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Abstract—Over the past two decades spaceborne LiDAR systems
have gained momentum in the remote sensing community with their
ability to accurately estimate canopy heights and aboveground
biomass. This article aims at using the most recent global ecosystem
dynamics investigation (GEDI) LiDAR system data to estimate
the stand-scale dominant heights (Hdom), and stand volume (V)
of Eucalyptus plantations in Brazil. These plantations provide a
valuable case study due to the homogenous canopy cover and the
availability of precise field measurements. Several linear and non-
linear regression models were used for the estimation ofHdom and
V based on several GEDI metrics. Hdom and V estimation results
showed that over low-slopped terrain the most accurate estimates
of Hdom and V were obtained using the stepwise regression, with
an root-mean-square error (RMSE) of 1.33 m (R2 of 0.93) and 24.39
m3.ha−1 (R2 of 0.90) respectively. The principal metric explaining
more than 87% and 84% of the variability (R2) of Hdom and V
was the metric representing the height above the ground at which
90% of the waveform energy occurs. Testing the postprocessed
GEDI metric values issued from six available different processing
algorithms showed that the accuracy on Hdom and V estimates is
algorithm dependent, with a 16% observed increase in RMSE on
both variables using algorithm a5 vs. a1. Finally, the choice to select
the ground return from the last detected mode or the stronger of
the last two modes could also affect the Hdom estimation accuracy
with 12 cm RMSE decrease using the latter.
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I. INTRODUCTION

IN THE last couple of decades, global concerns on the
increased atmospheric concentration of greenhouse gases,

such as CO2 has risen the interest in quantifying the state and
change of forest resources due to the key role of forests in the
global carbon cycle [1], [2]. Forests sequester a large quantity
of carbon in their woody biomass where they store around 70%
to 90% of the global terrestrial biomass ranging from 385x109

to 650x109 Mg [3]. Hence, the accurate estimation of forest
biomass is needed to better determine its precise role in the
global carbon cycle [4], [5]. Forest plantations represent a small
fraction (6.9%) of the total forested land ([6]) but are becoming
increasingly important around the world, economically, socially
and environmentally ([7], [8]).

The primary source of above ground biomass (AGB) estima-
tion in tropical forests at large scales came in the last years
from observations and measurements from different satellite
remote sensing platforms. Methods based on remotely sensed
data are less accurate than field measurements, however, their
major advantages are their global and frequent coverage and the
low or free acquisition costs for the end user. Currently optical,
radar, and LiDAR are the three main sources of remotely sensed
data used in AGB estimation techniques. Nonetheless, current
data sources are either limited to low AGB levels (<150 Mg/ha)
(sensor saturation at certain biomass levels with radar and optical
data) or have a limited spatial coverage (e.g., airborne LiDAR
data). LiDAR systems either airborne or spaceborne have the
capability to capture the horizontal and vertical structure of
vegetation comprehensively [9], and can thus estimate biomass
with better precision in comparison to the techniques using
radar or optical data [10], [11]. To date, there have been only
three satellite LiDAR missions. The first mission was the Ice,
cloud, and land elevation satellite (ICESat-1) which carried
the geoscience laser altimeter system (GLAS) from 2003 until
2009 [12]. Although GLAS’s ∼60 m diameter footprint was
larger than the ideal resolution for forest observations [13], its
capability to estimate forest parameters (e.g., canopy heights
and biomass) has been exploited in numerous studies during its
operational and post-operational periods [5], [14]–[20].
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ICESat-1 was followed in 2018 by ICESat-2 that carried the
advanced topographic laser altimeter system (ATLAS) with a
goal to measure ice-sheet topography, cloud and atmospheric
properties and global vegetation. However, the wavelength of the
equipped laser (532 nm) has a spectral region of high radiation
absorption by the vegetation. This results in a low number of
reflected photons measured by ATLAS over vegetation [21],
and limits its ability to estimate forest canopy heights [21].

The most recent spaceborne LiDAR system is GEDI on board
the ISS, which was launched in December 2018 with on-orbit
checkout in April 2019. GEDI’s mission objective is to provide
information about canopy structure, biomass and topography,
and is estimated to acquire 10 billion cloud free shots in its two
years mission [22]. GEDI measures vertical structures similar
to ICESat-1 (i.e., waveforms). However, given GEDI’s higher
sampling rate (242 versus 40 Hz for ICESat-1), and the much
smaller footprint size (∼25 versus ∼60 m for ICESat-1), GEDI
provides a highly improved coverage and waveform precision.

GEDI’s ability to estimate forest height and wood volume
on different types of forest ecosystems, topography and lati-
tudes is of paramount importance. GEDI datasets are organized
in different levels of products, from raw acquisition data to
more elaborated data obtained by performing signal analysis
and metrics extraction from the waveforms. This results in
a large number of metrics for each acquired footprint, from
which, many different models could be used to retrieve canopy
heights and wood volume. While direct metrics could be used
as good proxies, it is however acknowledged that combining
different metrics yields higher accuracies. For instance, such
algorithms make use of linear or non-linear regression models
applied on sets of metrics extracted from GEDI waveforms,
and eventually combined with digital elevation models (DEMs).
The full waveform LiDAR data can potentially give access to
more information on canopy structure than the basic “top” and
“bottom” return signals, being itself potentially informative for
canopy height and volume prediction. Therefore, it is critical
to explore which metrics, or combination of metrics, and with
which type of models (e.g., linear versus nonlinear) provide the
best forest parameter estimates. It is also important to evaluate
the effect of the uncertainty of the metrics estimation themselves,
which results from differences in preprocessing algorithms, as
well as other acquisition characteristics that may influence the
final models, such as beam acquisition angles.

Precise evaluation of forest height and volume is not an easy
task. One of the main issues is that uncertainties in field mea-
surements can propagate through the models and create larger
uncertainties in the estimates [23]. For example, Saarela et al.
[24] and Holm et al. [25] found that not accounting for errors
in field measurements could underestimate the uncertainty in
final satellite-based AGB maps by a factor of three or more.
Feldpausch et al. [26] and Kearsley et al. [27] found that uncer-
tainties in tree height measurements led to increased bias in the
biomass and carbon stock estimates. Other obstacles include:
the influence of tree growth during the timespan between the
field measurements and satellite acquisitions which cannot be
neglected [28]; the comprehensive model validation limited by
the sparsity of in situ data [29]; and the method used to measure
tree heights [30].

