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Abstract

Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root
system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic
architecture. This work investigates how the interplay between conductivities along radial (e.g.
aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of
highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model
named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root
water flow was measured by the pressure chamber technique after successive cuts of a same root
system from the tip towards the base. HydroRoot model inversion in corresponding RSAs allowed us
to concomitantly determine radial and axial conductivities, providing evidence that the latter is often
overestimated by classical evaluation based on the Hagen-Poiseuille law. Organizing principles of
Arabidopsis primary and lateral root growth and branching were determined and used to apply the
HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water
transport can be co-limited by radial and axial conductances throughout the whole RSA. The number
of roots that can be sectioned (intercepted) at a given distance from the base was defined as an
accessible and informative indicator of RSA. The overall set of experimental and theoretical
procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse.
This approach will be instrumental to dissect the root water transport phenotype of plants with

intricate alterations in root growth or transport functions.
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Introduction

Water uptake by roots represents a key adaptation of plants to aerial life. Taking place at the plant
soil interface, this process is highly dependent on the root system architecture (RSA). Most root
systems are highly complex, branched structures with, for instance, thousands of ramifications and a
cumulated length of several hundreds of meters for a single maize (Zea mays) plant. These systems
are also highly dynamic. In particular, water availability interferes with the orientation and rate of
primary root growth and the frequency and symmetry of root branching thereby promoting water
resource foraging (Klein et al., 2020; Maurel and Nacry, 2020). The ability of root systems to reach
deep soil layers at reduced cost was proposed to be a key trait for acclimation to water deprived
environments (Lynch, 2013). Yet, a comprehensive view of how elementary water transport
processes occur in root tissues and integrate within the RSA, thereby shaping the root hydraulic
architecture, is needed to fully comprehend the water uptake capacity of plants.

Water uptake and its subsequent transport within the plant are determined by the gradient
of water potentials throughout the soil-plant-atmosphere-continuum (Draye et al., 2010; Steudle,
2001). Following radial transport across peripheral cell layers (epidermis, cortex, endodermis), soil
water reaches the stele and xylem vessels where it is transported axially to the plant aerial parts.
These radial and axial processes, that are often presented sequentially, actually operate
simultaneously and throughout the whole RSA. In most physiological studies of root water transport,
axial conductance was inferred from xylem vessel size using the Hagen-Poiseuille law (Klein et al.,
2020; Lefebvre et al., 2011; Steudle and Peterson, 1998). Because it is the site for formation of xylem
vessels, the root tip was identified as the main resistive place for axial water transport whereas axial
limitation was supposedly negligible in older root segments due to the presence of large metaxylem
vessels (Steudle and Peterson, 1998). In contrast, radial transport which is often represented as a
combination of cell-to-cell and cell wall (apoplastic) paths running in parallel, was proposed to
explain fundamental hydraulic properties of the whole root (Barrowclough et al., 2000; Knipfer and
Fricke, 2011; Steudle and Peterson, 1998).

Several types of numerical hydraulic models have been developed to address the complexity
of root water uptake, and radial transport in particular. Whereas early models integrated concentric
hydraulic resistances within a root radial section (Bramley et al., 2009; Jones et al., 1988; Steudle and
Jeschke, 1983), modelling was recently applied to a more precise, cell-based view of the root radial
anatomy (Couvreur et al., 2018; Heymans et al., 2021). Biophysical models have also addressed water
transport at whole root level. With respect to models that describe the functioning of root segments
(Frensch and Steudle, 1989; Zarebanadkouki et al., 2014; Zwieniecki et al., 2003) or use a simplified
representation of root system hydraulics (Knipfer and Fricke, 2011), Doussan and colleagues

integrated an explicit description of RSA with hydraulics. To be linked to soil water transfer, hydraulic

Zz0oz aunr 2| uo 3senb Aq £816099/18zoen/sAydid/g60 L 01 /10p/ao1e-aoueApe/sAydid/woo dno-olwspeoe//:sdpy woly pspeojumoq



87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117
118
119
120

functioning of the root had, however, to be reduced to simplified radial and axial processes (Doussan
et al.,, 1998a; Doussan et al., 1998b). Since then, there have been several attempts to refine the
hydraulic functioning of elementary root segments at the whole root level (Bouda et al., 2018; Draye
et al., 2010; Foster and Miklavcic, 2016; Javaux et al., 2013; Zwieniecki et al., 2003). More recently,
Meunier and colleagues (Meunier et al., 2017b; Meunier et al., 2017c) developed a hybrid analytical-
numerical model of root water uptake with increased computational efficiency.

Despite these efforts, the respective limitations of axial and radial conductances and their
precise contribution to whole root hydraulics remain key and as yet unresolved issues. Based on a
porous pipe representation of unitary roots, (Zwieniecki et al., 2003) showed that axial hydraulic
limitation can lead to saturation of root conductance meaning that long roots do not provide any
additional advantage in terms of overall flux intensity (Meunier et al., 2017a; Meunier et al., 2018;
Zwieniecki et al., 2003). This view was recently extended to entire root networks which, however,
remained theoretical in nature (Bouda et al., 2018). While these modeling approaches point to key
hydraulic properties of root systems, most of them were assessed with scarce or heterogeneous
experimental data.

