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Abstract

For various species, high quality sequences and complete genomes are nowadays avail-

able for many individuals. This makes data analysis challenging, as methods need not only

to be accurate, but also time efficient given the tremendous amount of data to process. In

this article, we introduce an efficient method to infer the evolutionary history of individuals

under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are

an extension of phylogenetic trees that can contain reticulate nodes, which allow to model

complex biological events such as horizontal gene transfer, hybridization and introgression.

We present a novel way to compute the likelihood of biallelic markers sampled along

genomes whose evolution involved such events. This likelihood computation is at the heart

of a Bayesian network inference method called SNAPPNET, as it extends the SNAPP method

inferring evolutionary trees under the multispecies coalescent model, to networks. SNAPPNET

is available as a package of the well-known BEAST 2 software.

Recently, the MCMC_BiMarkersmethod, implemented in PhyloNet, also extended

SNAPP to networks. Both methods take biallelic markers as input, rely on the same model of

evolution and sample networks in a Bayesian framework, though using different methods for

computing priors. However, SNAPPNET relies on algorithms that are exponentially more time-

efficient on non-trivial networks. Using simulations, we compare performances of SNAPPNET

and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple

networks, but SNAPPNET is more accurate than MCMC_BiMarkers on more complex net-

work scenarios. Also, on complex networks, SNAPPNET is found to be extremely faster than

MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illus-

trate SNAPPNET performances on a rice data set. SNAPPNET infers a scenario that is consistent

with previous results and provides additional understanding of rice evolution.
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Author summary

Nowadays, to make the best use of the vast amount of genomic data at our disposal, there

is a real need for methods able to model complex biological mechanisms such as hybrid-

ization and introgression. Understanding such mechanisms can help geneticists to elabo-

rate strategies in crop improvement that may help reducing poverty and dealing with

climate change. However, reconstructing such evolution scenarios is challenging. Indeed,

the inference of phylogenetic networks, which explicitly model reticulation events such as

hybridization and introgression, requires high computational resources. Thus, on large

data sets, biologists generally deduce reticulation events indirectly using species tree infer-

ence tools.
In this context, we present a new Bayesian method, called SNAPPNET, dedicated to phy-

logenetic network inference. Our method is competitive in terms of execution speed with

respect to its competitors. This speed gain enables us to consider more complex evolution

scenarios during Bayesian analyses. When applied to rice genomic data, SNAPPNET

retrieved an evolution scenario that confirms the global triple foundation of the species

and the origin of circum Basmati as a hybrid derivative between Japonica cultivars and a

local Indian form. It suggests that this hybridization is ancient and probably precedes the

domestication of circum Aus.

This is a PLOS Computational Biology Methods paper.

Introduction

Complete genomes for numerous species in various life domains [1–5], and even for several

individuals for some species [6, 7] are nowadays available thanks to next generation sequenc-

ing. This flow of data finds applications in various fields such as pathogenecity [8], crop

improvement [9], evolutionary genetics [10] or population migration and history [11–13].

Generally, phylogenomic studies use as input thousands to millions genomic fragments sam-

pled across different species. To process such a large amount of data, methods need not only to

be accurate, but also time efficient. The availability of numerous genomes at both the intra and

inter species levels has been a fertile ground for studies at the interface of population genetics

and phylogenetics [14] that aim to estimate the evolutionary history of closely related species.

In particular, the well-known coalescent model from population genetics [15] has been

extended to the multispecies coalescent (MSC) model [16, 17] to handle studies involving popu-

lations or individuals from several species. Recent works show how to incorporate sequence

evolution processes into the MSC [18, 19]. As a result, it is now possible to reconstruct evolu-

tionary histories while accounting for both incomplete lineage sorting (ILS) and sequence evo-

lution [20, 21].

For a given locus, ILS leads different individuals in a same population to have different

alleles that can trace back to different ancestors. Then, if speciation occurs before the different

alleles get sorted in the population, the locus tree topology can differ from the species history

[22]. But incongruence between these trees can also result from biological phenomena that can

cause a species to inherit lineages and/or genomic fragments from more than one parent spe-

cies. Examples of such phenomena include hybrid speciation [23–26], introgression [27–29]
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and horizontal gene transfer [30, 31] (the latter is not addressed in this paper). As a conse-

quence of these reticulate events, trees are not suited to represent species history, and should

be replaced by phylogenetic networks. A rooted phylogenetic network is mainly a directed acy-

clic graph whose internal nodes can have several children, as in trees, but can also have several

parents [32–34]. Various models of phylogenetic network have been proposed over time to

explicitly represent reticulate evolution, such as hybridization networks [35] or ancestral

recombination graphs [36], along with dozens of inference methods [37, 38].

Model-based methods have been proposed to handle simultaneously ILS and reticulate evo-

lution, which is a desired feature to avoid bias in the inference [39–41]. These methods postu-

late a probabilistic model of evolution and then estimate its parameters –including the

underlying network– from the data. The estimation of parameters such as branch lengths

(hence speciation dates) and population sizes makes them more versatile than combinatorial

methods [42]. On the down side, they usually involve high running times as they explore large

parameter spaces. Two probabilistic models differentiate regarding the way a locus tree can be

embedded within a network. In Kubatko’s model [43, 44], all lineages of a given locus tree coa-

lesce within a single species tree displayed by the network. The model of Yu et al. [45] is more

general as, at each reticulation node, a lineage of the locus tree is allowed to descend from a

parental ancestor independently of which ancestors provide the other lineages. Works on the

latter model extend in various ways the MSC model to consider network-like evolution, giving

rise to the multispecies network coalescent (MSNC), intensively studied in recent years [38, 41,

46–55]. For this model, Yu et al. have shown how to compute the probability of a non-recom-

binant locus (gene) tree evolving inside a network, given the branch lengths and inheritance

probabilities at each reticulation node of the network [46, 48]. This opened the way to infer

networks according to the well-known maximum likelihood and Bayesian statistical

frameworks.

When the input data consists of multi-locus alignments, a first idea is to decompose the

inference process in two steps: first, infer locus trees from their respective alignments, then

look for networks that assign high probability to these trees. Following this principle, Yu et al.

devised a maximum likelihood method [48], then a Bayesian sampling technique [51]. How-

ever, using locus trees as a proxy for molecular sequences loses some information contained in

the alignments [16] and is subject to tree reconstruction errors. For this reasons, recent work

considers jointly estimating the locus trees and the underlying network. This brings the extra

advantage that better locus trees are likely to be obtained [56], but running time may become

prohibitive already for inferences on few species. Wen et al. in the PHYLONET software [52] and

Zhang et al. with the SPECIESNETWORK method [53] both proposed Bayesian methods following

this principle.

Though a number of trees for a same locus are considered during such inference processes,

they are still considered one at a time, which may lead to a precision loss (and a time loss) com-

pared to an inference process that would consider all possible trees for a given locus at once.

When data consists of a set of biallelic markers (e.g., SNPs), the ground-breaking work of Bry-

ant et al. [19] allows to compute likelihoods while integrating over all gene trees, under the

MSC model (i.e., when representing the history as a tree). This work was recently extended to

the MSNC context by Zhu et al [54].

In this paper, we present a novel way to compute the probability of biallelic markers, given

a network. This likelihood computation is at the heart of a Bayesian network inference method

we called SNAPPNET, as it extends the SNAPP method [19] to networks. SNAPPNET is available at

https://github.com/rabier/MySnappNet and distributed as a package of the well-known BEAST

2 software [57, 58]. This package partly relies on code from SNAPP [19] to handle sequence
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evolution and on code from SPECIESNETWORK [53] to modify the network during the MCMC as

well as to compute network priors.

Our approach differs from that of Zhang et al. [53] in that SNAPPNET takes a matrix of bialle-

lic markers as input while SPECIESNETWORK expects a set of alignments. Thus, the substitution

models differ, as we consider only two states (alleles) while SPECIESNETWORK deals with nucleo-

tides. The computational approaches also differ as our MCMC integrates over all locus trees

for each sampled network, while SPECIESNETWORK jointly samples networks and gene trees.

Though summarizing the alignments by gene trees might be less flexible, this allows SPECIES-

NETWORK to provide embeddings of the gene trees into the sampled networks, while in our

approach this needs to be done in a complementary step after running SNAPPNET. However,

managing the embeddings can also lead to computational issues as Zhang et al. report, since a

topological change for the network usually requires a recomputation of the embeddings for all

gene trees [53].

The SNAPPNET method we present here is much closer to the MCMC_BiMarkers method

of Zhu et al. [54], which also extends the SNAPP method [19] to network inference. Both meth-

ods take biallelic markers as input, rely on the same model of evolution and both sample net-

works in a Bayesian framework. However, they differ in two important respects: the way the

Bayesian inference is conducted and, most importantly, in the algorithm to compute the likeli-

hoods. The results we present here show that this often leads to tremendous differences in run-

ning time, but also to differences in convergence.

We note that reducing running times of model-based methods can also be done by approxi-

mating likelihoods, as done by pseudo-likelihood methods: the network likelihood is computed

for subparts of its topology, these values being then assembled to approximate the likelihood of

the full network. A decomposition of the network into rooted networks on three taxa (trinets)

is proposed in the PHYLONET software [49, 59] and one into semi-directed networks on four

taxa in the SNAQ method of the PHYLONETWORK package [50]. Since pseudo-likelihood meth-

ods are approximate heuristics to compute a likelihood, they are usually much faster than full

likelihood methods and can handle large genomic data sets. On the downside, these methods

face, more often than the full-likelihood methods, serious identifiability problems since some

networks simply cannot be recovered from topological substructures such as rooted triples,

quartets or even embedded trees [49, 50, 60]. Here we focus on the exact computation of the

full likelihood, for which identifiability issues are likely to be less serious [41, 61].

In the following, we first detail the mathematical model considered, then explain the SNAPP-

NET method, before illustrating its performances on simulated and real data.

Materials and methods

Input data

SNAPPNET considers as input data a matrix D containing an alignment of m biallelic markers

sampled from a number of individuals. Each individual belongs to a given species. These spe-

cies are in a 1-to-1 correspondence with the leaves of an unknown phylogenetic network,

which is the main parameter that we wish to estimate. The markers can be SNPs or random

sites sampled from chromosomes, including invariant sites. All markers are considered to be

independent, so a certain distance must be preserved between genomic locations included in

the matrix. We identify the two alleles with the red and green colors.

Each column Di of the alignment corresponds to a different marker. The only information

that is relevant to SNAPPNET’s computations are the numbers of red and green alleles observed

in Di for the individuals of a given species. This implies that unphased data can be analyzed

with SNAPPNET, as long as it is translated in the input format expected by the software.
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Mathematical model

In this paper, we refer to phylogenetic networks as directed acyclic graphs with branches ori-

ented as the time flows, see Fig 1. At their extremities, networks have a single node with no

incoming branch and a single outgoing branch —the origin— and a number of nodes with a

single incoming branch and no outgoing branches —the leaves. All other nodes either have a

single incoming branch and two outgoing branches —the tree nodes— or two incoming

branches and a single outgoing branch —the reticulation nodes. Tree nodes and reticulation

nodes represent speciations and hybridization events, respectively. For consistency with

Zhang et al. [53], the immediate descendant of the origin—that is, the tree node representing

the first speciation in the network—is called the root.
Each branch x in the network represents a population, and is associated to two parameters:

a scaled population size θx and a branch length tx. Any branch x on top of a reticulation node h
is further associated with a probability γx 2 (0, 1), under the constraint that the probabilities of

the two parent branches of h sum to 1. These probabilities are called inheritance probabilities.
All these parameters have a role in determining how gene trees are generated by the model,

and how markers evolve along these gene trees, as described in the next two subsections,

respectively.