Consequently, in such evaluation and comparison of pro-
cessing algorithms and models for forest height and volume
estimation, the field dataset plays a critical role. In this article,
we want to focus on the uncertainty coming from the GEDI
metrics and models, minimizing the influence of the uncertainty
on in situ measurements. To reach this objective, we analyzed
a large dataset of forest plantations in Brazil, which has many
advantages to serve as a test case: large number of sites, dif-
ferent climate and topographical environments, numerous and
frequent measurements, precise measurements of tree heights,
good allometric relationships for wood volume and homoge-
neous canopies, etc. (see description in Section II-C). And even
though not representative of all forests, the results obtained on
forest plantations can give a notion of the reachable precision
on height and wood volume estimation using GEDI data on a
more structurally simple forest than natural forests, while also
removing part of the errors due to in situ measurements.

The main objectives of this article are therefore summarized
in the following questions.

1) What are the more important GEDI metrics linked to
canopy height and volume?

2) Are linear and nonlinear models using subsets of metrics
more efficient in predicting height and volume?

3) What is the importance of the different pre-processing
algorithms on the final uncertainties?

4) Is there an influence of other acquisition characteristics,
such as viewing angle on the estimated forest characteris-
tics?

5) Are other stand information, such as data from DEM or
age of the stand relevant for the estimation of height and
volume on forest plantations?

The manuscript presents first the GEDI dataset, followed by
the processing of GEDI data and the main metrics that will be
used for the estimation of canopy heights and wood volume.
Next, a description of the used methods for the estimation of
the forest characteristics is presented in Section II. Finally,
the results, discussions, and main conclusions are presented in
Sections IV, V, and VI, respectively

II. STUDY SITE AND DATASETS

A. Study Area

The study area is located in four regions in Brazil, (Bahia &
Espírito Santo, Mato Grosso do Sul, São Paulo, and Maranhão)
across a large latitudinal gradient (see Fig. 1) and covering
different climate and soil types. The studied plantations are man-
aged in order to produce high yield pulpwood growing at short
rotations. Clonal seedlings of mainly E. grandis (W. Hill) and E.
urophylla (S.T. Blake) and different types of hybrids are planted
in rows at a density of 1000–1667 trees/ha, rationally fertilized
with nitrogen, phosphorus, and potassium and micronutrients
to alleviate any nutritional limitations. Harvest occurs every six
to seven years, and very little tree mortality (under 7% from
original plantation) is noticed. The annual productivity of the
plantations was on average 40 m3/ha/year, with 80% of the
stands being between 30–50 m3/ha/year and some stands could
reach values as high as 60 m3/ha/year. At harvest time, the stand
volume is between 180 and 300 m3/ha, with a dominant height
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Fig. 1. (a) Location of the four study sites. (b) Example of GEDI tracks over some stands. (c) Eucalyptus stand during harvest (approx. 30 m high) illustrating
the clearly separated crown and trunk strata.

of 20 to 35 m range (for 80% of the stands). These plantations
were managed locally by stand units, generally around 50 ha,
where the same management is applied: planting, harvesting,
weed control, genetic material, soil preparation and fertilization.
There are generally sparse understory and herbaceous strata in
these plantations, as result of chemical weeding the first year,
the closing of the canopy, and the high competitive strength of
Eucalyptus. Tree height is very homogeneous within a stand,
with 95% of the trees having heights at +/- 10.5% around the
average tree height in plot inventories. The plantations exhibit
a simple structure, with a tree crown strata of 3 to 10 m in
width above a “trunk strata” with few Eucalyptus leaves and
few understories [see Fig. 1(c)]. The “soil strata” is mainly
constituted of litter accumulation of branches and leaves, with
some patches of herbaceous species.

B. GEDI Data

1) Processing of GEDI Waveforms: GEDI uses three on-
board lasers that produce eight parallel tracks of observations.
GEDI lasers illuminate a surface or footprint on the ground with
a 25 m diameter, at a frequency of 242 Hz, over which 3D
structures are measured. The footprints are separated by ∼60
m (center to center) along the track, and the tracks are separated
by ∼600 m across. Moreover, GEDI has the ability to rotate
up to six degrees, allowing the lasers to be pointed as much
as 40 km on either side of the ISS’s ground track [22]. GEDI
measures vertical structures using a 1064-nm laser pulse, and

the echoed waveforms are digitized to a maximum of 1246 bins
with a vertical resolution of 1 ns (15 cm), corresponding to a
maximum of 186.9 m of height ranges, with a vertical accuracy
over relatively flat, non-vegetated surfaces of ∼3 cm [31].

As described in the algorithm theoretical basis document
(ATBD) [32], [33], the received waveforms are first smoothed to
reduce the noise in the signal, and thus permitting the determina-
tion of the useful part of the waveform within the corresponding
footprint. Waveform smoothing is performed by means of a
Gaussian filter with various widths. As mentioned in the ATBD,
currently a width of 6.5 ns was used for the Gaussian filter
(Smooth width). After smoothing, two locations in the waveform
denoted as search start and search end are determined [see
Fig. 2(a)]. search start and search end are, respectively, the first
and last positions in the signal where the signal intensity is above
the following threshold:

threshold = mean + σ. v (1)

where “mean” is the mean noise level, “σ” is the standard
deviation of noise of the smoothed waveform, and “v” is a
constant currently set at 4. After determining the locations of
search start and search end, the region between them, denoted
as the waveform extent, is extended by a predetermined number
of sample bins, currently set to 100 bins at both sides. Within
the waveform extent, the highest (toploc) and lowest (botloc)
detectable returns are determined [see Fig. 2(a)]. The metrics
toploc and botloc respectively represent the highest and low-
est locations within the waveform extent where two adjacent
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Fig. 2. (a) Example of an acquired GEDI waveform (Rw) over a Eucalyptus stand (Hdom= 25.9m; V= 230.7 m3.ha−1), its smoothing (Sw) and corresponding
waveform metrics. (b) Cumulative energy of the waveform (CE) between botloc and toploc and the corresponding relative heights (RHn) at different percentages
“n” for the same waveform. One (1) ns corresponds to 15 cm sampling distance in the waveform. The waveform amplitudes are counts from the analog to digital
converter on the instrument.

