error is minimized throughout
the optimization process.

1the web link to the open online repository on which the source code is hosted will

be displayed here after acceptance of the manuscript.

2.1.1. Our Overall RNN Architecture
We denote a plant disease image as I and the corresponding
feature maps extracted by the convolutional layers of the CNN
as δ ∈ R

H×W×C, where H,W and C are, respectively, the height,
width, and number of channels in the feature maps. The CNN
model is initially pre-trained and optimized purely based on plant
disease target classes. A sequence of T regional feature maps
{δ1, δ2, · · · , δT} ∈ δ is then generated by slicing the global feature
map δ following the sliding direction shown in Figure 2. The
resulting sequence of feature maps is then used as input of the
RNN module displayed in Figure 2A and detailed in Figure 2B.
Thanks to the RNN connections between the different feature
maps, the network is able to iteratively learn the discriminant
visual patterns and to model the spatial relationship between
them. For instance, brown specks that spread from side to side
on a part of the leaf can be distinguished from brown specks that
appear randomly on the leaf.

2.1.2. Attention Module
The attention module is used to model the relative contribution
of each pixel of the T regional feature maps. Specifically, it
forces an explicit additional step in the reasoning process,
identifying salient regions by assigning different importance to
features from different image regions. The attention mechanism
is introduced by the λt terms (also called regional attention
map) that control the contribution of the pixels of the t-th
state and that are trained by the neural network. A larger λt

value indicates higher importance. More formally, the attention
function g : δt , ht−1 → ǫt is defined as follows:

ζt = {tanh(δtWδ + ht−1Wh)}Wa (1)

λt = softmax(ζt) (2)

ǫt = g(δt , ht−1) =
∑

i,j

λt,ij.δt,ij (3)

whereWδ ∈ R
C×C,Wh ∈ R

E×C,Wa ∈ R
C×1 are the embedding

matrices, E is the dimensionality of GRU cell, and δt,ij denotes the
value of the t-th regional feature map at position (i, j) ∈ H′×W′.
Note that ǫt is the output representation (feature vector) for the
t-th regional feature map.

2.1.3. Bi-Directional Training
Inspired by previous experiments (Lee et al., 2018) that show
that bidirectional states modeling performs better compared to
uni-state modeling in plant-view correlation learning, we built
a bidirectional states modeling mechanism where the forward

neuron activations
−→
hT and the backward neuron activations

←−
h0 model P(ht|δt , h0, · · · , hT−1) and P(ht|δt , hT, · · · , h1),
respectively. In order to correlate between both states, the
final output activations of the forward and backward GRU are

cascaded as follows: h = [
−→
hT,
←−
h0 ]. We then multiply h with a

class embedding matrix, Wem, which is s(I) = Wemh before

normalizing it with a softmax function: P(r|I) = esr(I)∑M
m=1 e

sm(I)

whereM and r stand for the total number of classes and the target
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FIGURE 2 | The proposed architecture: from an image of a contaminated plant, feature maps are first extracted from a given convolutional layer of a pre-trained CNN.

They are then sliced into several patches following a “snaking” sliding direction. The patches then feed into Gated Recurrent Units that share, combine, and retain

relevant information in a bidirectional way to update an internal representation of plant disease. Soft attention mechanism is used to infer discriminating local features.

(A) Overall architecture. (B) Soft attention mechanism.

class, respectively. After performing the softmax operation, we
find the maximum likelihood of the sample by applying the
objective function, L = −logP(r|I).

2.1.4. Implementation Details
To extract the CNN features, we used an extension of a
GoogleNet architecture Szegedy et al. (2015) with modified
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FIGURE 3 | Visualization of activations of the learned features with the CNN model (GoogleNet). Best viewed in color.