Gene tree model. Gene trees are obtained according to the MSNC model. The process

starts at the leaves of the network, where a given number of lineages is sampled for each leaf,

Fig 1. Example of a phylogenetic network. The top node represents the origin and its child node is called the root of

the network. Time flows from the origin node to the leaves (here A, B, C, D) so branches are directed from the top to

the leaves. Each branch x is associated to a length tx, and to a population size θx. Additionally, branches x on top of a

reticulation node have an inheritance probability γx representing their probability to have contributed to any

individual at the top of the branch just below.

https://doi.org/10.1371/journal.pcbi.1008380.g001
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each lineage going backwards in time, until all lineages coalesce. Along the way, this process

determines a gene tree whose branch lengths are each determined as the amount of time

between two coalescences affecting a same lineage. Here and in what follows, “times” —and

therefore branch lengths— are always measured in terms of expected number of mutations per

site.

Within each branch x of the network, the model applies a standard coalescent process gov-

erned by θx. In detail, any two lineages within x coalesce at rate 2/θx, meaning that the first coa-

lescent time among k lineages follows an exponential distribution Eðkðk � 1Þ=yxÞ, since the

coalescence of each combination of 2 lineages is equiprobable. Naturally, if the waiting time to

coalescence exceeds the branch length tx, the lineages are passed to the network branch(es)

above x without coalescence. If there are two such branches, say y, z (i.e., the origin of x is a

reticulation node) then each lineage that has arrived at the top of branch x chooses indepen-

dently whether it goes to y or z with probabilities γy and γz = 1 − γy, respectively [45]. The pro-

cess terminates when all lineages have coalesced and only one ancestral lineage remains.

Mutation model. As is customary for unlinked loci, we assume that the data is generated

by a different gene tree for each biallelic marker. The evolution of a marker along the branches

of this gene tree follows a two-states asymmetric continuous-time Markov model, scaled so as

to ensure that 1 mutation is expected per time unit. This is the same model as Bryant et al.

[19]. For completeness, we describe this mutation model below.

We represent the two alleles by red and green colors. Let u and v denote the instanta-

neous rates of mutating from red to green, and from green to red, respectively. Then,

for a single lineage, Pðred at t þ Dt j green at tÞ ¼ vDt þ oðDtÞ, and

Pðgreen at t þ Dt j red at tÞ ¼ uDt þ oðDtÞ, where o(Δt) is negligible when Δt tends to

zero. The stationary distribution for the allele at the root of the gene tree is green with

probability u/(u + v) and red with probability v/(u + v). Under this model, the expected

number of mutations per time unit is 2uv/(u + v). In order to measure time (branch lengths)

in terms of expected mutations per site (i.e. genetic distance), we impose the constraint

2uv/(u + v) = 1 as in [19]. When u and v are set to 1, the model is also known as the Haldane

model [62] or the Cavender-Farris-Neyman model [63].

Bayesian framework

Posterior distribution. Let Di be the data for the i-th marker. The posterior distribution

of the phylogenetic network C can be expressed as:

PðCjD1; . . . ;DmÞ / PðD1; . . . ;Dm j CÞ � PðCÞ

¼ PðCÞ �
Ym

i¼1

PðDijCÞ
ð1Þ

where/means “is proportional to”, and where PðD1; . . . ;Dm j CÞ and PðCÞ refer to the like-

lihood and the network prior, respectively.

Eq 1—which relies on the independence of the data at different markers— allows us to

compute a quantity proportional to the posterior by only using the prior of C and the likeli-

hoods of C with respect to each marker, that is PðDijCÞ. While we could approximate

PðDijCÞ by sampling gene trees from the distribution determined by the species network, this

is time-consuming and not necessary. Similarly to the work by Bryant et al. [19] for inferring

phylogenetic trees, we show below that PðDijCÞ can be computed for networks using dynamic

programming.

SNAPPNET samples networks from their posterior distribution by using Markov chain

Monte-Carlo (MCMC) based on Eq 1.
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Priors. Before describing the network prior, let us recall the network components: the

topology, the branch lengths, the inheritance probabilities and the populations sizes. In this

context, we used the birth-hybridization process of Zhang et al. [53] to model the network

topology and its branch lengths. This process depends on the speciation rate λ, on the hybrid-

ization rate nu and on the time of origin τ0. Hyperpriors are imposed onto these parameters.

An exponential distribution is used for the hyperparameters d≔ λ − nu and τ0. The hyper-

parameter r≔ nu/λ is assigned a Beta distribution. We refer to [53] for more details. The

inheritance probabilities are modeled according to a uniform distribution. Moreover, like

SNAPP, SNAPPNET considers independent and identically distributed Gamma distributions as

priors on population sizes θx associated to each network branch. This prior on each population

size induces a prior on the corresponding coalescence rate (see [19] and SNAPP’s code). Last, as

in SNAPP, the user can specify fixed values for the u and v mutation rates, or impose a prior for

these rates and let them be sampled within the MCMC.

Partial likelihoods. In the next section we describe a few recursive formulae that we use

to calculate the likelihood PðDijCÞ using a dynamic programming algorithm. Here we intro-

duce the notations that allow us to define the quantities involved in our computations. Unless

otherwise stated, notations that follow are relative to the ith biallelic marker. To keep the nota-

tions light, the dependence on i is not explicit.

Given a branch x, we denote by x and x the top and bottom of that branch. We call x and x
population interfaces. We say that two population interfaces are incomparable if neither is a

descendant of the other (which also excludes them being equal). Nx and Nx are random vari-

ables denoting the number of gene tree lineages at the top and at the bottom of x, respectively.

Similarly, Rx and Rx denote the number of red lineages at the top and bottom of x, respectively.

See Fig 2 for illustration of these concepts and of the notation that we introduce in the

following.

For simplicity, when x is a branch incident to a leaf, we identify x with that leaf. Two quanti-

ties that are known about each leaf are rx and nx, which denote the number of red lineages sam-

pled at x and the total number of lineages sampled at x, respectively. Note that Nx, in this case,

is non-random: indeed, it must necessarily equal nx, which is determined by the number of

individuals sampled from that species. On the other hand, the model we adopt determines a

distribution for the Rx. The probability of the observed values rx for these random variables

equals PðDijCÞ.

Now let x be an ordered collection (i.e. a vector) of population interfaces. We use nx (or rx)

to denote a vector of non-negative integers in a 1-to-1 correspondence with the elements of x.

Then Nx = nx is a shorthand for the equations expressing that the numbers of lineages in nx are

observed at the respective interfaces in x. For example, if x ¼ ðx; yÞ and nx = (m, n), then Nx =

nx is a shorthand for Nx ¼ m;Ny ¼ n. We use Rx = rx analogously to express the observation

of the numbers of red lineages in rx at x.

In order to calculate the likelihood PðDijCÞ, we subdivide the problem into that of calculat-

ing quantities that are analogous to partial likelihoods. Given a vector of population interfaces

x, let L(x) denote a vector containing the leaves that descend from any element of x, and let

rL(x) be the vector containing the numbers of red lineages rx observed at each leaf x in L(x).

Then we define:

Fxðnx; rxÞ ¼ PðRLðxÞ ¼ rLðxÞ j Nx ¼ nx;Rx ¼ rxÞ � PðNx ¼ nxÞ ð2Þ

(see Fig 2). These quantities are generalizations of similar quantities defined by Bryant et al.
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[19]. We will call them partial likelihoods, although, as noted by these authors, strictly speaking

this is an abuse of language.

Computing partial likelihoods: The rules. Here we show a set of rules that can be applied

to compute partial likelihoods in a recursive way. Derivations and detailed proofs of the cor-

rectness of these rules can be found in Section 1 in S1 Text.

We use the following conventions. In all the rules that follow, vectors of population inter-

faces x,y,z are allowed to be empty. The comma operator is used to concatenate vectors or

append new elements at the end of vectors, for example, if a = (a1, a2, . . ., ak) and b = (b1,

b2, . . ., bh), then a, b = (a1, . . ., ak, b1, . . ., bh) and a, c = (a1, a2, . . ., ak, c). Trivially, if a is empty,

then a, b = b and a, c = (c). A vector x of incomparable population interfaces is one where all

pairs of population interfaces are incomparable. Finally, for any branch x, let mx denote the

number of lineages sampled in the descendant leaves of x.

Rule 0: Let x be a branch incident to a leaf. Then,

FðxÞððnÞ; ðrÞÞ ¼ 1fn ¼ nxg � 1fr ¼ rxg

Fig 2. Illustration of the concepts and notation employed to describe likelihood computations. The species network

topology is the same as that in Fig 1, but branches (populations) are now represented as grey parallelograms. A gene tree

is drawn inside the species network (green and red lines). One mutation occurs in the branch above D. We focus on

three branches: x, y and z. Colored horizontal bars represent the population interfaces x, y, y and z . Note that ðx; yÞ
(blue) is a vector of incomparable population interfaces, while ðy; zÞ (orange) is not, as z is a descendant of y. Here, nA =

nB = nC = nD = 2, rA = 2, rB = 1, rC = 0, rD = 2 are known, whereas the values of Nx;Ny ;Ny;Nz and Rx;Ry ;Ry;Rz are not

observed, and depend on the gene tree generated by the MSNC process. For the gene tree shown, Nðx;yÞ ¼ ð2; 1Þ and

Rðx;yÞ ¼ ð2; 0Þ. Since z is incident to leaf B, we have z ¼ B and Rz ¼ rB ¼ 1. Now note Lððx; yÞÞ ¼ ðA;B;CÞ. Then,

Fðx;yÞððn; n0Þ; ðr; r0ÞÞ ¼ PðRA ¼ rA;RB ¼ rB;RC ¼ rC j Nx ¼ n;Ny ¼ n0;Rx ¼ r;Ry ¼ r0ÞPðNx ¼ n;Ny ¼ n0Þ.

https://doi.org/10.1371/journal.pcbi.1008380.g002
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Rule 1: Let x; x be a vector of incomparable population interfaces. Then,

Fx;xðnx; nx ; rx; rxÞ ¼
Xmx

n¼nx

Xn

r¼0

Fx;xðnx; n; rx; rÞ exp ðQxtxÞðn;rÞ;ðnx ;rx Þ

where tx denotes the length of branch x, andQx is the rate matrix defined by Bryant et al.

[19, p. 1922] that accounts for both coalescence and mutation (see also Section 1 in S1

Text).

Rule 2: Let x; x and y; y be two vectors of incomparable population interfaces, such that

Lðx; xÞ and Lðy; yÞ have no leaf in common. If x and y are the immediate descendants of a

branch z, as in Fig 3, then,

Fx;y;zðnx;ny; nz; rx; ry; rzÞ ¼
X

nx

X

rx

Fx;xðnx; nx ; rx; rxÞFy;yðny; nz � nx ; ry; rz � rxÞ
nx
rx

� �
nz � nx
rz � rx

� �
nz
rz

� �� 1

The ranges of nx and rx in the summation terms are defined by maxð0; nz � myÞ � nx �

minðmx; nzÞ and maxð0;nx þ rz � nzÞ � rx � minðnx ; rzÞ.

Rule 3: Let x; x be a vector of incomparable population interfaces, such that branch x’s top

node is a reticulation node. Let y, z be the branches immediately ancestral to x, as in Fig 4.

Fig 3. Illustration of Rule 2. Given (a) the partial likelihoods for the x; x (red) vector of population interfaces and the

partial likelihoods for the y; y (blue) vector of population interfaces, Rule 2 allows us to compute the partial likelihoods

for the (green) vector x; y; z (b).

https://doi.org/10.1371/journal.pcbi.1008380.g003
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Then,

Fx;y;zðnx; ny; nz; rx; ry; rzÞ ¼ Fx;xðnx; ny þ nz; rx; ry þ rzÞ
ny þ nz

ny

0

@

1

Ag
ny
y � g

nz
z

Rule 4: Let z; x; y be a vector of incomparable population interfaces, and let x, y be immediate

descendants of branch z, as in Fig 5. Then,

Fz;zðnz; nz; rz; rzÞ ¼
X

nx

X

rx

Fz;x ;yðnz; nx ; nz � nx ; rz; rx ; rz � rxÞ
nx
rx

� �
nz � nx
rz � rx

� �
nz
rz

� �� 1

The ranges of nx and rx in the sums are the same as those in Rule 2.