intensities are above a threshold. The threshold equation used
to determine toploc and botloc is the same as (1), with “v”
an integer fixed at 2, 3, 4, or 6 (depending on the processing
configuration). In the ATBD, the value of “v” used to determine
toploc is named “Front_threshold” and “back_threshold” for
botloc. Waveform metric values are extracted using thresholds
on Smoothwidth_zcross, front_threshold, and back_threshold.
Currently, there are six configurations (henceforth referred to
as algorithms) of different thresholds on these variables, which
are used to determine waveform metrics with high precision
for a variety of acquisition scenarios (see Table I). Finally, the
location of the distinctive peaks or modes in the waveform, such
as the ground peak, or top of canopy peaks is determined using
a second Gaussian filtering of the waveform section between
toploc and botloc, and then finding all the zero crossings of
the first derivative of the filtered waveform [see Fig. 2(a)]. The
width of the second Gaussian filter (“Smoothwidth_zcross”)
is fixed to either 3.5 or 6.5 ns (based on the algorithm used).

Finally, the position of the ground return within the waveform
is determined using the position of the last detected mode. The
six different algorithms, noted a1 to a6 correspond to different
values of the above-mentioned parameters (see Table I) and lead
to different estimates of the waveform metrics, and could in turn
lead to six different canopy height estimates. Over forest stands,
the recorded waveforms are multimodal in shape, with each
mode representing a reflection from a distinct surface height.
Fig. 2(a) shows a typical waveform over a Eucalyptus forest
stand on relatively flat terrain. Over flat terrain, the first Gaussian
corresponds to a reflection from the top of the canopy while the
last Gaussian mostly refers to the lowest point in the footprint,
i.e., the ground surface.

GEDI data used in this article have been already processed
and published by the land processes distributed active archive
center (LP DAAC). Currently, three products (L1B, L2A, and
L2B) are available for download. The L1B data product [32]
contains detailed information about the transmitted and received
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TABLE I
DIFFERENT THRESHOLDS USED IN EACH OF THE SIX ALGORITHMS FOR THE ANALYSIS OF THE RECEIVED WAVEFORMS

waveforms, the location and elevation of each waveform foot-
print and other ancillary information, such as mean and standard
deviation of the noise and acquisition time. The L2A product
[33] contains data of elevation and height metrics of the vertical
structures within the waveform. These height metrics are issued
from the processing of the received waveforms from the L1B
product. Finally, the L2B data product [34] provides footprint-
level vegetation metrics, such as canopy cover, vertical profile
metrics, plant area index and foliage height diversity.

In this article, the received waveforms, their geolocation
(longitude, and latitude), as well as their acquisition times were
extracted from the L1B data product. In the L2A data product,
the derived metrics are also grouped by algorithm. Therefore, for
each beam, the metrics derived from each of the six algorithms,
as well as the parameters used for each algorithm are available.
Therefore, we extracted from L2A for each beam and for each
of the six algorithms (a1 through a6), the following variables.

1) The position within the waveform of toploc and botloc.
2) The amplitude of the smoothed waveforms lowest detected

mode (zcross_amp).
3) The quality flag for each waveform (quality_flag).
4) The number of detected modes (num_detectedmodes).
5) The position and amplitude of each detected mode.
6) The Relative height metrics at 10% inter-

vals from botloc (0%) to toploc (100%)
(RHn, 10% ≤ n ≤ 100%, step 10%). RHn represents
the height between botloc and the location at n% of
cumulative energy [see Fig. 2(b)]. No metrics were
extracted from the L2B product, as they were not relevant
to this article.

2) Calculation of Relevant GEDI and Terrain variables:
Several linear and non-linear regression models will be tested in
order to estimate the stand dominant height Hdom (m) and stand
merchantable wood volume V (m3.ha−1) from GEDI data. The
models were tested with a priori variables that were extracted
from GEDI waveforms. These variables represent canopy fea-
tures, such as canopy top, canopy trunks, ground, or a mix of
these elements. In addition to the available GEDI waveform
metrics described in the previous section, several additional
metrics were also extracted. The first is the waveform extent
(Wext) which is the height difference between botloc and toploc.
Next, to remove the effects of canopy height variability and
terrain slope, two indices relying on waveform structure were
determined. The leading edge extent (Leadext) is, as defined by
Hilbert and Schmullius [35], the difference between the position

Fig. 3. Allometric relation between in situ V and Hdom.

of the first mode (Vloc) and toploc, while the trailing edge
extent (Trailext) is the difference between botloc and the ground
return (Gloc) [35]. Two methods will be used to determine the
ground position: the position of the mode selected as the lowest
non-noise mode from the L2A data product, and the position
of the highest mode between the last two detected modes. The
viewing angle of GEDI, which represents the angle between
the looking direction of the instrument and nadir at acquisition
time, and for each shot, has also been calculated using the
geolocation of the GEDI instrument available from the L1B data
product. The viewing angle has been demonstrated in Urban
et al. [36] to increase elevation errors for ICESat-1 GLAS when
the viewing angle deviates from nadir due to precision attitude
determination.

Finally, as the wood volume (V) increases with canopy height
in a nonlinear shape (see Fig. 3), we calculated RHn for several
power values (RHp

n, 1 < p ≤ 3, step 0.2).
All the used variables for the estimation of the stand domi-

nant height Hdom (m) and stand merchantable wood volume V
(m3.ha−1) are given in Table II.

The values of the extracted waveform metrics vary by the
algorithm used for the processing of the waveforms. Therefore,
in this article, all GEDI metrics were determined for the six
available algorithms. The variability of the metric values based
on the processing algorithm is given in Table III.

3) Filtering of GEDI Waveforms: Not all GEDI acquisitions
are viable, as atmospheric conditions (e.g., clouds) can affect
them. Therefore, a waveform was not investigated further if it
met any of the following criteria.

