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Abstract
Using long reads provides higher contiguity and better genome assemblies. However,producing such high quality sequences from raw reads requires to chain a growing setof tools, and determining the best workflow is a complex task.
To tackle this challenge, we developed CulebrONT, an open-source, scalable, modularand traceable Snakemake pipeline for assembling long reads data. CulebrONT enablesto perform tests on multiple samples and multiple long reads assemblers in parallel, andcan optionally perform, downstream circularization and polishing. It further provides arange of assembly quality metrics summarized in a final user-friendly report. CulebrONTalleviates the difficulties of assembly pipelines development, and allow users to identifythe best assembly options.
1DIADE Unit, University of Montpellier, CIRAD, IRD – Montpellier Cedex 5, France, 2IFB - South Green
Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD –Montpellier, France, 3PHIM Plant Health Institute,
University of Montpellier, CIRAD, INRAE, Institut Agro, IRD – Montpellier, France, 4Agricultural GeneticsInstitute, Vietnam Academy of Agricultural Sciences – Hanoi, Vietnam, #Equal contribution

http://www.centre-mersenne.org/
mailto:julie.orjuela@ird.fr
https://doi.org/10.24072/pci.genomics.100018
https://doi.org/10.24072/pci.genomics.100018
https://orcid.org/0000-0001-8387-2266
https://orcid.org/0000-0002-6891-5739
https://orcid.org/0000-0001-6663-782X
https://orcid.org/0000-0001-9485-4119
https://orcid.org/0000-0002-4319-5544
https://orcid.org/0000-0002-8522-7583
https://orcid.org/0000-0002-3695-491X
https://doi.org/10.24072/pcjournal.153


Introduction
Third-generation sequencing technologies, namely Pacific Biosciences (PB) andOxfordNanoporeTechnologies (ONT), provide reads up to 25kb in length, and even hundreds of thousands ofbases for ONT. They can extend over repeats or structural variants, and thus result in highercontiguity and accuracy of genome assembly. Due to its low price, speed, portability and easy-access system, ONT is increasingly used worldwide, generally by laboratories sequencing theirfavorite organism, but with limited expertise in assembly methods. Nonetheless, assembly is nottrivial: eukaryotic genomes assembly is a highly complex task (large genome sizes, high ratesof repeated sequences, high heterozygosity levels and even polyploidy), and while prokaryoticgenomes may appear less challenging, specific features such as circular DNA molecules, mustbe taken into consideration to achieve high quality assembly.

Numerous long-read assembly and post-assembly tools are available, relying on a large va-riety of approaches and algorithms, and many of them are frequently updated. However, evenwith this plethora of tools, there is no single silver bullet to genome assembly for all taxonomicgroups. The systematic assessment of these assembly tools is needed to properly exploit data(Murigneux, Rai, et al., 2020). But performing benchmarks to find the best combination of toolsfor a given dataset and application is a highly complex task (see for example Ryan R. Wick andHolt, 2021 and Chen et al., 2020), even if the computer code used for such studies is increasinglybeing made available (e.g. Ryan R Wick et al., 2021 or Latorre-Pérez et al., 2020). This endeavorwould presumably benefit from streamlined generalist data processing workflows that are acces-sible, scalable, traceable and reproducible.
A few solutions, such as Katuali (Katuali, Accessed 25th July 2022) or CCBGpipe (Liao etal., 2019), were previously developed to tackle these issues, but they are dedicated to eithereukaryotic or prokaryotic genomes only, or provide a restricted choice of assemblers. Some ofthese are also difficult to parallelize in a HPC environment, or to update with the latest versionsof software components. In addition, for the subsequent evaluation of the assemblies, it is criti-cal to organize and aggregate the numerous Quality Control (QC) metrics generated by varioustools, in order to facilitate comparisons. As an example, microPIPE (Murigneux, Roberts, et al.,2021), a recently released Nextflow-based bacterial ONT reads assembly pipeline, fills some ofthese gaps but does not incorporate QC analysis apart fromQUAST. To address these issues, wedeveloped CulebrONT, a pipeline allowing users to easily assemble, circularize (if needed) andpolish assemblies on multiple datasets with multiple alternative tools, while reporting variousQC metrics for each assembly.

Implementation
CulebrONT assembles, circularises, polishes and corrects genome sequences from raw read se-quences in fastq format, and provides QCmetrics. To provide more flexibility to the user, individ-ual tools are optional and include the most popular ones. Thus, CulebrONT can be used either toprototype and explore assemblies on new organisms or in assembly production. While originallydeveloped primarily for working on ONT data, CulebrONT can also be used on PB data withgeneralist tools.