Note that, in the rules above, we assume that the vectors of population interfaces (VPIs
from here on) on the right-hand side of each equation only contain incomparable population

interfaces. This is necessary to ensure the validity of the rules (see Section 1 in S1 Text). It is

Fig 4. Illustration of Rule 3. Given (a) the partial likelihoods for the x; x (red) vector of population interfaces, Rule 3

allows us to compute the partial likelihoods for the (green) vector x; y; z (b).

https://doi.org/10.1371/journal.pcbi.1008380.g004
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easy to verify that, as a consequence of that assumption, also the VPIs on the left-hand side of

each equation only contain incomparable population interfaces. Therefore, repeated applica-

tion of the rules can only result in a partial likelihood Fx(nx;rx) where x is a vector of incompa-

rable population interfaces. Thus, all VPIs that we will deal with only contain incomparable

population interfaces.

Repeated application of the rules above, performed by an algorithm described in the next

subsection, leads eventually to the partial likelihoods for r, the population interface immedi-

ately above the root of the network (i.e, ρ is the branch linking the origin to the root). From

these partial likelihoods, the full likelihood PðDijCÞ is computed as follows:

PðDi j CÞ ¼
Xmr

n¼1

Xn

r¼0

FðrÞðn; rÞ � PðRr ¼ r j Nr ¼ nÞ; ð3Þ

where the conditional probabilities PðRr ¼ r j Nr ¼ nÞ are obtained as described by Bryant

et al. [19]. Note that the length of branch ρ does not play any role in the computation of the

likelihood, so it is not identifiable.

Likelihood computation. We now describe the algorithm that allows SNAPPNET to derive

the full likelihood PðDijCÞ using the rules introduced above. We refer to Section 2 in S1 Text

for detailed pseudocode.

Fig 5. Illustration of Rule 4. Given (a) the partial likelihoods for the z; x; y (red) vector of population interfaces, Rule

4 allows us to compute the partial likelihoods for the (green) vector z; z (b).

https://doi.org/10.1371/journal.pcbi.1008380.g005
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The central ingredient of this algorithm are the partial likelihoods for a VPI x, which are

stored in a matrix with potentially high dimension, denoted Fx. We say that a VPI x is active at

some point during the execution of the algorithm, if: (1) Fx has been computed by the algo-

rithm, (2) Fx has not yet been used to compute the partial likelihoods for another VPI. To

reduce memory usage, we only store Fx for active VPIs.

In a nutshell, the algorithm traverses each node in the network following a topological sort

[64], that is, in an order ensuring that a node is only traversed after all its descendants have

been traversed. Every node traversal involves deriving the partial likelihoods of a newly active

VPI from those of at most two VPIs that, as a result, become inactive. Eventually, the root of

the network is traversed, at which point the only active VPI is ðrÞ and the full likelihood of the

network is computed from FðrÞ using Eq 3.

In more detail, a node is ready to be traversed when all its child nodes have been traversed.

At the beginning, only leaves can be traversed and their partial likelihoods FðxÞ are obtained by

application of Rule 0, followed by Rule 1 to obtain FðxÞ. Every subsequent traversal of a node d
entails application of one rule among Rules 2, 3 or 4, depending on whether d is a tree node

and on whether the branch(es) topped by d correspond to more than one VPI (see Figs 3–5).

The selected rule computes Fx for a newly active VPI x. This is then followed by application of

Rule 1 to replace every occurrence of any population interface x in x with x.

It is helpful to note that at any moment, the set of active VPIs forms a frontier separating the

nodes that have already been traversed, from those that have not yet been traversed (i.e., if branch

x = (d, e) with d not traversed and e traversed, then there must be an active VPI with x or x
among its population interfaces). Any node that lies immediately above this frontier can be the

next one to be traversed. Thus, there is some latitude in the choice of the complete order in

which nodes are traversed. Different orders will lead to different VPIs being activated by the algo-

rithm, which in turn will lead to different running times. In fact, running times are largely deter-

mined by the sizes of the VPIs encountered. This point is explored further in the next section.

The correctness of our implementation of the algorithm above was confirmed by compar-

ing the likelihoods we obtain to those computed with MCMC_BiMarkers, which also relies

on biallelic marker data [54].

Time complexity of computing the likelihood. Our approach improves the running

times by several orders of magnitude with respect to MCMC_BiMarkers [54]. This is clearly

apparent for some experiments detailed in the Results section, but it can also be understood by

comparing computational complexities.

Here, let n be the total number of individuals sampled, and let s denote the size of the spe-

cies network C (i.e. its number of branches or its number of nodes). Let us first examine the

running time to process one node in C. For any of Rules 0–4, let K be the number of popula-

tion interfaces in the VPI for which partial likelihoods are being computed, that is, K is the

number of elements of x; x for Rule 1, that of x; y; z for Rule 2, and so on. These partial likeli-

hoods are stored in a 2K-dimensional matrix, with O(n2K) elements. Each rule specifies how to

compute an element of this matrix in at most O(n2) operations (in fact rules 0 and 3 only

require O(1) operations). Thus, any node in the network can be processed in O(n2K+2) time.

Since the running time of any other step—i.e. computing Eq 3, and exp ðQxtxÞ—is domi-

nated by these terms, the total running time is Oðsn2Kþ2Þ, where K is the maximum number of

population interfaces in a VPI activated by the given traversal, and where s is the size of the

species network.

Let us now compare this to the complexity of the likelihood computations described by

Zhu et al. [54]. Processing a node d of the network in their algorithm involves at most

Oðn4rdþ4Þ time, where rd is the number of reticulation nodes which descend from d, and for
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which there exists a path from d that does not pass via a lowest articulation node (see defini-

tions in Zhu et al. [54]). In Section 3 of S1 Text, we show that this entails a total running time

of O(sn4ℓ+4), where ℓ is the level of the network [32, 65].

Thus, the improvement in running times with respect to the algorithm by Zhu et al. [54]

relies on the fact that 2K þ 2≪4‘þ 4. One way of seeing this is to remark that, for any tra-

versal of the network, K � ‘þ 1. We refer to Section 3 in S1 Text for a proof of this result.

Assuming that K and ℓ are close, this would imply that the exponent of n in the worst-case

time complexity is roughly halved with respect to Zhu et al. [54]. However, K is potentially

much smaller than the level ℓ, as depicted in Fig 6.

We call the minimum value of K over all possible traversals of the network the scanwidth of

the network [66]. The current implementation of SNAPPNET chooses an arbitrary traversal of

the network, but research is ongoing to further lower running times by relying on more

involved traversal algorithms producing VPIs with sizes closer to the scanwidth [66].

MCMC operators. SNAPPNET incorporates the MCMC operators of SPECIESNETWORK [53]

to move through the network space, and also benefits from operators specific to the mathemat-

ical model behind SNAPP [19] (e.g. population sizes, mutation rates, etc.).

In order to explore the network space, we used the following topological operators from

SPECIESNETWORK: (a) addReticulation and (b) deleteReticulation add and delete reticulation

nodes respectively, (c) flipReticulation flips the direction of a reticulation branch and finally

(d) relocateBranch and (e) relocateBranchNarrow relocate either the source or the destination

Fig 6. Example of a phylogenetic network where the level ℓ is equal to 6 (the reticulation nodes are depicted in

grey), while K 2 f3; 4; 5; 6; 7g, depending on the traversal algorithm (not shown). A traversal ensuring that K
remains close to the lower end of this interval (the scanwidth of the network [66]) will be several orders of magnitude

faster than algorithms whose complexity depends exponentially on ℓ. Increasing the number of reticulation nodes

while keeping a “ladder” topology as above can make ℓ arbitrarily large, while the scanwidth remains constant. This

topology may seem odd but it is intended as the backbone of a more complex and realistic network with subtrees

hanging from the different internal branches of the ladder, in which case the complexity issue remains.

https://doi.org/10.1371/journal.pcbi.1008380.g006
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of random branch. The operators on gene trees from SPECIESNETWORK have been discarded

since in SNAPPNET gene trees are integrated out. The following SNAPP operators acting on con-

tinuous parameters are incorporated within SNAPPNET: (a) changeUAndV changes the values of

the instantaneous rates u and v, (b) changeGamma and (c) changeAllGamma scale a single

population size or all population sizes, respectively.

Last, SNAPPNET takes also advantage of a few SPECIESNETWORK operators for continuous

parameters: (a) turnOverScale and (b) divRateScale allow to change respectively the hyperpara-

meters r and d for the birth-hybridization process, (c) inheritanceProbUniform and

(d) inheritanceProbRndWalk transform the inheritance probability γ at a random reticulation

node by drawing either a uniformly distributed number or by applying a uniform sliding win-

dow to the logit of γ, (e) networkMultiplier and (f) originMultiplier scale respectively the

heights of all internal nodes or of the origin node, (g) nodeUniform and (h) nodeSlider move

the height of a random node uniformly or using a sliding window.

In summary, SNAPPNET relies on 16 MCMC operators, described in SNAPPNET’s manual

(https://github.com/rabier/MySnappNet). We refer to the original publications introducing

these operators for more details [19, 53].

Simulation study

Simulated data. We implemented a simulator called SIMSNAPPNET, an extension to net-

works of the SIMSNAPP software [19]. SIMSNAPPNET handles the MSNC model whereas SIMSNAPP

relies on the MSC model. SIMSNAPPNET is available at https://github.com/rabier/SimSnappNet.

In all simulations, we considered a given phylogenetic network, and a gene tree was simulated

inside the network, according to the MSNC model. Next, a Markov process was generated

along the branches of the gene tree, in order to simulate the evolution of a marker. Note that

markers at different sites rely on different gene trees. In all cases, we set both the u and v rates

to 1. Moreover, we used the same θ = 0.005 value, for all network branches. Our configuration

differs slightly from the one of [54]. These authors considered θ = 0.006 for external branches

and θ = 0.005 for internal branches. Indeed, since SNAPPNET considers the same prior distribu-

tion Γ(α, β) for all θ’s, we found it more appropriate to generate data under SNAPPNET’s

assumptions.

Three numbers of markers were studied: 1,000, 10,000 or 100,000 biallelic sites were gener-

ated. Unless otherwise stated, constant sites were not discarded since SNAPPNET’s mathematical

formulas rely on random markers. When the analysis relied only on polymorphic sites, the

gene tree and the associated marker were regenerated until it resulted in a polymorphic site.

We considered 20 replicates for each simulation set up.

Phylogenetic networks studied. We studied the three phylogenetic networks shown in

Fig 7. Networks A and B are rather simple networks that we wish our tool to be able to infer.

They have been taken from [54] and this allowed us to compare the performances of SNAPPNET

and MCMC_BiMarkers on these networks, without having to rerun the latter. Networks A

and B have one and two reticulations, respectively. Network C, like B, has two reticulations,

but their relative positions are different: in C they are on top of one another, allowing us to

investigate the influence of nested reticulations on the inference. In order to fully describe

these networks, we give their extended Newick representation [67] in Section 4 in S1 Text.

We also studied networks C(3) and C(4), which are variants of network C (see Fig 8).

Network C(k)—containing k reticulation nodes—is obtained by splitting species C into k − 1

species, named C1, C2, . . ., Ck−1, and by adding reticulations between them in the way

depicted in Fig 8. The relative positions of reticulation nodes in these networks represents a

significant computational challenge for network inference tools, and were therefore used to
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evaluate the efficiency of a single likelihood computation performed by SNAPPNET and

MCMC_BiMarkers.