1) Waveforms with reported elevations that are significantly
higher or lower than the corresponding elevations from the
SRTM DEM [16]. In essence, we removed all waveforms
where the absolute difference is higher than 100 m.
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TABLE II
LIST OF ALL THE VARIABLES CALCULATED FROM GEDI WAVEFORMS

Variables to be used as predictor variables in the canopy height and wood volume estimation models are highlighted in gray.

TABLE III
MEAN AND STANDARD DEVIATION OF SOME GEDI METRIC VALUES FROM EACH OF THE SIX PROCESSING ALGORITHMS

USING ALL GEDI SHOTS OVER THE 566 SELECTED EUCALYPTUS PLANTATIONS

TABLE IV
DISTRIBUTION OF GEDI SHOTS ACROSS THE FOUR STUDY REGIONS

in situ Hdom and in situ V represent the 95th percentile of in situ values for each site.

2) Waveforms with a difference between waveform extent
(Wext) and (Gloc–Vloc) higher than 400 bins (correspond-
ing to 60 m)

A total of 6166 footprints were acquired over our refer-
ence stands between April 2019 and September 2019, with
the majority of these footprints (92.15%) providing exploitable
waveforms. Table IV gives the distribution of GEDI shots across
the four regions.

GEDI data accessible through NASA’s LP DAAC contain a
quality flag (quality_flag) for each acquired waveform. A wave-
form with a quality flag set to “1” indicates that the waveform

meets certain criteria based on energy, sensitivity, amplitude,
and real-time surface tracking quality, and thus can be processed
further. However, in this article waveforms with either value of
the quality_flag were analyzed.

C. Inventory Measurements

A total of 566 Eucalyptus stands were selected, corresponding
to stands where GEDI footprints acquired between April 20,
2019 and September 4, 2019 were totally included. An additional
50 m internal buffer strip from the stand borders was used
to account for any footprint geolocation errors and to avoid
footprints that match the boundary between the stand of interest
and the surrounding medium. These 566 Eucalyptus stands were
also selected because they had field inventories performed by the
company close to GEDI’s acquisition date (time difference fewer
than two months). Field inventories are performed on several
permanent inventory plots within each stand. These inventory
plots are systematically distributed throughout the stand with a
density of one plot per 10 ha (i.e., a 20 ha stand will have two
inventory plots while an 80 ha plot will contain eight inventory
plots). These permanent inventory plots had each an area of
approximately 400 m2 including 30 to 100 trees (average of 58
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Fig. 4. Relationship between stand age and (a) Hdom (m) and (b) Volume
(m3.ha−1).

trees) in function of the inventory plot size and planting density.
During a field inventory, the diameter at breast height (DBH, 1.3
m above the ground) of each tree in the inventory plot, the height
of a central subsample of 10 trees and the height of the 10%
largest trees in terms of DBH (dominant trees) were measured.
The mean height of the 10% of the largest trees defined the
dominant height of the plot (Hdom), while the mean height of
all trees in the plot (measured + estimated) defined the average
height of the plot (Hmean). Hdom, basal area and age on the
inventory date were then used in local volume equations to
estimate the plot total and merchantable volume (merchantable
volume is the tree volume up to the diameter outside bark of 6
cm). Stem biomass was then estimated from the stem volume
using age-dependent estimates of wood biomass density.

As the dates of the inventory measurements were different
from GEDI acquisition dates, only data with a difference fewer
than two months in the date between GEDI acquisitions and
inventory were used. In fact, on these fast growing plantations,
a two-month difference could result in an up to 50 cm growth
in Hdom [see Fig. 4(a)] and 10 m3.ha−1 in V [see Fig. 4(b)].
However, this reasonable compromise allows keeping a large
number of stands including a large variability of age and growing
conditions. Fig. 5 shows the distribution of field measuredHdom

and volume.

D. Digital Elevation Model

The DEM with a spatial resolution of 30 m, derived from
the Shuttle Radar Topography Mission (SRTM), was used in
this article. Three variables were derived from the DEM: slope

Fig. 5. Distribution of measurements of (a) dominant canopy heights and (b)
wood volume from field inventories of the 566 Eucalyptus stands. The Y-axis
represents the percentage of samples within each height range (a) and wood
volume (b).

(S), Terrain Index (TI ), and surface Roughness (Roug). The
TI map was obtained by calculating the difference between the
highest and lowest altitude in a 3× 3 pixel-moving window. The
surface roughness map was obtained by computing the standard
deviation of the elevation in a 3 × 3 pixel-moving window.

III. METHODOLOGY

A. Forest Height Estimation

The simplest method to estimate Hdom from a GEDI wave-
form over forest stands with a gently sloping terrain is the height
difference between signal start (toploc) and the ground position
(Gloc) [37]

Hdom = toploc−Gloc. (2)

For the previous ICESat-1 GLAS waveforms, the ground
return was assumed to be the stronger of the last two detected
modes [15]. Therefore, in this article, the stronger between the
last two detected modes, as well as the position of the mode in
the field “selected_mode (SM)” from the L2A data product will
be considered as the ground return separately.

Estimating canopy heights using (2) has several caveats. For
example, over sloping terrain, the ground peak becomes wider,
and the returns from ground and vegetation can be mixed in
the case of large footprints, making the identification of the
ground peak return difficult and the estimation of forest height
inaccurate ([5], [37]). To remove or minimize the terrain slope
effect on the waveforms, as well as the vegetation variability,
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statistical approaches have been developed and used in several
studies to predict canopy heights from GLAS data (e.g., [5], [15],
[35], [38], [39]). These approaches proposed regression models
based either on only waveform metrics or on both waveform
metrics and terrain information derived from DEMs.