Six recent community-validated assemblers are currently included (Canu (Koren et al., 2017),Flye (Kolmogorov et al., 2019), Raven (Vaser and Šikić, 2020), MiniAsm (Heng Li, 2016) (coupledwith minipolish (Ryan R. Wick and Holt, 2021) for an initial polishing), Shasta (Shafin et al., 2020)and smartDeNovo (Liu et al., 2021)). Several tools for polishing (Racon (Vaser, Sović, et al., 2017),Pilon (Walker et al., 2014), Medaka (Medaka, Accessed 25th July 2022) and Nanopolish (Lomanet al., 2015)) were also included. If requested, Circlator (Hunt et al., 2015) can automatically circu-larise the primary output of assemblers that cannot handle circular molecules (see Additional file1 section 2.2 for more details). Each processing step in CulebrONT, from raw to final assembly,
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Figure 1 – A graphical overview of the CulebrONT pipeline features. A. A concep-tual diagram of the various tasks involved in setting up a custom CulebrONT work-flow: setting up workflow steps and parameters, executing and viewing results of Cule-brONT. (1) workflow steps and parameters are provided by the user in the config.yaml,tools_path.yaml and cluster_config.yaml files. (2) CulebrONT python class reads, trans-forms and chains rules to build the corresponding pipeline. (3) Rule execution can beperformed sequentially or in parallel, on a single machine or a HPC infrastructure, withconcurrent jobs and multi threaded tasks. (4) The results of individual steps are aggre-gated in a convenient HTML output report. B. Simplified diagrams showing the compo-nents of an example CulebrONT workflow for assembling a linear genome. In the upperpart, the tools used for assembly (blue shape outline) and polishing/correction (yellowand red shape outline) are connected with arrows following the directional flow of thepipeline. In the central part, the various versions of the assembled genomes are gathered(preparing_fasta_to_quality) to serve as input for subsequent quality evaluation tools inthe lower part. Ultimately, the output is aggregated in a final report.

can be optionally assessed by various quality control tools (BUSCO (Simão et al., 2015), QUAST(Gurevich et al., 2013), BlobTools (Laetsch and Blaxter, 2017), KAT (Mapleson et al., 2017), As-semblytics (Nattestad and Schatz, 2016), Samtools Flagstats (H. Li et al., 2009), Mauve (Darlinget al., 2004)) and Merqury (Rhie et al., 2020).
CulebrONT uses Snakemake (Köster and Rahmann, 2012) principles and functionalities, en-abling readability of the code, local and HPC scalability, reentry, reproducibility and modularity.The pipeline code is written following the Snakemake syntax, and include a dedicated Pythonmodule which should facilitate readability for developers. The Snakemake system implementsscalability at the level of jobs that are scheduled independently to run, in parallel or sequentiallydepending on the available resources and the computing infrastructure. In addition, for rules thatrun programs with internal parallel processing capabilities, it is possible to configure the numberof cores allocated to the corresponding individual jobs in CulebrONT. Snakemake handles jobfailures and a restarted instance of the pipeline will compute only missing output.
CulebrONT relies on conda (Anaconda Software Distribution 2021) and singularity (Kurtzer etal., 2017) that simplify installation of specific versions of the software, secure environments andgreatly improve reproducibility. CulebrONT is available as a Python Package in PyPi to ease itsinstallation https://pypi.org/project/culebrONT/. In addition, the CulebrONT API adaptsthe installation to local or distributed/HPC environment. In terms of modularity, relevant toolsor processing steps can be selected or omitted in the user setup file config.yaml, and CulebrONT
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builds a dedicated instance of the workflow. Data can come from a single sample as well asfrom multiple ones (one fastq file per sample in the data folder). Tools paths are imported fromtools_path.yaml, and cluster resources are managed using the cluster_config.yaml file (Figure 1.1).The dedicated CulebrONT class checks configuration files, controls if data and software environ-ments exist and ensures the global coherence of the requested steps. This python class importssnakefiles to build a specific instance of the workflow (Figure 1.2). Upon execution (on HPC or asingle machine, Figure 1.3), in addition to the expected final output, individual rules will generatelog files (Figure 1.4).

Figure 2 – Example of CulebrONT HTML reports. A. Busco statistics for Acinetobactersp. dataset B. Quast for the rice dataset.