Bayesian analysis. In the experiments on networks A, B and C, we used a single tree

as initial state of the MCMC. None of the starting trees were subtrees of the correct

network topology. A few alternative starting trees were used to check the convergence of the

MCMC, showing a limited effect of the starting tree on the posterior probabilities. All relevant

Newick representations are reported in S1 Text.

As priors on population sizes, we considered θ* Γ(1,200) for all branches. Since simulated

data were generated by setting θ = 0.005, the expected value of this prior distribution is exactly

Fig 7. The three phylogenetic networks used for simulating data. Networks A and B are taken from [54]. Branch lengths are measured in units of

expected number of mutations per site (i.e. substitutions per site). Displayed values represent inheritance probabilities.

https://doi.org/10.1371/journal.pcbi.1008380.g007

Fig 8. The networks from the C family, with either 3 or 4 reticulation nodes, and with or without outgroup O.

https://doi.org/10.1371/journal.pcbi.1008380.g008
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matching the true value (EðyÞ ¼ 0:005). For calibrating the network prior, we chose the same

distributions as suggested in [53]: d � Eð0:1Þ, r* Beta(1, 1), t0 � Eð10Þ. This network prior

enables to explore a large network space, while imposing more weights on networks with 1 or

2 reticulations (see Fig A of S1 Text). Recall that network A is a 1-reticulation network,

whereas networks B and C are 2-reticulation networks. However, in order to limit the compu-

tational burden for network C (and for estimating continuous parameters on network A), we

slightly modified the prior by bounding the number of reticulations to 2. Last, on network B,

the analysis was performed by bounding the number of reticulations to 3 in order to compare

SNAPPNET’s results with those obtained by MCMC_BiMarkers [54]. We refer to Figs B and C

in S1 Text for illustrations of the “bounded” prior.

MCMC convergence. To track the behaviour of the Bayesian algorithm, we used the

Effective Sample Size (ESS) criterion [68]. We assumed that MCMC convergence was reached

and that enough “independent” observations were sampled, when the ESS values for all model

parameters are greater than 200 (see https://beast.community/ess_tutorial). This threshold is

commonly adopted in the MCMC community. The first 10% samples were discarded as burn-

in and the ESSs were computed on the remaining observations, using the Tracer software [69].

When we could not reach ESSs of 200, the ESS threshold is specified in the text. In the follow-

ing, when speaking of a specific ESS value, we refer to the ESS computed for the posterior den-

sity function of the sampled networks (first value reported by Tracer). In order to estimate

posterior distributions, we only sampled the MCMC every 1000 iterations. This was done to

reduce autocorrelation across the sampled networks.

Note that here we do not attempt to measure an ESS of the network topologies sampled by

the MCMC. While approaches to do this have been proposed for tree topologies [70], adapting

such approaches to network topologies lies beyond the scope of this paper (see also the Discus-

sion). Topological convergence was only assessed by inspecting the similarity between the

results obtained for different MCMC replicates.

Accuracy of SNAPPNET. In order to evaluate SNAPPNET’s ability to recover the true network

topology, the posterior probability of the true topology was estimated by taking the proportion

of sampled network topologies matching the true topology. Note that unlike previous works

[54], we did not use a measure of topological dissimilarity, because most of the proposed mea-

sures can equal 0 even when the network topologies are different [38, 71]. In order to verify

whether a sampled network and the true network have the same topologies, we used the iso-

morphism tester program available at https://github.com/igel-kun/phylo_tools. We report the

average (estimated) posterior probability of the true network topology over the different

replicates.

For some networks, we also investigated the ability to estimate continuous parameters,

including network length (the sum of all branch lengths) and network height (the distance

between the root and the leaves).

Real data study on rice

In order to assess the performance of our method on real data, we addressed the case of rice,

both a prominent crop and a well-studied advanced plant model for which extensive data

is available. We used genomic data extracted from [72] and [73]. We focused on 24 representa-

tive varieties (see Table C and Fig M in S1 Text) spanning the four main rice subpopulations of

cultivars (Indica, Japonica, cAus and cBasmati) as well as the different types of wild rice O.
rufipogon that are suspected to have been involved in the origin of cultivated rice. We built

three random data sets, keeping a large panel of Asian countries. Data set 1 contains only one

variety per subpopulation, whereas data sets 2 and 3 contain two varieties per subpopulation
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(cf. Tables D and E in S1 Text). For each of the 12 chromosomes, we sampled 1k SNPs having

only homozygous alleles. Following recommendations of [19], the SNPs were chosen for each

of the 12 chromosomes to be as separated as possible from one another to avoid linkage

between loci, though [54] has shown this kind of analysis is quite robust to this bias. The con-

catenation of these SNPs lead to 12k whole-genome SNP data sets on the selected rice

varieties.

SNAPPNET was run again discarding the first 10% of samples as burn-in and sampling the

MCMC every 1000 iterations. The number of reticulations was bounded by two for data sets 1

and 3. On data set 2, in order to obtain results in a reasonable amount of time (cf. the Results

section), only one reticulation was finally allowed.

Results

Simulations

First, we compare the performances of SNAPPNET and MCMC_BiMarkers on data simulated

with networks A and B (cf. Fig 7), already studied in [54], and the more complex C network.

Second, we compare the two tools in terms of CPU time and memory required to compute the

likelihood of network C and its variants. This step is usually repeated million times in an

MCMC analysis, and is therefore critical for its overall efficiency. Note that focusing on a sin-

gle likelihood calculation allows us to exclude the effect of the prior on the overall efficiency of

the MCMC, and to only test the computational efficiency of the new algorithm to compute the

likelihood implemented in SNAPPNET.

Study of networks A and B. 1) Ability to recover the network topology
Table 1 reports on the ability of SNAPPNET to recover the correct topology of networks A

and B. As in [54], we simulated one individual for each species. Note that under this setting,

population sizes θ corresponding to external branches are unidentifiable, as there is no coales-

cence event occurring along these branches. We studied different densities of markers and dif-

ferent priors on θ. Besides, we focused on either a) the true prior Γ(1,200) with EðyÞ ¼ 0:005,

b) the incorrect prior Γ(1,1000) with EðyÞ ¼ 0:001, or c) the incorrect prior Γ(1,2000) with

EðyÞ ¼ 5� 10� 4. Last, in order to compare our results with [54], we considered u and v, the

mutation rates, as known parameters. Indeed, MCMC_BiMarkers relies on the operators of

[52] that do not allow changes of these rates.

First consider simulations under the true prior. As shown in Table 1, in presence of a large

number of markers, SNAPPNET recovered networks A and B with high posterior probability. In

particular, when m = 100,000 sites were used, the posterior distributions were only concen-

trated on the true networks. For m = 10,000, the average posterior probability of network A is

Table 1. Average posterior probability of the correct topology (for networks A and B, see Fig 7) obtained by running SNAPPNET on simulated data. Results are given

as a function of the number of sites and as a function of the hyperparameter values α and β for the prior on θ (θ* Γ(α, β) and E yð Þ ¼ a

b
). Here, one lineage was simulated

per species. Constant sites are included in the analysis, the rates u and v are considered as known, and 20 replicates are considered for each simulation set up (criterion

ESS> 200; d � Eð0:1Þ, r* Beta(1, 1), t0 � Eð10Þ for the network prior).

Network A Network B

Hyperparameters

Number of sites 1,000 10,000 100,000 1,000 10,000 100,000

True (α = 1, β = 200, a
b
¼ 0:005) 0% 100% 100% 0% 81.25% 100%

Incorrect (α = 1, β = 1000, a
b
¼ 0:001) 0% 94.73% 91.30% 0% 80% 95.65%

Incorrect (α = 1, β = 2000, a
b
¼ 5� 10� 4) 0% 100% 80% 0% 85% 85.71%

https://doi.org/10.1371/journal.pcbi.1008380.t001
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again 100%, whereas that of B is lower (81.25%). This is not surprising since network B is more

complex than network A. Our results are consistent with those of [54], who found that

MCMC_BiMarkers required 10,000 sites to infer precisely networks A and B. (Recall that we

did not rerun MCMC_BiMarkers on data simulated from networks A and B).

However, for a small number of sites (m = 1,000), we observed differences between SNAPP-

NET and MCMC_BiMarkers: SNAPPNET always inferred trees (see Fig 9), whereas

MCMC_BiMarkers inferred networks. For instance, on Network A, MCMC_BiMarkers
inferred a network in approximately 75% of cases, whereas SNAPPNET supported the tree

((((Q,A),L),R),C) with average posterior probability 78.71%. Interestingly, this tree can be

obtained from network A by removing the hybridization branch with smallest inheritance

probability. Details on the trees inferred by SNAPPNET for this setting are given in Table A of S1

Text.

Similarly, on network B that hosts 2 reticulations, for m = 1,000 MCMC_BiMarkers
almost always inferred a 1-reticulation network [54], whereas SNAPPNET hesitated mainly

between two trees, (((Q,R),L),(A,C)) and (((Q,L),R),(A,C)), with average posterior probabili-

ties 35.28% and 28.54%, respectively. This different behavior among the two tools is most likely

due to the fact that their prior models differ. With only 1,000 markers, MCMC_BiMarkers
and SNAPPNET were both unable to recover network B.

Now consider simulations based on incorrect priors. This mimics real cases where there is

no or little information on the network underlying the data. Recall that these priors are incor-

rect since EðyÞ is either fixed to 0.001 or 5 × 10−4, instead of being equal to the true value

0.005. In other words, these priors underestimate the number of ILS events in the data. When

Fig 9. The ratio of trees (black), 1-reticulation networks (dark grey), 2-reticulations networks (light gray), sampled by SNAPPNET,

under the different simulations settings studied in Table 1. Recall that networks A and B contain 1 and 2 reticulations, respectively.

https://doi.org/10.1371/journal.pcbi.1008380.g009
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considering as few as 1,000 sites, SNAPPNET only inferred trees (cf. Table A in S1 Text), whereas

MCMC_BiMarkers mostly inferred networks [54]. For m = 10,000 and m = 100,000 sites,

SNAPPNET inferred network A with high posterior probability. In the rare cases where the true

network was not sampled, SNAPPNET inferred a network with two reticulations (see Fig 9). The

bias induced by incorrect priors (underestimating ILS) led the method to fit the data by adding

supplementary edges to the network. On network B, SNAPPNET’s posterior distribution

remained concentrated on the correct topology, and interestingly, for m = 10,000 and

m = 100,000 sites, SNAPPNET sampled exclusively 2-reticulation networks (see Fig 9). To sum

up, SNAPPNET’s ability to recover the correct network topology did not really deteriorate with

incorrect priors.

2) Ability to estimate continuous parameters for network A
Recall that in our modelling, the continuous parameters are branch lengths, inheritance

probabilities γ, population sizes θ and instantaneous rates (u and v). As in [53], we also

studied the network length and the network height, that is the sum of the branch lengths

and the distance between the root node and the leaves, respectively. In order to evaluate

SNAPPNET’s ability to estimate continuous parameters, we will focus here exclusively on net-

work A (following [54]). Analogous results for networks B and C can be found in Figs D-G

in S1 Text.

For network A, we considered the case of two lineages in each species. Indeed, under this

setting, θ values are now identifiable for external branches: the expected coalescent time is here

θ/2, that is to say 2.5 × 10−3, which is a smaller value than all external branch lengths. In other

words, a few coalescent events should happen along external branches. For these analyses, we

considered exclusively the true prior on θ and we bounded the number of reticulations to 2 (as

in [54]) in order to limit the computational burden. In the following, we consider the cases

where a) input markers can be invariant or polymorphic, and b) only polymorphic sites are

considered.