The first statistical model was developed by Lefsky et al. [5]
to estimate the maximum canopy height (Hdom) from GLAS
waveforms

Hdom = aWext − bTI . (3)

The coefficients a and b are fitted using least squares regres-
sion (Hdom given by inventory measurements, Wext is derived
from the GEDI waveform, and TI is calculated from the SRTM
DEM, see Section II-D). For our dataset, TI values calculated
from the SRTM DEM ranged from 1 to 46 m. The incorporation
by Payn et al. [6] of the waveform leading edge extent in (4)
showed a slight improvement on canopy height estimation

Hdom = aWext − bTI + cLeadext. (4)

Over sloping terrain, Lefsky et al. [38] observed that the
waveform extent is insufficient for estimating canopy heights.
Hence, a new model based on the waveform extent, leading edge
extent, and trailing edge extent was proposed. However, Pang
et al. [39] observed inaccurate estimates of canopy heights with
the improved model by Lefsky et al. [38], especially for small
waveform extents, and thus proposed a simpler model to estimate
canopy heights using the following equation:

Hdom = aWext − {b (Leadext +Trailext)}c. (5)

The nonlinear model by Pang et al. [39] was further simplified
by Chen [15]

Hdom = aWext − b (Leadext+Trailext) (6)

Baghdadi et al. [16] tested additional models for the estima-
tion of canopy heights using ICESat-1 GLAS waveforms, of
which, two will be tested in this article. The first model uses the
Trailext and TI

Hdom = aWext − bTI + cTrailext. (7)

The second model uses exclusively GEDI metrics

Hdom = aWext − bLeadext − cTrailext + d. (8)

In addition to the previously described models, a stepwise
multilinear regression aimed at estimating canopy dominant
heights (SRH) and automatically choosing a set of predictive
explanatory variables among all possible variables presented in
Table II. The choice of adding or removing a variable from the
SRH model is based on the increase or decrease of the mean
squared error (MSE).

We also estimated canopy dominant heights through nonlinear
nonparametric regressions by means of a random forest regressor
(RFH). Random forests are an ensemble of machine learning
algorithms used for classification or regressing by fitting a
number of decision trees on various sub-samples of the dataset,
and use averaging to improve the predictive accuracy and control
overfitting [40]. Compared to linear models, RF is advantageous
for being able to model also nonlinear relationships (threshold

effect) between the explanatory variables. For this article, the
number of trees in the RF were set to 100 trees (higher tree count
slightly increased model accuracy), with a tree depth equal to
the square root of the number of available factors.

Finally, since random forests are nonlinear and nonparamet-
ric, we only used the original relative heights without modifica-
tion (i.e., RH1

n, 10% ≤ n ≤ 100%, step 10%.)

B. Wood Volume Estimation

The estimation of aboveground biomass has been proven to be
successful using ICESat-1 GLAS waveforms as demonstrated
by several studies ([15]–[17]). In this article, four models were
tested to estimate wood volume from GEDI waveforms based
on Hdom estimates. The first model was adapted from Lefsky
et al. [5] for the estimation of wood volume (instead of AGB
in its original formulation), using the squared dominant canopy
heights (Hdom)

V = a+ bH2
dom. (9)

The second tested model was adapted from Saatchi et al.
[41], and uses a power law relationship between the volume
and Lorey’s height

V = aHL
b (10)

where HL is Lorey’s height which weighs the contribution of
trees (all trees >10 cm in diameter) to the stand height by
their basal area. In this article, the relationship defined in (10)
was used by replacing Lorey’s height with the dominant height
as both height values were similar (HL was lower than Hdom

by a maximum of 0.9 m at the end of the rotation of the
Eucalyptus plantation) [16]. For both models (9 and 10), the
coefficients a and b were first fitted using in situ measurements
of dominant height and wood volume (see Fig. 6), and then, the
calibrated equations were used to estimate wood volume using
the dominant height predicted from GEDI footprints (best model
from Section III-A).

Similarly to Section III-A, a stepwise linear regression model
(SRV) and a random forest regressor (RFV) were used to esti-
mate the wood volume.

C. Model Assessment

To assess how the tested models generalize to an independent
data set, a five-fold cross validation was used. Large k-fold val-
ues mean less bias towards overestimating the true expected error
(as training folds will be closer to the total dataset). Moreover,
since there are several GEDI footprints inside each stand, and
the stands are very homogeneous, the five-fold splitting was
also done along the stands in order to reduce fitting bias. In
essence, GEDI footprints inside the same stand were used for
either training or validation. Finally, models’ performance were
assessed using the coefficient of determination (R²), the bias
(measured—estimated), the root-mean-square error (RMSE),
the root mean squared percentage error (RMSPE), and the
Akaike information criterion (AIC). R2, RMSE, and RMSPE
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Fig. 6. Comparison of measured vs. estimated Hdom from the models presented in Section III-A using GEDI metrics extracted with algorithm a1 (see Table I).
RMSE is expressed in meters (m).

are defined as follows:

R2 = 1−
∑n

i = 1 (yi − ŷi)
2∑n

i = 1 (yi − ȳ)2
(11)

RMSE =

√√√√ 1

n
·

n∑
i=1

(yi − ŷi)
2 (12)

RMSPE = 100 ·
√√√√ 1

n
·

n∑
i = 1

(
yi − ŷi

yi

)2

(13)

where yi is the observed value, ŷi the estimated value, ȳ is the
mean of all the observed values, and n is the sample size.

The AIC proposed by Akaike [42] is a measurement of the
relative goodness of fit of a statistical model to the true values.
By calculating AIC values for each model, the most performant
model based on the lowest AIC values can be identified.

IV. RESULTS

A. Canopy Height Estimation

We start our model performance analysis using GEDI met-
rics extracted from algorithm a1 (see Table I), and the ground
location as determined from the SM field from the L2A dataset

(last detected nonnoise mode). The estimation of the canopy
dominant heights (Hdom) using the linear regression models
[(3) through 8] with five-fold cross validation shows an accu-
racy (RMSE) between 1.70 and 2.31 m with a coefficient of
determination (R2) between 0.80 and 0.89 (see Fig. 6). More-
over, the contribution of the trailing edge extent appeared to
be higher than that of the leading edge extent [see (7) versus
(4), Table V]. However, the best model between (3) through
(8) was (8) (RMSE = 1.70 m and R2 = 0.89) which uses
both Leading and Trailing edge extents, with an independent
coefficient fitted for each variable. The introduction of terrain
information in the linear regression models did not show any
significant improvements on the accuracy of the estimations.