FIGURE 4 | Visualization of attention maps learned using our attention-based RNN on a leaf infected by the Leaf mold disease (to be compared with Figure 3). Best

view in color.

convolutional layers and additional batch normalization to
increase accuracy and reduce computational complexity2. After
training the CNN on the disease classification task, we
extracted CNN features with a size of 14× 14× 576 from the
convolutional layer Inception_4d and sliced them with a stride of
1 into regional patches with a size ofH′ =W′ = 8 each to finally
feed the RNN. The RNN is trained using the Tensorflow library
(Abadi et al., 2016). We use the ADAM optimizer (Kingma and
Ba, 2014) with the parameters α = 1e − 08, β1 = 0.9, and β2 =
0.999.We applied the weight decay L2 with the penalty multiplier
set to 1 ×10−4 and dropout ratio set to 0.5, respectively. We set
the learning rate to 1×10−4, and themini batch size was set to 30.

2.1.5. Features Visualization Method
We describe here the methodology used to visualize the
visual features captured by the CNN and the RNN model
(see Figures 3–5 of the results section). For the CNN model
(GoogleNet), we first tracked the position of the highest
activation across all the feature maps extracted from the last
convolutional layer. From this, we accumulated the first 30
dominant activations and assessed them according to the original
image. For the RNN model, we simply displayed a subset of the
regional attention maps λt .

2https://github.com/AdelineMomo/CNN-plant-disease (Caffe).

2.2. Experimental Dataset
Plant Village (PV) (Hughes and Salathé, 2015) is a popular dataset
dedicated to the evaluation of automated identification of plant
diseases under controlled environments. It has 38 crop-disease
pairs, with 26 crop-disease categories concerning 14 crop plants.
The dataset was provided with predefined training and test sets,
and a configuration with a percentage ratio of 80 and 20% is used,
giving a total of 10,495 training images and 4,310 test images.
Since plant diseases, named by vernacular names, share the
same visual characteristics for different species, we categorized
leaf samples from the PV dataset into 21 classes (20 diseases
and one healthy class) and trained a classifier based on these
classes. Note that, in practice, it is impossible to collect all disease
samples from different crops under different environments to
train a deep model. In fact, what we intended to achieve is a
model that is general enough to represent knowledge in a way
that can be transferred between different plant disease tasks.
We therefore explored the generalization of models to identify
disease of unseen crops and also plants that are captured under
different contexts (typically in the field).

To evaluate the ability of the model to generalize to unseen
crops, we excluded one crop from the training set and use
it only for testing. More specifically, we removed all the leaf
samples from the pepper crop, i.e., the ones from the Pepper_bell
Bacterial_spot class and the ones from the Pepper_bell healthy, so
as to treat the pepper class as an unseen crop in this experiment
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FIGURE 5 | Visualization of attention maps learned using our new attention-based RNN model on two correctly classified images of the Unseen Crop of pepper_bell

Bacterial_spot.

TABLE 1 | Top-1 accuracy (%) comparison on Plant Village (PV), IPM, and Bing.

Method PV-SC PV-UCB IPM-SC Bing-SC

CNN InceptionV3 of Brahimi et al. (2018) 98.05 29.63 29.06 28.57

Our CNN (GoogleNet) 99.17 18.98 37.61 36.51

Our new model Seq-RNN 98.17 58.80 40.17 39.68

Note that the performance of IPM and Bing are based only on Seen Crop (SC) images,

whereas the performance on PV is measured for both Seen Crop (PV-SC) and Unseen

Crop (PV-UCB), i.e., for the pepper_bell Bacterial_spot.

The best accuracy for each dataset is shown in bold.

while the Bacterial_spot can be learnt through other crops.
Besides the PV dataset, we also assessed the robustness of our
models using pictures related to the same disease categorization
and from reliable online sources that are not restricted to a
controlled environment. We used 119 and 64 images from IPM
and Bing, respectively, collected by Mohanty et al. (2016) (121
number of Bing images were expected, but half of them are no
longer available).

3. RESULTS AND DISCUSSION

The experimental results are presented in the Table 1. As there
are only few images of pepper crops in IPM and Bing (two images
in IPM and one in Bing), we considered the number of collections
insufficient to infer the performance of the models in recognizing
the disease of an unseen crop. We therefore tested the model
using only the seen crop images in IPM and Bing. We compared
the performance of the models with the Inception-V3 model
employed by Brahimi et al. (2018) since it was reported to be
the best approach for disease identification on the PV dataset.