2a) Constant sites included in the analysis
Before describing results on continuous parameters, let us first mention results regard-

ing the topology. Although the number of lineages was increased in comparison with the

previous experiment, SNAPPNET still sampled exclusively trees for m = 1,000, and always

recovered the correct topology for m = 10,000 and m = 100,000. Note that for m = 1,000, we

observed that generated data sets contained 78% invariant sites on average given the param-

eters of the simulation, so that such simulated data sets only contained on average 220 vari-

able sites.

In order to limit the computational burden, the analysis for m = 100,000 relied only on 17

replicates with ESS> 200. Fig 10 reports on the estimated network height and the estimated

network length. As expected, the accuracy increased with the number of sites. Fig 11 shows the

same behaviour, regarding the inheritance probability γ, the rates u and v. Fig 12 is comple-

mentary to Fig 10, since it reports on the estimated node heights. All node heights were esti-

mated quite accurately, which is not surprising in view of the results on the network length.

Fig 13 is dedicated to population sizes. For external branches, SNAPPNET’s was able to estimate

θ values very precisely. Performances slightly deteriorated on internal branches (see the

box plots, from number 6 to number 12) whose θ values were underestimated (see the medi-

ans) and showed a higher posterior variance. This phenomenon was also observed for

MCMC_BiMarkers [54, Fig 7 obtained under a different setting].

2b) Only polymorphic sites included in the analysis
In order to control for the fact that this analysis relies only on polymorphic sites, the

likelihood of the data for a network C becomes a conditional likelihood equal to

PðX1; . . . ;Xm j CÞ=Pð“the m sites are polymorphic”jCÞ, due to Bayes’ rule.
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Before focusing on continuous parameters, let us describe results regarding the topology.

As mentioned in [54], polymorphic sites are considered as most informative to recover the

topology. For m = 1,000, SNAPPNET now recovers the correct topology of network A with high

frequency in 94.45% of samples. SNAPPNET always sampled the true network for m = 10,000

and m = 100,000. In order to reduce the computational burden for m = 100,000, our analysis

relied on the 12 replicates that achieved ESS> 100.

Fig 10. Estimated height and length for network A (see Fig 7), as a function of the number of sites. Heights and lengths are measured in units of

expected number of mutations per site. True values are given by the dashed horizontal lines. Two lineages per species were simulated. Constant sites are

included in the analysis, and 20 replicates are considered for each simulation set up (criterion ESS> 200; θ* Γ(1, 200), d � Eð0:1Þ, r* Beta(1, 1),

t0 � Eð10Þ for the priors, number of reticulations bounded by 2 when exploring the network space).

https://doi.org/10.1371/journal.pcbi.1008380.g010

Fig 11. Estimated inheritance probability and instantaneous rates for network A (see Fig 7), as a function of the number of sites. True values are given by

the dashed horizontal lines. Same framework as in Fig 10.

https://doi.org/10.1371/journal.pcbi.1008380.g011
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Next, the same analysis was performed without applying the correction factor

Pð“the m sites are polymorphic”jCÞ, which is done by toggling an option within the soft-

ware. For m = 1,000, the average posterior probability of network A dropped to 23.81%, while

for m = 10,000 and m = 100,000, it remained relatively high (i.e., 95.24% and 95.65%, respec-

tively). Using the correct likelihood computation is important here.

We also highlight that for m = 100,000, the sampler efficiency (i.e. the ratio ESS/nb itera-

tions without burn-in) was much larger when the additional term was omitted (1.75 × 10−4 vs.

2.55 × 10−5). It enabled us to consider 20 replicates with ESS> 200 in this new experiment.

Let us move on to the estimation of continuous parameters. Figs H-K in S1 Text illustrate

results obtained from the experiment incorporating the correction factor. As previously, the

network height, the network length, the rates u and v, the inheritance probability γ and the

node heights were estimated very precisely. As expected, the accuracy increased with the num-

ber of sites. Estimated θ values were very satisfactory for external branches, whereas a slight

bias was still introduced on internal branches. Last, for the analysis without the correction fac-

tor, we observed a huge bias regarding network height and network length (cf Fig L in S1

Text). Surprisingly, the rates u and v were still very accurately estimated.

Fig 12. Estimated node heights of network A (see Fig 7), as a function of the number of sites. Heights are measured in units of expected number of

mutations per site. True values are given by the dashed horizontal lines. Same framework as in Fig 10. The initials MRCA stand for “Most Recent Common

Ancestor”.

https://doi.org/10.1371/journal.pcbi.1008380.g012
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Fig 13. Estimated population sizes θ for each branch of network A (see Fig 7), as a function of the number of sites. True values are

given by the dashed horizontal lines. Same framework as in Fig 10. The initials MRCA stand for “Most Recent Common Ancestor”.

https://doi.org/10.1371/journal.pcbi.1008380.g013
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Study of network C and its variants. We focus here on network C (Fig 7) and its variants

(Fig 8).

1) Ability to recover the network topology
Tables 2 and 3 report the ability of SNAPPNET and MCMC_BiMarkers, respectively, to

recover the correct topology of network C. We considered one lineage in species O, A and D,

and let the number of lineages in species B and C vary. We studied either a) 1 lineage, or b) 4

lineages, in these hybrid species. In order to limit the computational burden for SNAPPNET, the

ESS criterion was decreased to 100 and the number of reticulations was also bounded by 2.

In order to closely mimic what was done in [54] for networks A and B, we let

MCMC_BiMarkers run for 1,500,000 iterations instead of adopting an ESS criterion. Data

were simulated with simBiMarker [54]. Indeed, like SIMSNAPP, SIMSNAPPNET generates only

count data (the number of alleles per site and per species). In contrast, simBiMarker gener-

ates actual sequences, a prerequisite for running MCMC_BiMarkers. The commands used

under the 4 lineages scenario are given in Section 5 of S1 Text. Note that, to calibrate the net-

work prior of MCMC_BiMarkers, the maximum number of reticulations was set to 2, and

the prior Poisson distribution on the number of reticulation nodes was centered on 2.

As expected, SNAPPNET’s ability to recover the correct network topology increased with the

number of sites and with the number of lineages in the hybrid species (see Table 2). For

instance, in the presence of one lineage in hybrid species B and C, the posterior probability of

network C increased from 7.87% for m = 10,000 to 54.90% for m = 100,000. In the same way,

when 4 lineages were considered instead of a single lineage, we observed an increase from

7.87% to 50.00% for m = 10,000. Note that the average posterior probability of 49.60% reported

for m = 100,000 and 4 lineages, is based only on 8 replicates.

Table 2. Average posterior probability (PP) of the topology of network C obtained by running SNAPPNET on data simulated from network C. Results are given as a

function of the number of sites and as a function of the number of lineages sampled in hybrid species B and C (either both 1 or both 4). Only one lineage was sampled in

every other species. Constant sites are included in the analysis and the rates u and v are considered as known. Posterior probabilities are computed on the basis of replicates

for which the criterion ESS>100 is fulfilled. The sampler efficiency (SE) is also indicated (true hyperparameter values for the prior on θ, i.e. θ* Γ(1, 200); as a network

prior d � Eð0:1Þ, r* Beta(1, 1), t0 � Eð10Þ; number of reticulations bounded by 2 when exploring the network space).

Number of sites

Number of lineages for B and for C 1,000 10,000 100,000

1 PP 0% (20 replicates) 7.87% (20 replicates) 54.9% (20 replicates)

SE 3.18 × 10−4 3.47 × 10−4 4.84 × 10−3

4 PP 0% (20 replicates) 50.00% (18 replicates) 49.6% (8 replicates)

SE 7.63 × 10−3 3.89 × 10−4 2.65 × 10−4

https://doi.org/10.1371/journal.pcbi.1008380.t002

Table 3. Average posterior probability (PP) of the topology of network C obtained by running MCMC_BiMarkers on data simulated from network C. Results are

given as a function of the number of sites and as a function of the number of lineages sampled in hybrid species B and C (either both 1 or both 4). Only one lineage was

sampled in every other species, constant sites are included in the analysis, and the rates u and v are considered as known. 1.5 × 106 iterations are considered. ESS is the aver-

age ESS over the different replicates, and SE stands for the sampler efficiency.

Number of sites

Number of lineages for B and for C 1,000 10,000 100,000

1 PP 0% (20 replicates) 4.84% (20 replicates) 0% (20 replicates)

SE 9.70 × 10−5 3.10 × 10−5 3.60 × 10−5

ESS 126.08 40.38 46.80

4 PP 0% (20 replicates) 0% (12 replicates) 0% (9 replicates)

SE 2.38 × 10−4 8.53 × 10−5 1.03 × 10−5

ESS 309.00 110.90 159.96

https://doi.org/10.1371/journal.pcbi.1008380.t003

PLOS COMPUTATIONAL BIOLOGY On the inference of complex phylogenetic networks by MCMC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008380 September 3, 2021 23 / 39

https://doi.org/10.1371/journal.pcbi.1008380.t002
https://doi.org/10.1371/journal.pcbi.1008380.t003
https://doi.org/10.1371/journal.pcbi.1008380


Surprisingly, in most cases studied, MCMC_BiMarkers was unable to recover the true

topology of network C. The different behaviors of MCMC_BiMarkers and SNAPPNET may be

due to the different network priors. Indeed, while the frequency of trees, 1-reticulation net-

works and 2-reticulations networks sampled by the two methods were globally similar (cf. Fig

14), we remarked that MCMC_BiMarkers seems to be unable, for these data sets, to sample

networks with two reticulations on top of each other. Alternatively, we may be in the presence

of failed or partial convergence of the MCMC process. Note the small ESS values for

MCMC_BiMarkers, especially when only one lineage was sampled in hybrid species B and C.

However, we attempted increasing the number of iterations from 1.5 × 106 to 12 × 106 and

MCMC_BiMarkers was still unable to recover network C, despite larger ESS values (see

Table B in S1 Text). We note here that SNAPPNET was ran for a maximum 804,000 iterations for

10,000 sites, and a maximum of 555,000 iterations for 100,000 sites.

2) CPU time and required memory
To compare the CPU time and memory required by SNAPPNET and MCMC_BiMarkers on

a single likelihood calculation, we focused on network C (see Fig 7), with and without out-

group (i.e. the species O), and networks C(3) and C(4), again with and without outgroup (see

Fig 8). The simulations protocol used here is similar to that used in the previous sections,

where here we fixed 10 lineages in species C and one lineage in the other species, m = 1,000

Fig 14. Frequency of trees (black), 1-reticulation networks (dark grey), 2-reticulations networks (light gray)

sampled by SNAPPNET and MCMC_BiMarkers, when data were simulated from Network C (see Tables 2 and 3).

Recall that network C contains 2 reticulations.

https://doi.org/10.1371/journal.pcbi.1008380.g014
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sites and 20 replicates per each network. The likelihood calculations were run on the true

network.

The experiments were executed on a full quad socket machine with a total of 512GB of

RAM (4 � 2.3 GHz AMD Opteron 6376 with 16 Cores, each with a RDIMM 32Go Quad Rank

LV 1333MHz processor). The jobs that did not finish within two weeks, or required more than

128 GB, were discarded.

The results are reported in Table 4. SNAPPNET managed to run for all the scenarios within

the two weeks limit: on average within 2.62 minutes and using 1.67 GB on network C without

outgroup, within 5.63 minutes and using 2 GB on network C with outgroup, within 14.21 min-

utes and using 2.19 GB on network C(3) without outgroup, within 24.69 minutes and using

2.21 GB on network C(3) with outgroup, within 45.47 minutes and using 2.63 GB on network

C(4) without outgroup, and finally, within 70.98 minutes and using 3.17 GB on network C(4)

with outgroup.