The stepwise linear regression model (see Fig. 6, SRH)
showed slightly better accuracy for the estimation of canopy
heights (RMSE = 1.44 m, R2 = 0.93) in comparison to Eq.8.
However, unlike Eq.8 which relied on Wext , Leadext, and
Trailext, the most contributing variables for the estimation of
the canopy heights using the SRH model were RH90, followed
byRH10,RH80, andRH100. Meanwhile, the other metrics (e.g.,
Leadext , Trailext, TI, etc.,) were not necessary.

Furthermore the estimation of canopy heights using only
RH90 (by linear fitting) showed an RMSE of 1.63 m with an
R2 of 0.90, and this accuracy could be improved to an RMSE
of 1.5 m (R2 of 0.91) by only adding RH1.8

10 . The estimation of
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TABLE V
MODELS’ PERFORMANCE AND THE FITTED LINEAR EQUATIONS FOR ESTIMATING EUCALYPTUS STAND DOMINANT HEIGHTS

The variables are described in Section II-B-2, with the models described in Section III-A

Fig. 7. Classification of the variable importance by decreasing order of importance in the RFH model for stand dominant height estimation. The importance is
measured via the average percentage increase of MSE (%IncMSE) over 50 repetitions. The red bars indicates the standard deviation of %IncMSE.

TABLE VI
ACCURACY (RMSE IN M) OF THE MODELS PRESENTED IN SECTION III-A FOR THE ESTIMATION OF Hdom USING GEDI METRIC VALUES

EXTRACTED USING THE SIX DIFFERENT ALGORITHMS (A1 THROUGH A6)

Hdom using the random forest regressor (RFH, Fig. 6) with the
GEDI metrics in Table II (p in RHp

n was set to 1 for RFH) as the
dependent variables showed an accuracy on the canopy height
estimates similar to that of the SRH model.

The variable importance test of the metrics (see Fig. 7) used in
RFH showed that the most contributing factors for the estimation
of GEDI canopy heights is a combination of RH90, RH100, and
to lesser extentRH80. These results show that in a low relief area
the use of other metrics in addition to the RH90 only slightly
improved the precision of the estimation of canopy heights.

The estimation of Hdom using the models described previ-
ously with GEDI metrics extracted from the five remaining
algorithms (a2 to a6, see Table I) has been also tested. The results
presented in Table VI show that for the linear regression models
[(3) through (8)], canopy height estimation was worst with the
metrics from algorithms a2 through a6 in comparison to the
metrics from algorithm a1 with an RMSE on the canopy height
estimates ranging from 2.40 m (R2 of 0.78, a3) to 5.06 m (R2 of
0.02, a5). This is to be expected given the low terrain relief in
our study area (mean slope of 4.7 ± 3%).
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Fig. 8. Comparison between Measured Hdom and estimated Hdom using only Wext values (Hdom= α.Wext + β) from the six algorithms (a1 through a6).
RMSE is expressed in meters (m).

The low accuracy obtained with algorithm a5 is due to the low
thresholds used for the front and back thresholds (3.σ and 2.σ,
Table I), which result in larger waveform extents. This is evident
when trying to estimate canopy heights based solely on the
waveform extent ( Hdom/insitu = α.Wext + β), with the results
in Fig. 8 showing that the metrics extracted using algorithm a5,
especially the waveform extent (Wext), were the least correlated
to Hdom , with an RMSE of 4.38 m (R2 of 0.26).

In contrast to the linear regression models, canopy height
estimation using SRH or RFH with metrics from algorithms
a2, a3, a5, and a6 showed accuracies similar to those obtained
with algorithm 1 (see Table VI). In contrast, algorithm a5 was
slightly less accurate with an RMSE of respectively 1.6 m (R2

of 0.90) and 1.80 m (R2 of 0.88) when using SRH and RFH.
Finally, the effects of the method to select the ground return

has been studied. The results presented thus far have been based
on detecting the ground mode from the SM provided in the L2A
data product. SM detects the ground return as being the lowest,
nonnoisy mode, which usually refers to the last detected mode.
Previous studies that used GLAS waveforms suggested that the
mode with the higher amplitude between the last two modes
(HL2M) is a better indicator of the ground return [15], [16].
In this article, Hdom estimation was also tested using the same
models described in Section III-A, with the metrics calculated
relatively to the mode with the higher amplitude between the last
two modes, as the ground return. The results in Table VII show
that the models relying mostly on the relative canopy heights
(RHn), such as SRH, or the trailing edge extent fitted separately
[(7) and (8)] had an increase in accuracy on the canopy height
estimates between 12 and 20 cm.

B. Wood Volume Estimation

Four models were used to estimate the stand volume V. Two
power functions as presented in Section III-B [(9) and (10)],
a stepwise multilinear regressing model (SRV) and a random
forest based model (RFV). The coefficients of the models as

TABLE VII
DIFFERENCE IN ACCURACY (RMSE IN M) ON Hdom BASED ON THE CHOICE

OF THE SELECTED GROUND MODE FOR THE DIFFERENT MODELS DESCRIBED

IN SECTION III-A, AND METRICS EXTRACTED USING ALGORITHM A1

SM = Ground mode from SM (last detected mode)
provided in the L2A data product. HL2M = ground
mode corresponding to the higher amplitude between
the last two modes.

presented in (9) and (10) were fitted using in situ V as the
estimated variable and in situ Hdom as the predictor on the 566
studied stands. Next, to estimate V, the fitted models in (9) and
(10) used the estimatedHdom values from SRH with GEDI met-
rics extracted using algorithm a1, while SRV and RFV used the
GEDI waveform metrics from Table II extracted with algorithm
a1 (p in RHp

n was set to 1 for RFV). The estimation results of
stand volume V (see Fig. 9, Table VIII) show that the four tested
models produced similar accuracies on the estimation of V, with
an RMSE between 24.39 and 27.45 m3.ha−1 and coefficient of
determination (R2) between 0.87 and 0.90. Moreover, the results
in Fig. 9 also show that the estimations of V were close to the 1:1
for all values of V between 0 and 250 m3.ha−1, while they under
estimated the volume for V values higher than 250 m3.ha−1. For
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TABLE VIII
MODELS’ PERFORMANCE AND THE FITTED LINEAR EQUATIONS FOR ESTIMATING EUCALYPTUS STAND WOOD VOLUME (V)