Results
CulebrONT was developed in order to facilitate comparisons between primary assemblies, butalso to check the effect of polishing on sequence accuracy. CulebrONT compiles informationfrom these steps, but also essential quality information calculated at each activated step. Anindividual output directory with a specific subdirectories topology (see Additional file 1 to de-tails) is generated for each samples. It notably contains a sub-directory corresponding to eachactivated step on the config.yaml file (assemblers, circularisation, polishing, correction, fixstart,and QC, for instance). In addition, a log directory includes execution information for all steps.CulebrONT generates an global HTML report, found in the FINAL_REPORT folder. In this report,summarized statistics and relevant information can be found, such as the configuration param-eters used or the tools versions and the computational time for each steps (Figure 2). Theseinformation can be useful for users that want to benchmark and identify suitable workflows fortheir data.

In order to provide an illustration of howCulebrONT can help benchmark assembly pipelines,ONT genome sequencing datasets for four highly contrasted species were tested : i. a strain ofAcinetobacter baumannii (Ryan R Wick et al., 2021) (ABJ9: reads N50 15,130 bp; median 7,621bp; 741 Mb), ii. a strain of Haemophilus haemolyticus (Ryan R Wick et al., 2021) (HM1C1321:reads N50 10,569 bp; median 7,027 bp; 1,6 Gb) iii. Meloidogyne graminicola nematoda (Phan etal., 2020) (VN18: reads N50 9,372 bp; median 2,853 bp; 3.2 Gb) and iv. a Oryza sativa dataset(unpublished data) (DJ123: N50 22,328 bp, median 13 544 bp, total 14,6 Gb).
For bacterial sequences, all available assemblers included in CulebrONT were tested usingreads for samples ABJ9 and HM1C1321 from A. baumannii and H. haemolyticus. For ABJ9, goodresults were obtained by Canu andMiniasm, but the best (the longest N50 and lowest L50) werefound using Miniasm + 2 minipolish rounds + Medaka correction with only 2 circularised contig(N50 3,798,675 bp and L50 1) obtaining and a Busco score of 98.4%. Busco results obtained on
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this sample can be found on the figure 2. For HM1C1321, Flye gave the highest number of cir-cularised contigs (N50 2,052,024 bp and L50 1) and the Busco score for conserved orthologousgenes on the final assembly was 95.2%. More details can be found on the table 1).
Five assemblers were tested for M. graminicola (Flye, Shasta, Miniasm, Smartdenovo andRaven). With the VN18 sample, the lowest number of contigs (617) was obtained using a com-bination of Flye for assembly with a N50 of 402,454 bp and a L50 of 29 and followed by tworounds of Racon and ultimately Medaka polishing (see table 1).
On Oryza sativa, due to the larger genome size, only three assemblers were activated (Flye,Shasta and Raven) and polishing was performed with Racon only. For DJ123 rice sample, Flye +two Racon rounds seemed to be the optimal solution, with the best N50 (14,895,042 bp) andlower L50 (10 for 12 chromosomes). An overview of a CulebrONT report is shown on the figure2.B using rice as an example. More details can be found on table 1 and more reports generatedby CulebrONT are available at: https://doi.org/10.23708/RJDLCN in "CulebrONT_REPORTS"directory. CulebrONT has been also successfully used on many various organisms, includingmore than 40 bacteria (Xanthomonas sp) (S. Cunnac, pers com), haploid fungi (Pseudocercosporafijiensis) (J. Carlier, pers com) and (Fusarium oxysporum f.sp. cubense) (E. Wicker, pers com), greenalgae (Bathycoccus sp), insects (Drosophila sp (Mohamed et al., 2020)), diploid grasses (Paspalumsp (O. Blanc, pers com) and otherOryza sp), aswell as on allopolyploid plants (ABB triploid banana;M. Rouard, pers com).

Discussion
Obtaining a good assembly is a complex task, and the software ecosystem for this is evolvingcontinually. While CulebrONT is currently proposing the state-of-the-art tools from today, weexpect evolution in the next months or years for the next releases in different ways: On a shortterm, we will integrate the possibility of adding an external fasta sequence for using the QC part(for instance coming from an assembler not included in CulebrONT), re-entry at any steps, andalso optimize the disk space usage. On a medium term, we will re-evaluate the available tools(adding hifiAsm (Cheng et al., 2021), removing tools not updated for years), restructure the finaloutput structure for more readability, and better integrate the outputs from diverse QC tools (inparticular BlobTools or RAM usage per tool). Finally, in a longer term, i.e. in the next 2 years, weplan to integrate tools for contig integrity, possibilities for haplotyping/polyploids and so on.

Conclusion
In summary, CulebrONT simplifies the analysis of large-scale assemblies by allowing fast andreproducible processing of a single dataset or on a collection of samples simultaneously. Theoutput facilitates the comparative evaluation of the assembly workflows while keeping a trace-able record of the analyses.
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