We were able to run MCMC_BiMarkers for all replicates of the network C, and we can

thus compare its performance with that of SNAPPNET. From Table 4, we see that SNAPPNET is

remarkably faster that MCMC_BiMarkers, needing on average only 0.29% of the time and

21% of the memory required by MCMC_BiMarkers. MCMC_BiMarkers needed more than

2 weeks for all scenarios on the C(3) network (requiring less than 64 GB), thus no run time is

available for these scenarios. The same holds for the C(4) network scenarios, but for a different

reason: all runs needed more than 128 GB each, and were discarded.

In Section 8 of S1 Text we provide the results of additional experiments on simulated data.

In Section 8.1, we assess whether SNAPPNET’s MCMC sampler can adequately sample from net-

work space. In Section 8.2 we assess how population size priors and network priors influence

SNAPPNET’s inferences.

Real data analysis

Real data derived from recent studies on rice were used to illustrate the application of

SNAPPNET.

Diversity among Asian rice cultivars is structured around two major types which display

worldwide distributions, namely Japonica and Indica, and two types localised around the

Himalayas, namely circum Aus (cAus) and circum Basmati (cBasmati) [73, 74]. Japonica and

Indica each have several subgroups with geographical contrast (see [73] as the most detailed

description). Domestication scenarios that have been put forwards since the availability of

whole genome sequences propose one to three domestications corresponding either to an

early pivotal process in Japonica [72], or to multiple parallel dynamics in Japonica, Indica and

cAus [12, 27], depending on whether they consider the contribution of domestication alleles

Table 4. Computational efficiency of calculating a single likelihood value in SNAPPNET and MCMC_BiMarkers for networks C, C(3) and C(4). 10 lineages are sam-

pled in species C and 1 lineage in other species. Average and standard deviation are reported.

CPU time Memory

SNAPPNET (in minutes) MCMC_BiMarkers (in hours) SNAPPNET (max in GB) MCMC_BiMarkers (max in GB)

Network C without outgroup 2.62 ± 0.04 14.58 ± 0.50 1.67 ± 0.03 8.76 ± 0.02

Network C 5.63 ± 0.16 33.46 ± 1.31 2.00 ± 0.09 8.79 ± 0.02

Network C(3) without outgroup 14.21 ± 0.56 ? 2.19 ± 0.01 < 64

Network C(3) 24.69 ± 0.64 ? 2.21 ± 0.06 <64

Network C(4) without outgroup 45.47 ± 1.44 ? 2.63 ± 0.60 > 128

Network C(4) 70.98 ± 3,16 ? 3.17 ± 0.81 > 128

https://doi.org/10.1371/journal.pcbi.1008380.t004
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by the Japonica origin as predominant or as one among others. cBasmati has been posited as a

specific lineage within Japonica [72] or as a secondary derivative from admixture between

Japonica and a local wild rice close to cAus [75], or between Japonica and cAus with the con-

tribution of one or several additional cryptic sources [76].

The most advanced studies of wild rice [72] recognize three populations designated Or-I to

Or-III (Or for Oryza rufipogon), of which Or-I and Or-III are closely related to cultivars and

Or-II is not. Using a data set constructed in [73], we compared wild rices to cultivars on the

basis of ca. 2.5 million SNPs (cf. Fig M in S1 Text) and we selected representatives of Japonica,

Indica, cAus and cBasmati as well as wild rices Or-III, closer to Japonica and cBasmati, and

Or-I, closer either to Indica (Or-Ii) or to cAus (Or-Ia). For clarity in our subsequent use, we

call the wild forms Or3, Or1I and Or1A, respectively. We made data sets of different sample

sizes, including either one or two varieties per subpopulation. The studied subpopulations are

the 4 groups of cultivars (Japonica, Indica, cAus, cBasmati), and different types of wild rice

(Or3, Or1A, Or1I), consistent with the classification by [72]. The 3 data sets we constructed

are described in the Materials and methods.

In Fig 15, we report results for data set 1, which includes only one variety per subpopulation

(cf. Table D in S1 Text). We studied two different samplings of 12k SNPs along the whole

genome alignment. For each sampling, we ran two independent Markov chains with different

starting points, for 10 million iterations. To assess the convergence of SNAPPNET on data set 1,

(a) the ESS of the posterior distribution was checked for each chain, (b) the trace plots of the

different parameters and their associated ESS were examined and (c) the two posterior distri-

butions corresponding to the two independent chains were compared (see Fig N and Table F

in S1 Text). In view of these results, SNAPPNET reached stationarity. The ESS of the posterior

distribution took the values 844 (resp. 971), 1159 (resp. 535) for the two different chains of the

first (resp. second) sampling. All the networks sampled by the MCMC had the same topology

with one reticulation only. For both genome samplings the lineages associate Or1I with Ind,

Or1A with cAus and Or3 with Jap, respectively, while the reticulation conjugates Jap with

(Or1A/cAus), the common precursor of Or1-A/cAus, with a dosage ratio close to 2:1, to yield

cBas.

Next, we tackled a larger data set, data set 2, containing two varieties per subpopulation (see

Table E in S1 Text). Two different chains corresponding to two different samplings of 12k

SNPs along the whole genome alignment were run. The number of reticulations was bounded

by one in order to reach convergence in a reasonable amount of time: after three months and

Fig 15. The two networks obtained for data set 1 with only one variety per subpopulation. Each network corresponds to the posterior mean of the

distribution sampled by SNAPPNET. Inheritance probabilities are reported above reticulation edges and branch lengths are given in units of expected

number of mutations per site (see the scale at the top left).

https://doi.org/10.1371/journal.pcbi.1008380.g015
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half of computations, the ESS took the values 227 and 201 for the first and the second chain,

respectively. Fig 16 illustrates the two networks obtained for the two different samplings. Each

network corresponds to the posterior mean of the sampled distribution. Note that in both

cases, the posterior distribution was concentrated on a single topology. The two genome sam-

plings yield networks very similar to one another and remarkably close to that revealed with

data set 1. The reticulation that was allowed again conjugates the Jap lineage with the common

precursor of subpopulations Or1A and cAus. In contrast, after 6 months of calculations, SNAPP-

NET had still not reached the stationary regime for the two different samplings, when a maxi-

mum of 2 reticulations was imposed.

We also investigated another data set, data set 3, including two varieties per subpopulation

and 12k SNPs for a different taxon sampling (see Table E in S1 Text). In this case, large ESS

values were observed when SNAPPNET was allowed to infer networks with 2 reticulations: the

ESS was estimated at 373 after having let SNAPPNET run for 7 months. The maximum a posteri-

ori (MAP) network is represented in Fig 17. For this data set, the resulting topology again fea-

tures a single reticulation, although two were allowed. It also conjugates Jap with the precursor

(Or1A/cAus) of Or1A and cAus to produce cBas. Yet the composition is more unbalanced

towards Jap (0.85) and (Or1A/cAus) appears involved very close to the Or1A vs cAus initial

divergence. Given this proximity, it was useful to describe the three networks retained by

SNAPPNET during the MCMC process (Fig 18). The first one (67%) features a conjugation

Fig 16. The two networks obtained for data set 2 with two varieties per subpopulation. Each network corresponds to the posterior mean of the

distribution sampled by SNAPPNET. Inheritance probabilities are reported above reticulation edges and branch lengths are given in units of expected

number of mutations per site (see the scale at the top left).

https://doi.org/10.1371/journal.pcbi.1008380.g016

Fig 17. The MAP phylogenetic network obtained for data set 3 with two varieties per subpopulation. Inheritance

probabilities are reported above reticulation edges and branch lengths are given in units of expected number of

mutations per site (see the scale at the top left).

https://doi.org/10.1371/journal.pcbi.1008380.g017
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between Jap and (Or1A/cAus), while the second one (23%) conjugates Jap with cAus and the

third one (10%) conjugates Jap with Or1A in the origin of cBas.

Altogether the various networks inferred by SNAPPNET reveal stable features:

• the correspondence between wild subpopulations and cultivated subpopulations which

point at three pillars for rice, namely Japonica, Indica and cAus

• the early divergence of Japonica, that predates the one between Indica and cAus

• the earlier divergence between wild and cultivated forms within the Japonica pillar

• the mobilisation of early Japonica cultivars to combine with the cAus pillar to produce the

fourth varietal type cBas

• the indication that this hybridization may have occured before the domestication of cAus.

The latter item yet displays uneven strength levels between the various data sets. The first

four items confirm the latest interpretations of massive analyses among rice specialists. Wild

rice displays broad diversity and some of the wild subpopulations have been specifically

involved in the emergence of cultivated forms. While the most ancient domestication occurred

in China to produce Japonica cultivars, two other important foundations, namely Indica and

cAus, contributed to the diversity of current rice cultivars. Early hybridization between Japon-

ica cultivars and an ancestor, presumably wild, of current cAus cultivars and related wild

forms resulted in the evolution of cBasmati cultivars.

Discussion

In this paper, we introduced a new Bayesian method, SNAPPNET, dedicated to phylogenetic net-

work inference. SNAPPNET has similar goals as MCMC_BiMarkers, a method recently pro-

posed by Zhu et al. [54], but differs from this method in two main aspects. The first difference

is due to the way the two methods handle the complexity of the sampled networks. Unlike

binary trees that have a fixed number of branches given the number of considered species, net-

work topologies can be of arbitrary complexity. Their complexity directly depends on the

number of reticulations they contain. In MCMC processes, the complexity of sampled net-

works is regulated by the prior. MCMC_BiMarkers uses descriptive priors: more precisely, it

assumes a Poisson distribution for the number of reticulation nodes and an exponential distri-

bution for the diameter of reticulation nodes [51, 52, 54]. In contrast, SNAPPNET’s prior is based

on that of Zhang et al., which explicitly relies on speciation and hybridization rates and is

extendable to account for extinction and incomplete sampling [53].

Fig 18. The three topologies sampled by SNAPPNET when data set 3 was considered. Reported inheritance probabilities for each topology are averages on sampled

observations.

https://doi.org/10.1371/journal.pcbi.1008380.g018
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Our simulation study may provide some insight on the influence of these different priors.

On two networks of moderate complexity (networks A and B), SNAPPNET and MCMC_BiMar-
kers presented globally similar results. Indeed, when we considered numbers of sites that are

largely achieved in current phylogenomic studies (i.e. 10,000 or 100,000 sites), both methods

were able to recover the true networks under this realistic framework. However, in presence of

only a few sites (1,000 sites) which is unusual nowadays but still can be the case for poorly

sequenced organisms, MCMC_BiMarkers recovered the correct topology with higher poste-

rior probability than SNAPPNET. On the other hand, when focusing on a more complex network

(network C) containing reticulation nodes on top of one another, the converse appeared to be

true. With sufficiently large datasets, SNAPPNET recovered the correct scenario in approxi-

mately 50% of samples whereas MCMC_BiMarkers inferred this history in less than 5% of

cases. Although these differences may be due to the different network priors used by the two

methods, more work is needed to elucidate the reasons behind them. To conclude the discus-

sion on priors, we also observed that, on simulated data, SNAPPNET’s accuracy did not really

deteriorate with incorrect priors on population sizes, although assuming a prior distribution

skewed towards small population sizes has a tendency to favor hybridization over ILS as an

explanation for non tree-like signals. Similar robustness properties were observed by [54] for

MCMC_BiMarkers.

The second major difference between MCMC_BiMarkers and SNAPPNET lies in the way

they compute the likelihood of a network. This step is at the core of the Bayesian analysis.

According to the authors of MCMC_BiMarkers, this remains a major computational bottle-

neck and limits the applicability of their methods [59]. To understand the origin of this bottle-

neck, recall that the MCMC process of a Bayesian sampling explores a huge network space and

that, at each exploration step, computing the likelihood is by far the most time consuming

operation. Moreover, we need sometimes millions of runs before the chain converges. Thus,

likelihood computation is a key factor on which to operate to be able to process large data sets.