The variables are described in section II.B.2, with the models described in section III.B

TABLE IX
ACCURACY (RMSE IN M3.HA−1) OF THE MODELS PRESENTED IN SECTION III-B FOR THE ESTIMATION OF V USING GEDI

METRIC VALUES EXTRACTED USING THE SIX DIFFERENT ALGORITHMS (A1 THROUGH A6)

Fig. 9. Comparison of measured vs. estimated wood volume from the models
presented in section III.B using GEDI metrics extracted with algorithm a1.
RMSE is expressed in m3.ha−1.

the four models, the relative RMSE increased from ∼18% for V
less than 250 m3.ha−1 to ∼40% for V higher than 250 m3.ha−1.
The bias (mean difference of in situ V and estimated V) for V
higher than 250 m3.ha−1 was also more apparent, and decreased
from 2.2 m3.ha−1 (average bias from all models) for V less than
250 m3.ha−1 to 26.5 m3.ha−1 for V higher than 250 m3.ha−1.

The variable importance test of the GEDI metrics (see Fig. 10)
showed that the three most contributing factors on the estimation
of V using the random forest regressor (RFV) were the same
as those for the estimation of canopy heights, with the highest
contributor being RH90, followed by RH80 and RH100.

The estimation of V was also tested using GEDI metric values
extracted using the remaining five algorithms (a2 through a6).
The results presented in Table IX show that the estimates of V
were mostly similar with (9) and (10) across all algorithms. On
the other hand, SRV and RFV show less accurate estimates of
V using GEDI metrics from algorithms a2 through a6 compared
to a1.

Finally, the choice of the method for detecting the ground
return was also studied. The results, unlike those obtained when
estimating Hdom, did not show any significant improvements
when considering the last detected mode, or the stronger between
the last two modes.

V. DISCUSSION

The different tested models in this article showed that GEDI
waveform metrics could be used to obtain good accuracies of
canopy heights and wood volumes, with a RMSPE of 7.1% on
canopy height estimation and 20.4% on wood volume estima-
tion. Moreover, GEDI waveforms appear to be of high quality
given the very little variability on the estimation of Hdom and V
from the individual footprints within a given stand. Indeed, the
accuracy (RMSE) on the estimation of Hdom using the mean
estimates from SRH of the individual footprints was 1.33 m
(R2 of 0.93) versus 1.32 m (R2 of 0.93) when averaging Hdom

estimates from GEDI for each stand. Similarly, the accuracy
on the estimates of V using the mean estimates from SRV was
24.39 m3.ha−1 (R2 of 0.90) and 23.93 m3.ha−1 (R2 of 0.91) for
the average of V from GEDI over each stand.

The most important GEDI variable for the estimation ofHdom

and V is RH90, which explained respectively more than 87%
and 84% of the variability ofHdom and V. Some of the remaining
variability are explained by different GEDI metrics based on the
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Fig. 10. Classification of the variable importance by decreasing order of importance in the RFV model for stand wood volume estimation. The importance is
measured via the average percentage increase of MSE (%IncMSE) over 50 repetitions. The red bars indicates the standard deviation of %IncMSE.

model used. In the case of the stepwise linear regression models,
RH10, RH80, and RH100 are used for the estimation of Hdom

and RH10, RH30, RH80, and RH20 for the estimation of V.
The success of the models in estimatingHdom and V with good

accuracy from GEDI metrics relies heavily on the accuracy of
extracting such metrics from the raw waveform data, and on the
precision of the field measurements. GEDI datasets provide met-
rics issued from six algorithms, and the same metric can differ
in value from one algorithm to another. This was evident from
our results where the accuracy (RMSE) in estimating bothHdom

and V was slightly less accurate with GEDI metrics generated
from algorithms a2 through a6 in comparison to a1. Therefore,
the choice of algorithm of which the metrics are calculated
from, is important. Nonetheless, GEDI L2A datasets already
provide a field for each footprint called “selected_algorithm”
that recognizes the algorithm selected as identifying the lowest
mode (last detected mode) with less noise. This field could be
used as an indicator of the algorithm that provides the most
accurate metrics. Indeed, for our dataset, the best accuracy on
both Hdom and V was observed with metrics extracted using
algorithm a1, which was also the algorithm suggested by the
“selected_algorithm” for more than 99% of the studied foot-
prints.

Another variable that also affects the accuracy of the extracted
metrics, such as RHn, Trailext, or Leadext is the location of the
ground return. In this article, the ground return was identified
either by the SM field in the L2a dataset, or by identifying the
mode with the higher amplitude between the last two detected
modes. Our results, which were obtained over study sites with
mostly homogenous canopy cover and flat terrain, indicated that
the second method improved the estimation accuracy (RMSE)
on Hdom by up to 20 cm. On the other hand, for the estimation
of V, the choice of ground return did not have any effect on the
accuracy. However, for highly dense vegetated areas as in the
case of tropical forests, where the ground return is not easily
identifiable, choosing the strongest mode between the last two
as the ground return should provide better accuracies on Hdom

and V [15], [16].
Some of the uncertainties on the estimation of Hdom and V

can be attributed to some biophysical properties of the canopy
that could not be quantified using GEDI data alone, or due to in-
strumental factors. To understand the effect of these biophysical
properties, additional parameters could therefore be required.

Fig. 11. The effects of adding stand age (in situ information) as a predictor
variable on the estimation of (a) stand dominant heights Hdom (SRHa, m), and
(b) stand volume V (SRVa, m3.ha−1) in a stepwise regression model.