The model is trained on the basis of the aforementioned 21 target
classes with the pepper crop excluded from the training set.

First, by examining the accuracy of the PV-SC test set (seen
crops from the PlantVillage dataset), we can see that both CNN
models and our new attention-based RNN achieved very high
accuracy values. This is mainly due to the fact that the images
in this test set were acquired under exactly the same conditions
as the training set so that any method can exhibit a high
performance. Secondly, we can observe that both CNN models
as well as our new attention-based RNN achieved lower accuracy
values for the IPM-SC and Bing-SC test sets as well as the
PV-UCB (unseen crop from the PlantVillage dataset) compared
to the PV-SC. We believe that this is due to a change in the
data distribution between the PV data and the IPM-SC and
BING-SC test sets, as the two data are collected under different
conditions, and the disease training data are not sufficiently
diverse to cover the ranges of visual appearance of the disease
found in the unseen crop. To cope with such difficult datasets,
CNN models achieved a much lower performance, which means
that the models formed have some difficulty in generalizing to the
unseen crop of PlantVillage (PV-USC) or to images acquired in
a different domain (IPM-SC and Bing-SC). In comparison, our
attention-based RNN model was much more accurate over the
three series of tests. Although the accuracy is far from perfect, it
is still quite reasonable considering the difficulty of the problem.

We further compared the generalization ability of our new
model and that of a classical CNN thanks to visualization
experiments presented in Figures 3, 4. As shown in Figure 3, the
regions of the image leading to a strong activation of the CNN
neurons do not really seem to correspond to the visual patterns
characteristic of the disease. Indeed, they largely correspond to
healthy leaf features, specifically the venation. On the contrary,
Figure 4 shows that the activated regions of the attention maps
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of our new RNN model do match the disease spots much more
precisely and accurately. Figure 5 shows a similar visualization
on two leaves of the Pepper_bell crop affected by Bacterial_spot.
Here again, we can observe that most of the activated regions do
correspond to altered parts of the leaf, whereas the Pepper_bell
was not even present in the training set.

In line with our results, we deduced that the transferability
of Seq-RNN knowledge is more useful than that of CNN in
differentiating data, especially those taken in the field. This could
be due to the fact that CNN is learned on the basis that its spatial
information collapses in the final convolutional layer, resulting in
the relativity of local features that are important for representing
diseases not retained. This might be also the reason the CNN
searches for global characteristics that are not relevant for the
infected area but are relevant for leaf characteristics, such as shape
and venation.

On the other hand, Seq-RNN takes the convolutional map,
where substantial spatial information is retained as input and is
formulated in such a way as to learn the relationship between the
neighboring regions of an image. Because of this formulation,
the Seq-RNN’s attention mechanism will be forced to detect
salient regions, where, in this case, there are the obvious
infected regions that appear in the local areas of an image. This
disease-focused knowledge could be effectively transferred to
field images where the plant structure may not be easily visible
(due to organ deformation or clutter) but the visual aspect of
the disease is evident. Thus, in field images where the plant
structure is not visible or may be difficult to distinguish, the
disease characteristics become more determinant, allowing Seq-
RNN, which has a greater knowledge of the disease, to better
differentiate the data than the CNN.

4. CONCLUSIONS AND FUTURE
DIRECTIONS

We presented in this study a new efficient computational
architecture that opens up new perspectives for the automated
classification of plant diseases. We showed that our RNN
approach has a higher generalization ability than the classical
CNN approach, especially in distinguishing disease samples that
are different from the training set. This is a major critical point in
plant pathology, as it is highly difficult (due to required expertise
level and time consumed) to produce a complete and diversified
visual dataset of all the symptoms of any crop disease at a global
scale. Our approach could thus overcome the problems related to
the lack of training data usually necessary for the development of
performing recognition deep learning models.