The likelihood computation of MCMC_BiMarkers consists in a bottom-up traversal,

from the leaves to the root. Each time a reticulation node r is visited, the partial likelihoods

must be decomposed following all the possible ways the lineages reaching r can be assigned to

the two parent populations of r. These partial likelihoods will be merged back only when the

traversal reaches a lowest articulation node [54], or in other words the root of the blob to

which r belongs (a blob is a maximal biconnected subgraph [65], see also S1 Text). For every

other reticulation r0 reached before the root of the blob, the decomposition above is applied

again. As a result, the time required to process a blob grows exponentially with the number of

reticulations it contains. More precisely, the time complexity of the likelihood computation in

MCMC_BiMarkers is in O(sn4ℓ+4), where ℓ is the level of the network and s is the size of the

species network.

Similarly to MCMC_BiMarkers, we compute the likelihood in a bottom-up traversal and

when reaching a reticulation node r, we also take into account the various ways lineages could

have split. But the originality of SNAPPNET is to compute joint conditional probabilities for

branches above a same reticulation node r (see the Materials and methods). The set of

branches jointly considered increases when crossing other reticulation nodes in a same blob,

but it can also decrease when crossing tree-nodes in the blob (i.e. nodes having one ancestor

and several children). Of course, the time to compute each partial likelihood increases in pro-

portion with the number of branches considered together. More precisely, SNAPPNET runs in

Oðsn2Kþ2Þ, where K is the maximum number of branches simultaneously considered in a par-

tial likelihood. The interest in depending on K instead of ℓ (the number of reticulations in a

blob), is that for some blobs, we can resort to a bottom-up traversal of the blob that limits K to
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a small constant and process the blob in polynomial time in n, while MCMC_BiMarkers still

requires an exponential time in ℓ.

Our results from simulated data confirm the above theoretical discussion. For a single likeli-

hood evaluation, SNAPPNET was found to be orders of magnitude faster than MCMC_BiMar-
kers on networks containing reticulation nodes on top of one another. Besides, SNAPPNET

required substantially less memory than MCMC_BiMarkers. These gains enable us to con-

sider complex evolution scenarios in our Bayesian analyses.

In practice, SNAPPNET is a very useful tool for analyzing complex genomic data, as evidenced

by our study about rice. Indeed, the most recent extensive genetic studies on this crop confirm

and document the extent of genetic exchanges in various directions. Yet the same species con-

sistently displays the reality of a simple classification scheme with only a few predominant

types. Thus rice appears as a chance and a challenge for testing methods aiming to tackle phy-

logenetic resolution within a hybrid swarm. The application of SNAPPNET proves very efficient

in resolving the three main phylogenetic pillars of current diversity in Asian rice [12, 77] and

revealing a hybrid origin for the iconic varietal group cBasmati [75, 76]. The various data sets

treated here suggest a contribution of Japonica cultivars at a high level, between 0.6 and 0.85.

This rather broad range is not surprising given that this hybrid origin probably reflects numer-

ous recent individual stories for very specific varieties rather than an old common story for a

homogeneous lineage. On the other side, the second component of cBasmati derived from

local sources in the North of the Indian subcontinent seems to date from before the evolution

of cAus varieties. Here again, it is likely that many diverse events occurred resulting in a very

rich diversity. Full resolution of the origin of cBasmati may require further investigation given

the vast diversity it encompasses [78, 79]. SNAPPNET provides here a consistent and convincing

set of results. Its integration in BEAST may provide easier applicability than previous methods,

potentially making it a method of choice to expand analysis of complex pictures generated by

crop evolution and adaptation. Further applicability advantages may come from the fact that

SNAPPNET can be used to compute the likelihoods of a set of networks of interest, and then to

penalize more complex models with the AIC [80] and BIC [81] criteria.

In the future, in order to handle more sites in practice, the MSNC model should be

extended to allow recombination events between loci. Recall that we have limited our rice

study to 12,000 markers sampled along the genome because our model assumes independence

between sampled sites, as does also SNAPP’s model, from which we inherit. As mentioned in the

review of [38], in order to model recombination properly, the study of gene networks within

species networks is an area for future research. A possibility would be to exploit previous work

on Ancestral Recombination Graphs (see for instance [82]).

Another important research topic for MCMC inference of phylogenetic networks is the

question of how to properly assess the autocorrelation between the topologies of the sampled

networks, or, in other words, how to estimate the effective sample size (ESS) of the sampled

topologies. Indeed, a large ESS for continuous parameters in a phylogenetic model does not

necessarily imply a large ESS for the sampled topologies. Methods to estimate the ESS of a sam-

ple of tree topologies have been recently proposed [70]. They rely on measures of the distance

between pairs of trees in the sample—which enable to assess autocorrelation—or on translat-

ing tree topologies into numbers (e.g., the distance from a focal tree), which are then treated as

continuous parameters—for which an ESS can then be computed using standard approaches.

These methods to estimate topological ESS can be in principle adapted to networks. However

some research will be needed for this, as standard tree metrics (e.g. the Robinson-Foulds dis-

tance [83] or the path-lengths difference [84]) do not have unique, easy to compute, natural

extensions for networks (see [38] for a discussion on this). In the present work, different

MCMC replicates led to consistent results, but we have not attempted to evaluate
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autocorrelation for the sampled topologies and/or their ESS. This is a limitation of all Bayesian

approaches for network inference proposed so far [51, 53, 54].

Related to the issue above, it would be useful to conduct an in-depth investigation of the

efficiency of the MCMC operators for the exploration of network topology space. In this work,

we rely on the operators by Zhang et al. [53], who identified this as a major bottleneck of their

approach (but they also had operators to change the gene tree embeddings, a feature that we

do not need here). Although some important progress has been made in the last 20 years [85],

in 2004 Felsenstein aptly wrote (speaking about trees): “At the moment the choice of a good

proposal distribution involves the burning of incense, casting of chicken bones, magical incan-

tations and invoking the opinions of more prestigious colleagues” [14]. Since network space is

significantly more complex than tree space, it is easy to predict that this topic will keep

researchers busy for a long time. A good starting point to address convergence issues in SNAPP-

NET would be to integrate it to the new BEAST 2 package COUPLED MCMC [86], which tackles

local optima issues thanks to heated chains.

Also note that in this work we limited our experiments to relatively simple networks, with

few reticulations and few species (leaves). While the number of reticulations represents a

strong limitation of all existing Bayesian approaches, the number of species is a much weaker

limiting factor. Networks over more species can already be inferred by SNAPPNET and related

approaches, but MCMC inference for such networks will then necessitate much more complex

downstream analyses than the ones used here. For example, the posterior probability of any

single network topology will be very small, and thus it will be much more interesting to look at

the probability of individual splits, or to develop a network analog of consensus trees. These

are not simple tasks, because all the underlying algorithmic problems (checking the presence

of a split/clade in a network, or that of a subtree etc.) are computationally hard to solve on

large networks [87].

Last, it would be interesting to study the identifiability of the model underlying SNAPPNET.

For example, it is easy to see that if only one lineage is sampled from a given species at each

locus, then the population size θ of that species is non-identifiable (because no coalescence can

ever occur in it, and thus the likelihood does not depend on θ). Similarly, if only one lineage is

sampled below a reticulation node, then the height of that node is non-identifiable [41, 61].

Intuitively, the more lineages can co-exist in a part of the species network, the more informa-

tion there will be for the reconstruction of that part of the network. These aspects should be

further investigated in future works.

Many methodological questions on Bayesian inference of phylogenetic networks remain

open. The present work focused on the efficient calculation of likelihood for a single network,

which is the key component of any Bayesian approach. At the end of their paper, the authors

of MCMC_BiMarkers [54] concluded by mentioning that “An important direction for future

research is improving the computational requirements of the method to scale up to data sets

with many taxa”. Our present work is a first answer to this demand.

Supporting information

S1 Text. Supplementary material for the manuscript. Fig A: Density probabilities for 5-tips

networks, simulated with a prior corresponding to a birth hybridization process with parame-

ters d = 10, r = 1/2 and τ0 = 0.1, using the SPECIESNETWORK package [53]. The figure is obtained

for 10,000 replicates. The means are given by the dashed vertical lines. Fig B: Density probabil-

ities for 5-tips networks with at most two reticulations, simulated with a prior corresponding

to a birth hybridization process with parameters d = 10, r = 1/2 and τ0 = 0.1, using the SPECIES-

NETWORK package [53]. Figures are drawn for the 4,377 cases in 10,000 where the network had
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at most two reticulations. The means are given by the dashed vertical lines. Fig C: Density

probabilities regarding the 5-tips network with a maximum of 3 reticulations, simulated under

the birth hybridization process (d = 10, r = 1/2, τ0 = 0.1, 5,837 replicates), using the SPECIESNET-

WORK package [53]. The means are given by the dashed vertical lines. Fig D: Estimated node

heights of network B. 10,000 sites are considered and 2 lineages per species. Constant sites are

included in the analysis, and the estimated heights are based on the 12 replicates (over 14 repli-

cates) for which network B was recovered by SNAPPNET (criterion ESS > 200; θ* Γ(1, 200),

d � Eð0:1Þ, r* Beta(1, 1), t0 � Eð10Þ for the priors, number of reticulations bounded by 3

when exploring the network space). Heights are measured in units of expected number of

mutations per site. True values are given by the dashed horizontal lines. The initials MRCA

stand for “Most Recent Common Ancestor”. Fig E: Estimated population sizes θ for each

branch of network B. Same framework as Figure D in S1 Text. True values are given by the

dashed horizontal lines. The initials MRCA stand for “Most Recent Common Ancestor”. Fig

F: Same framework as Figure E in S1 Text. Fig G: Estimated node heights of network C as a

function of the number of sites. Same experiment as in Table 2 of the main manuscript: 1 line-

age in species O, A and D, and 4 lineages in species B and C. The estimated heights are based

on the replicates for which network C was recovered by SNAPPNET. True values are given by the

dashed horizontal lines. The initials MRCA stand for “Most Recent Common Ancestor”. Fig

H: Estimated height and length for network A, as a function of the number of sites. Heights

and lengths are measured in units of expected number of mutations per site. True values are

given by the dashed horizontal lines. Two lineages per species were simulated. Only polymor-

phic sites are included in the analysis, and 20 replicates are considered for each simulation set

up (criterion ESS> 200 for m = 1,000 and m = 10,000, and criterion ESS> 100 for m =

100,000; θ* Γ(1, 200), d � Eð0:1Þ, r* Beta(1, 1), t0 � Eð10Þ for the priors, number of retic-

ulations bounded by 2 when exploring the network space). Same framework as in Fig 10 of the

main paper, except that only polymorphic sites are taken into account. Fig I: Estimated inheri-

tance probability and instantaneous rates for network A, as a function of the number of sites.

True values are given by the dashed horizontal lines. Same framework as in Fig 11 of the main

paper, except that only polymorphic sites are taken into account. Fig J: Estimated node heights

of network A, as a function of the number of sites. Heights are measured in units of expected

number of mutations per site. True values are given by the dashed horizontal lines. Same

framework as in Fig 12 of the main paper, except that only polymorphic sites are taken into

account. The initials MRCA stand for “Most Recent Common Ancestor”. Fig K: Estimated

population sizes θ for each branch of network A, as a function of the number of sites. True val-

ues are given by the dashed horizontal lines. Same framework as in Fig 13 of the main paper,

except that only polymorphic sites are taken into account. The initials MRCA stand for “Most

Recent Common Ancestor”. Fig L: Experiments on Network A and based only on polymor-

phic sites. Same framework as in Figures H and I in S1 Text, except that the correction factor is

not used in the calculations (criterion ESS> 200 in all cases). Fig M: Summary of rice molecu-

lar diversity used for selecting our sample of rice cultivated varieties and wild types. (A)

unweighted neighbour joining (UWNJ) tree reflecting dissimilarities among 899 accessions

based on 2.48 million SNPs as described in [73]; the accessions are colored according to their

classification into wild population types or cultivar groups. (B, C) UWNJ tree using the same

data for the 24 accessions we selected for assessing SNAPPNET performance, and showing their

accessions number (B) and their country of origin (C); the colors are as in A. Fig N: Trace

plots obtained according to the Tracer software when data set 1 was analyzed with SNAPPNET.