Moreover, since GEDI data were acquired up to two months
before or after in situ measurements, stand growth that happened
between this time gap added to the uncertainty of our estimations
(up to 50 cm difference). Canopy age plays an important role in
understanding the variability of both Hdom and V. Fig. 4(a) and
(b) show that bothHdom and V are a log function of stand age. In
fact, adding the log transform of stand age to the stepwise linear
regression models enhances the accuracy (RMSE) on Hdom by
∼13% (RMSE of 1.33 m without age and 1.18 m with age) and
the volume estimation by ∼7% (24.39 versus 22.77 m3.ha−1

with age) (see Fig. 11). Moreover, the addition of the age of
canopies to the SRH and SRV models also helps reduce the
difference between estimates and measurements of some outliers
points (see Fig. 11). The interest of using the stand age has
also been demonstrated by Le Maire et al. [43] in their study
over Eucalyptus plantations with MODIS optical data. Other
properties of the canopy, such as crown dimension, leaf area
index, distribution of leaf angles, tree gaps due to mortality,
could also add variability to GEDI waveforms. Therefore, by
adequately filtering the stand, one could obtain more accurate
estimates of Hdom and V. On the opposite, the results presented
in this article are specific to Eucalyptus plantations, since most
sources of canopy variations are included.

The instrumental factors affecting the estimation accuracy
include the viewing angle of GEDI at acquisition time. In fact,
GEDI acquires data along eight beams with varying viewing
angles (VA), which could affect the estimation accuracy. In this
article, the analysis of estimation accuracy on both Hdom and
V according to the acquiring beam (see Table X) shows that
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TABLE X
COMPARISON OF THE ESTIMATION ACCURACY ON Hdom AND

V BASED ON THE ACQUIRING BEAM

Estimation results are produced using stepwise lin-
ear regression models with GEDI metric values
extracted using algorithm a1.

the most accurate data were from beams 8, 3 and 4, while the
least accurate Hdom and V estimates were obtained using data
from beam 5. Indeed, the difference between the most accurate
estimates (beam 3) and the least accurate (beam 5) is 46 cm for
Hdom and of 9 m3.ha−1 for V. A preliminary analysis of VA
values shows that beam 5 acquisitions had on average higher
VA values.

A part of the uncertainties on the estimation of Hdom and V
can be attributed to the heterogeneity of the Eucalyptus stands.
In fact, the present study compared GEDI acquisitions with
stand-scale averaged Hdom and V obtained from 1 to up to
10 permanent inventory plots. These in situ measurements are
therefore the result of only a few observations within the stand.
The hypothesis that the stands are homogeneous enough for
using stand-scale averages is sometimes challenged. Indeed,
some stands have high variability between their inventory plots,
which reaches more than 6 m in some cases. A more precise
analysis of intra-stand variability of GEDI waveforms variations
could help determine which Eucalyptus stand could be compared
to stand-scale values of Hdom and V.

Another part of the uncertainties stems from the generalized
models used in this article to estimate Hdom and V. Indeed,
we used a single model across the entire dataset with disregard
to the variability of growing conditions over each study site,
leading to different canopy structures and stand-scale allometric
relationships. A preliminary analysis of locally trained random
forest models shows that for the estimation of Hdom, a locally
trained model could slightly improve the estimation results (a
maximum RMSE decrease of 16 cm was observed, Table S1).
However, for the estimation of V, a locally trained model could
reduce volume estimation errors by as much as 12.8 m3.ha−1 (see
Table S2). The difference in accuracies on the estimation of V
are most probably due to the allometric relations between Hdom

and V, which could vary greatly between one region and another
even for the same tree types, but further analysis is required to
confirm these results.

Finally, after the filtering scheme applied to our dataset (see
Section II-B-3), the remaining footprints with either value of

the quality_flag (either 0 or 1) showed the same accuracy on the
estimation of both Hdom and V for all the tested models.

VI. CONCLUSION

In this article, we analyzed GEDI data in order to determine its
accuracy in estimating stand-scale dominant heights (Hdom) and
stand volume (V) of intensively managed Eucalyptus plantations
in Brazil. Hdom and V values have been estimated using the
most accurate models used for estimating forest height and
aboveground biomass from ICESat-1 waveforms. The GEDI
waveform metrics used in the Hdom and V estimation models
were extracted using algorithms provided by the land processes
distributed active archive center (LP DAAC), in addition to
already established metrics for ICESat-1 waveforms. Overall,
5517 GEDI shots over 566 Eucalyptus stands were analyzed
over our study area.

For our study site defined by flat and gently sloping terrains
(average slope < 5°), six regression models, a stepwise linear
regression model (SRH), and a random forest regressor (RFH)
using GEDI waveform metrics were assessed on their accuracy
to estimate Hdom. Results showed that the most accurate model
was SRH with an RMSE on theHdom estimates of 1.33 m (R2 of
0.93) using metrics extracted with the configuration of algorithm
a1 and considering the higher mode between the last two modes
as the ground return. For this model, the most relevant metrics for
the estimation of Hdom was the 90th percentile relative height
(RH90), followed by RH10, RH80, and RH100.

Stand wood volume (V) was modeled following power law
with the canopy height, a stepwise regression model (SRV), and
a random forest regressor (RFV). The four tested models showed
similar accuracies, with SRV being the most accurate one with
an RMSE of 24.39 m3.ha−1 (relative error ∼20% of the wood
volume average). Similar to SRH, the most relevant metrics for
the estimation of V using SRV was RH90, followed by RH10,
RH30, RH80, and RH20.

The choice of the algorithm used to extract the waveform met-
rics affected sometimes the accuracy, as metrics extracted using
algorithm a5 showed ∼16% higher RMSE on the estimation of
both Hdom and V. Nonetheless, the field “selected_algorithm”
from the L2A dataset provides a robust indicator of the algo-
rithm that provides the most accurate metrics. In addition to
the accuracy of the metrics on the accuracy of Hdom, selecting
the higher of the last two modes as the ground return could
potentially increase the accuracies on Hdom from 12 to 20 cm.

Not all the variability on Hdom and V could be explained by
GEDI alone. For example, including the stand age in the stepwise
regression models help decrease the RMSE on the estimation of
Hdom and V by, respectively,∼13% and∼7%. Nonetheless, and
despite our efforts, underestimation of V using GEDI data was
still observed for V greater than 250 m3.ha−1.

Finally, given the high accuracy of GEDI data on the estima-
tion of tree heights and volume, GEDI can provide an excellent
source of information to calibrate and validate upcoming and
future radar missions, such as the upcoming P-band BIOMASS
mission. GEDI can also supplement radar data by means of
data fusion models in order to obtain high resolution and very
accurate wall-to-wall maps of forest properties.
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