In this study we also analyzed the attention maps learned by
our RNN and showed that it meets our expectation of localization

of infectious diseases in plants images. We believe that our RNN-
based approach, which captures the context of the relationship
between local features, could provide a better insight into where
the machine actually detects relevant information. It is important

to note that by assessing the machine’s perspective in disease
differentiation, humans will certainly benefit, as we all know that
human capabilities are limited when it comes to identifying the
thousands of diseases for all the plants in the world.

In this paper, we have shown that the integration of our
RNN approach in the design of the deep learning architecture
for learning disease representation can not only provide a
better classification performance but also contribute to the
knowledge of plant diseases, which could potentially be useful
to address doubts that have not yet been resolved. Future
research directions should focus on the integration of CNN
and RNN based models to simultaneously address the learning
of rich global and local visual representations within a deep
end-to-end network. Furthermore, alternative slicing patterns on
convolutional maps before transmitting the extracted patches
to RNN should be studied for a better modeling of the local
characteristics of the plant disease. In addition, complementary
statistical analyses should be performed on the evaluation of
the RNN approach for field images that are of main interest
to farmers and all field agricultural actors. We believe that
these findings could encourage future research to rethink the
current de facto paradigm of purely relying on the CNN in plant
disease identification.
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Durmuş, H., Güneş, E. O., and Kırcı, M. (2017). “Disease detection

on the leaves of the tomato plants by using deep 1learning,”

in 2017 6th International Conference on Agro-Geoinformatics

(Fairfax, VA: IEEE), 1–5. doi: 10.1109/Agro-Geoinformatics.2017.804

7016

Fang, Y., Ramasamy, R. P., and Rains, G. C. (2015). “Current and prospective

methods for plant disease detection,” in Biosensors Vol. 5, ed G. C. Rains (Basel:

MDPI), 537–561. doi: 10.3390/bios5030537

Ferentinos, K. P. (2018). Deep learning models for plant disease

detection and diagnosis. Comput. Electron. Agric. 145, 311–318.

doi: 10.1016/j.compag.2018.01.009

Fuentes, A., Yoon, S., Kim, S. C., and Park, D. S. (2017). A robust deep-learning-

based detector for real-time tomato plant diseases and pests recognition.

Sensors 17:2022. doi: 10.3390/s17092022

Fuentes, A., Yoon, S., and Park, D. S. (2019). Deep learning-based phenotyping

system with glocal description of plant anomalies and symptoms. Front. Plant

Sci. 10:1321. doi: 10.3389/fpls.2019.01321

Hughes, D., and Salathé, M. (2015). An open access repository of images on

plant health to enable the development of mobile disease diagnostics. arXiv

[preprint]. arXiv:1511.08060. Available online at: https://arxiv.org/abs/1511.

08060

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv [preprint]. arXiv:1412.6980. Available online at: https://arxiv.org/abs/

1412.6980

Kumar, M., Gupta, P., and Madhav, P. (2020). “Disease detection in coffee plants

using convolutional neural network,” in 2020 5th International Conference on

Communication and Electronics Systems (ICCES) (Coimbatore: IEEE), 755–760.

doi: 10.1109/ICCES48766.2020.9138000

Lee, S. H., Chan, C. S., and Remagnino, P. (2018). Multi-organ plant classification

based on convolutional and recurrent neural networks. IEEE Trans. Image

Process. 27, 4287–4301. doi: 10.1109/TIP.2018.2836321

Lee, S. H., Goëau, H., Bonnet, P., and Joly, A. (2020). New perspectives on

plant disease characterization based on deep learning. Comput. Electron. Agric.