(a) and (b) refer to the first sampling of 12 kSNPs along the whole genome, whereas (c) and

(d) focus on the second sampling. Two chains were considered for each sampling. Fig O:
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Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean number of

reticulations close to zero) and a normal prior with mean 0.1 and standard deviation of 0.01

on the origin height. We plot the simulated networks (orange) against the sampled networks

(blue) summarising the networks under: (a) Number of reticulations (b) Time until first retic-

ulation (c) Height of the network (d) Length of the network. Fig P: Birth-hybridisation model

with speciation rate 20 and hybridisation rate 2 (mean number of reticulations close to one)

and normal prior with mean 0.1 and standard deviation of 0.01 on the origin height. We plot

the simulated networks (orange) against the sampled networks (blue) summarising the net-

works under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the net-

work (d) Length of the network. Fig Q: Birth-hybridisation model with speciation rate 20 and

hybridisation rate 3 (mean number of reticulations close to two) and normal prior with mean

0.1 and standard deviation of 0.01 on the origin height. We plot the simulated networks

(orange) against the sampled networks (blue) summarising the networks under: (a) Number

of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the net-

work. Fig R: Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean

number of reticulations close to zero) and an exponential prior with mean 0.1 on the origin

height. We plot the simulated networks (orange) against the sampled networks (blue) summa-

rising the networks under: (a) Number of reticulations (b) Time until first reticulation (c)

Height of the network (d) Length of the network. Fig S: Birth-hybridisation model with specia-

tion rate 20 and hybridisation rate 2 (mean number of reticulations close to one) and an expo-

nential prior with mean 0.1 on the origin height. We plot the simulated networks (orange)

against the sampled networks (blue) summarising the networks under: (a) Number of reticula-

tions (b) Time until first reticulation (c) Height of the network (d) Length of the network. Fig

T: Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean number

of reticulations close to two) and an exponential prior with mean 0.1 on the origin height. We

plot the simulated networks (orange) against the sampled networks (blue) summarising the

networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the

network (d) Length of the network. Fig U: Summary distributions of all chains with correct

population size priors (chain numbers 1,2,9,10,17,18) given data simulated from network A.

We summarize the MCMC chains by combining them, that is: Chains 1 and 2 are indicated by

the blue line (mean reticulations close to zero); Chains 9 and 10 are indicated by the orange

line (mean reticulations close to one); Chains 17 and 18 are indicated by the green line (mean

reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Net-

work height (d) Network length. Note that network height and network length used to simu-

late data are indicated by red lines. Fig V: Summary distributions of all chains with incorrect

population size priors Gamma(1,20) (chain numbers 3,4,11,12,19,20) given data simulated

from network A. We summarize the MCMC chains by combining them, that is: Chains 3 and

4 are indicated by the blue line (mean reticulations close to zero); Chains 11 and 12 are indi-

cated by the orange line (mean reticulations close to one); Chains 19 and 20 are indicated by

the green line (mean reticulations close to two); We plot the following distributions (a) Likeli-

hood (b) Prior (c) Network height (d) Network length. Note that network height and network

length used to simulate data are indicated by red lines. Fig W: Summary distributions of all

chains with correct population size priors (chain numbers 1,2,9,10,17,18 given data simulated

under network B. We summarize the MCMC chains by combining them, that is: Chains 1 and

2 are indicated by the blue line (mean reticulations close to zero); Chains 9 and 10 are indi-

cated by the orange line (mean reticulations close to one); Chains 17 and 18 are indicated by

the green line (mean reticulations close to two); We plot the following distributions (a) Likeli-

hood (b) Prior (c) Network height (d) Network length. Note that network height and network
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length used to simulate data are indicated by red lines. Fig X: Summary distributions of all

chains with incorrect population size priors (chain numbers 3,4,7,8,11,12) given data simu-

lated from network B. We summarize the MCMC chains by combining them, that is: Chains 3

and 4 are indicated by blue line (mean reticulations close to zero); Chains 7 and 8 are indicated

by orange line (mean reticulations close to one); Chains 11 and 12 are indicated by green line

(mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior

(c) Network height (d) Network length. Note that network height and network length used

to simulate data are indicated by red lines. Fig Y: In this we figure we plot summary distribu-

tions of all chains with incorrect population size priors Gamma(1,20) (chain numbers

5,6,13,14,21,22) given data simulated from Network B. We summarize the MCMC chains by

combining them, that is: Chains 5 and 6 are indicated by blue line (mean reticulations close to

zero); Chains 13 and 14 are indicated by orange line (mean reticulations close to one); Chains

21 and 22 are indicated by green line (mean reticulations close to two); We plot the following

distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that net-

work height and network length used to simulate data are indicated by red lines. Fig Z: In this

we figure we plot summary distributions of all chains with incorrect population size priors

(chain numbers 7,8,15,16,23,24) given data simulated from network B. We summarize the

MCMC chains by combining them, that is: Chain 7 and 8 are indicated by blue line (mean

reticulations close to zero); Chain 15 and 16 is indicated by orange line (mean reticulations

close to one); Chain 23 and 24 are indicated by green line (mean reticulations close to two);

We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network

length. Note that network height and network length used to simulate data are indicated by

red lines. Table A: Table linked to Table 1 of the main manuscript. Trees inferred by SNAPPNET

when m = 1,000 sites were considered. Table B: Average posterior probability (PP) of the

topology of network C obtained by running MCMC_BiMarkers on data simulated from net-

work C. Same as Table 3 of the main manuscript except that 12 × 106 iterations are considered,

and only one lineage is sampled in hybrid species B and C. ESS is the average ESS over the dif-

ferent replicates, and SE stands for the sampler efficiency. Table C: Description of the 24 rice

varieties considered in our study. These varieties are either representative cultivars spanning

the four main rice subpopulations (Indica, Japonica, circum Aus and circum Basmati), or wild

types (Or1I, Or1A, Or3). Table D: Data set 1, that includes only one variety per subpopulation.

These varieties were chosen from Table C in S1 Text. Table E: Data sets 2 and 3, that include

two varieties per subpopulation. These varieties were chosen from Table C in S1 Text. Table F:

Informations obtained according to the Tracer software, when data set 1 was analyzed with

SNAPPNET. Two different samplings of 12 kSNPs were considered, and also two chains for

each sampling. Table G: BH(birth rate, hybridisation rate) refers to the birth-hybridisation

process of Zhang et al. with the specified birth and hybridisation rates. For data simulated

with network A, only chains 1,2,3,4,9,10,11,12,17,18,19,20 were run. We indicate the mean

number of reticulation for the Birth-Hybridization model given an exponential prior with

mean 0.1 on network origin. Note that we only used the exponential prior in the experiment

in Section 8.2 of S1 Text. Table H: MCMC summary statistics for network A (correct popula-

tion size priors). Table I: MCMC summary statistics for network A (incorrect priors). Table J:

MCMC summary statistics for Network B (correct population size priors). Table K: MCMC

summary statistics for Network B (incorrect population size priors Gamma(1,20)). Table L:

MCMC summary statistics for Network B (incorrect population size priors Gamma(1,1000)).

Table M: MCMC summary statistics for Network B (incorrect population size priors

Gamma(1,2000)). Table N: MCMC acceptance rates for Network B (correct population size

priors). Table O: MCMC acceptance rates for Network B (incorrect population size priors
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Γ(1, 1000)). Table P: MCMC acceptance rates for Network B (incorrect population size priors

Γ(1, 2000)).
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31. Szöllősi GJ, Davı́n AA, Tannier E, Daubin V, Boussau B. Genome-scale phylogenetic analysis finds

extensive gene transfer among fungi. Phil Trans R Soc B. 2015; 370(1678):20140335. https://doi.org/

10.1098/rstb.2014.0335

32. Huson DH, Rupp R, Scornavacca C. Phylogenetic networks: concepts, algorithms and applications.

Cambridge University Press; 2010.

33. Nakhleh L. Evolutionary phylogenetic networks: models and issues. In: Problem solving handbook in

computational biology and bioinformatics. Springer; 2010. p. 125–158.

34. Morrison DA. Introduction to Phylogenetic Networks. RJR Productions; 2011.

35. Baroni M, Semple C, Steel M. A framework for representing reticulate evolution. Annals of Combinator-

ics. 2005; 8(4):391–408. https://doi.org/10.1007/s00026-004-0228-0

36. Hudson RR. Properties of a neutral allele model with intragenic recombination. Theoretical Population

Biology. 1983; 23(2):183–201. https://doi.org/10.1016/0040-5809(83)90013-8

37. Huson DH, Scornavacca C. A survey of combinatorial methods for phylogenetic networks. Genome

Biology and Evolution. 2011; 3:23–35.

38. Degnan JH. Modeling hybridization under the network multispecies coalescent. Systematic Biology.

2018; 67(5):786–799. https://doi.org/10.1093/sysbio/syy040

39. Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. Extensive intro-

gression in a malaria vector species complex revealed by phylogenomics. Science. 2015; 347

(6217):1258524. https://doi.org/10.1126/science.1258524 PMID: 25431491

40. Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient hybridizations

among the ancestral genomes of bread wheat. Science. 2014; 345(6194):1250092. https://doi.org/10.

1126/science.1250092 PMID: 25035499

41. Zhu S, Degnan JH. Displayed trees do not determine distinguishability under the network multispecies

coalescent. Systematic Biology. 2017; 66(2):283–298.

42. Huson DH, Scornavacca C. A Survey of Combinatorial Methods for Phylogenetic Networks. Genome

Biology and Evolution. 2010 11; 3:23–35. Available from: https://doi.org/10.1093/gbe/evq077 PMID:

21081312

43. Kubatko LS. Identifying hybridization events in the presence of coalescence via model selection. Sys-

tematic Biology. 2009; 58(5):478–488. https://doi.org/10.1093/sysbio/syp055

44. Meng C, Kubatko LS. Detecting hybrid speciation in the presence of incomplete lineage sorting using

gene tree incongruence: a model. Theoretical Population Biology. 2009; 75(1):35–45. https://doi.org/

10.1016/j.tpb.2008.10.004

45. Yu Y, Than C, Degnan JH, Nakhleh L. Coalescent histories on phylogenetic networks and detection of

hybridization despite incomplete lineage sorting. Systematic Biology. 2011; 60(2):138–149. https://doi.

org/10.1093/sysbio/syq084

46. Yu Y, Degnan JH, Nakhleh L. The probability of a gene tree topology within a phylogenetic network with

applications to hybridization detection. PLoS Genetics. 2012; 8(4):e1002660. https://doi.org/10.1371/

journal.pgen.1002660

47. Yu Y, Ristic N, Nakhleh L; BioMed Central. Fast algorithms and heuristics for phylogenomics under ILS

and hybridization. BMC bioinformatics. 2013; 14(15):S6. https://doi.org/10.1186/1471-2105-14-S15-S6

48. Yu Y, Dong J, Liu KJ, Nakhleh L. Maximum likelihood inference of reticulate evolutionary histories. Pro-

ceedings of the National Academy of Sciences. 2014; 111(46):16448–16453. https://doi.org/10.1073/

pnas.1407950111

49. Yu Y, Nakhleh L. A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics.

2015; 16(10):S10. https://doi.org/10.1186/1471-2164-16-S10-S10
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