170:105220. doi: 10.1016/j.compag.2020.105220

Liu, B., Ding, Z., Tian, L., He, D., Li, S., and Wang, H. (2020). Grape leaf disease

identification using improved deep convolutional neural networks. Front. Plant

Sci. 11:1082. doi: 10.3389/fpls.2020.01082

Liu, B., Zhang, Y., He, D., and Li, Y. (2017). Identification of apple leaf

diseases based on deep convolutional neural networks. Symmetry 10:11.

doi: 10.3390/sym10010011

Liu, J., and Wang, X. (2020). Tomato diseases and pests detection based on

improved Yolo V3 convolutional neural network. Front. Plant Sci. 11:898.

doi: 10.3389/fpls.2020.00898

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning

for image-based plant disease detection. Front. Plant Sci. 7:1419.

doi: 10.3389/fpls.2016.01419

Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., and Hughes,

D. P. (2017). Deep learning for image-based cassava disease detection. Front.

Plant Sci. 8:1852. doi: 10.3389/fpls.2017.01852

Ren, M., and Zemel, R. S. (2017). “End-to-end instance segmentation with

recurrent attention,” in Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI), 21–26.

doi: 10.1109/CVPR.2017.39

Saleem, M. H., Potgieter, J., and Arif, K. M. (2019). Plant disease detection and

classification by deep learning. Plants 8:468. doi: 10.3390/plants8110468

Selvaraj, M. G., Vergara, A., Ruiz, H., Safari, N., Elayabalan, S., Ocimati, W., et al.

(2019). Ai-powered banana diseases and pest detection. Plant Methods 15:92.

doi: 10.1186/s13007-019-0475-z

Song, S., Lan, C., Xing, J., Zeng, W., and Liu, J. (2018). Spatio-temporal attention-

based LSTM networks for 3d action recognition and detection. IEEE Trans.

Image Process. 27, 3459–3471. doi: 10.1109/TIP.2018.2818328

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems

(Montreal, QC), 3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2015). “Going deeper with convolutions,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Boston, MA), 1–9.

doi: 10.1109/CVPR.2015.7298594

Toda, Y., and Okura, F. (2019). How convolutional neural networks diagnose plant

disease. Plant Phenomics 2019:9237136. doi: 10.1155/2019/9237136

Too, E. C., Yujian, L., Njuki, S., and Yingchun, L. (2018). A comparative study

of fine-tuning deep learning models for plant disease identification. Comput.

Electron. Agric. 161, 272–279. doi: 10.1016/j.compag.2018.03.032

Zhao, B., Wu, X., Feng, J., Peng, Q., and Yan, S. (2017). Diversified visual attention

networks for fine-grained object classification. IEEE Trans. Multimedia 19,

1245–1256. doi: 10.1109/TMM.2017.2648498

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lee, Goëau, Bonnet and Joly. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Plant Science | www.frontiersin.org 8 December 2020 | Volume 11 | Article 601250

https://doi.org/10.1007/978-3-319-90403-0_6
https://doi.org/10.1109/TIP.2017.2778563
https://doi.org/10.1109/Agro-Geoinformatics.2017.8047016
https://doi.org/10.3390/bios5030537
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.3390/s17092022
https://doi.org/10.3389/fpls.2019.01321
https://arxiv.org/abs/1511.08060
https://arxiv.org/abs/1511.08060
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCES48766.2020.9138000
https://doi.org/10.1109/TIP.2018.2836321
https://doi.org/10.1016/j.compag.2020.105220
https://doi.org/10.3389/fpls.2020.01082
https://doi.org/10.3390/sym10010011
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3389/fpls.2017.01852
https://doi.org/10.1109/CVPR.2017.39
https://doi.org/10.3390/plants8110468
https://doi.org/10.1186/s13007-019-0475-z
https://doi.org/10.1109/TIP.2018.2818328
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1155/2019/9237136
https://doi.org/10.1016/j.compag.2018.03.032
https://doi.org/10.1109/TMM.2017.2648498
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Attention-Based Recurrent Neural Network for Plant Disease Classification
	1. Introduction
	2. Materials and Methods
	2.1. Attention-Based RNN Model
	2.1.1. Our Overall RNN Architecture
	2.1.2. Attention Module
	2.1.3. Bi-Directional Training
	2.1.4. Implementation Details
	2.1.5. Features Visualization Method

	2.2. Experimental Dataset

	3. Results and Discussion
	4. Conclusions and Future Directions
	Data Availability Statement
	Author Contributions
	Funding
	References