With respect to native, soil-imbedded root systems, roots excised from hydroponically grown
plants are more easily amenable to accurate hydraulic measurements. In Arabidopsis (Arabidopsis
thaliana) in particular, the pressure chamber technique has proved efficient for addressing
fundamental root hydraulics properties in various genotypes or environmental conditions (Di Pietro
et al., 2013; Postaire et al., 2010; Sutka et al., 2011). More specifically, this technique provides access
to the whole root system hydraulic conductivity (Lp,) and allows to take into account the contribution
of fragile lateral roots.

Here, we used pressure chamber measurements coupled with a modelling approach to
investigate how the interplay between radial and axial conductivities determines the water transport
properties of complex and realistic RSAs. By combining experimental and computational modelling
procedures, this work shows how radial and axial conductivities can be concomitantly determined
and reveals contexts in which axial conductance can be limiting. The overall approach can also help
dissect the root water transport phenotype of plants with complex alterations in root growth or

transport functions.

Results

Mapping hydraulic properties on realistic models of RSAs
We first explored a set of 10 three-week-old, hydroponically grown Col-0 plants for which root water
transport capacity was measured by the pressure chamber technique and RSA was captured by

image analysis (Figure 1A). The root systems of these plants exhibit a substantial complexity with
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total length up to 2.1 m, and up to 354 root extremities corresponding to a primary root carrying two
orders of lateral roots (Table 1). We described quantitatively the individual RSAs by constructing
dynamical multi-scale tree graphs (MTG) (Godin and Caraglio, 1998). The graph nodes represented
plant segments of 100 um (equivalent to the range of a cell length) and contained information on the
position of the different branching points (Danjon and Reubens, 2008; Godin et al., 1999; Lobet et al.,
2015) (Figure 1B). Microscopic observations indicated that diameters of the primary and lateral roots
were fairly homogeneous within each branching order but were reduced by 30-40% between
successive orders, varying from 188 + 22 um (x SD; n=64) in the primary root to as low as 69 um in
second order lateral roots. Thus, external root surfaces were calculated in the MTGs, assuming that
root diameter was constant for a given root order, with a 30% decrease between successive root
orders.

Based on these detailed RSA representations, we developed a hydraulic model to simulate
water fluxes in the corresponding segment network. In this model, called HydroRoot
(https://github.com/openalea/hydroroot), each elementary root segment is associated with a
derivative microcircuit containing both radial (k) and axial (K) hydraulic conductances. While the
former (k) accounts for all pathways mediating radial water flow, the latter (K) represents the
conductances of the segment xylem vessels (Figure 1C). Accordingly, each elementary root segment
is connected with the root bathing solution, and with basal and apical neighboring segments (Figure
1C). Overall, an individual root is represented as a series of elementary units while root branching is
considered as a derivation in the global circuit (Figure 1D). Moreover, root tips are considered as
terminal segments, with an elementary radial flow that feeds into the axial flow of the neighboring
segment. In addition, endogenous osmotic driving forces were not taken into account since
spontaneous exudation was close to 0 in our conditions (Boursiac et al., 2005). Thus, the boundary
variables of the hydraulic model are either imposed experimentally [homogeneous water potential
(hydrostatic pressure) in the bathing solution; root base at equilibrium with atmospheric pressure] or
are measured [outgoing water flow: J,(P)]. Based on these principles, HydroRoot can be run through
a two-pass algorithm throughout the RSA, as previously described on aerial branching structures
(Prusinkiewicz et al. 2007): equivalent conductances of the different branches are first computed in a
backward pass (from root tips to base), followed by a forward pass (from root base to tips)
computing the water potentials at each point of the root system. Due to the lack of capacitive
components, water fluxes entering each elementary unit through radial or axial transport are
equilibrated by the out-going axial flux toward the root base. The set of model parameters is

recapitulated in Supplemental Table 1.
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Parameterization of axial conductance (K) for deduction of root radial conductivity (k)

To parameterize axial conductances, xylem vessel number and size were sampled along the axis of
primary, first and second order lateral roots of five independently grown Col-0 plants. Supplemental
Figure 1A shows typical xylem differentiation patterns from root tip to base. Xylem conductance was
computed according to Hagen-Poiseuille law applied to the general case of elliptic conduits and
implemented according to vessel number and size in each elementary unit, thereby providing a
conductance profile along the root axis (Supplemental Figure 1B). Because it is linked to the 4™
power of vessel radius, K shows a dramatic increase (> 600 fold) from root tip to base. We found no
clear distinction between K profiles, in terms of shape and magnitude, among different root orders
and plants. Thus, a unique K profile derived from experimental data by locally weighted scatterplot
smoothing (lowess) was applied along all root axes (Supplemental Figure 1B).

The direct determination of k is, at present, experimentally not achievable in species with
highly branched and tiny roots such as Arabidopsis, as it would require to measure radial flows in
root segments between consecutive branching points (*2mm in the present case) (Meunier et al.,
2018). We therefore estimated radial conductance values by inverse modeling, using the RSA and
outgoing water flow [J,(P)] data determined in the 10 plants described above. Considering that k is
constant from the root base to tips, its value was determined in individual plants, as presented in
Table 1, and ranged from 3.4 to 22.1 10® m.s™.MPa, with an average of 10.4 + 2.0 10® m.s".MPa™ (+
SE).

Concomitant determination of axial and radial conductances by model inversion

Although based on well-established physical principles, the calculation of K presented above
overlooks the finite length of xylem vessels and neglects possible hydraulic limitations occurring
during water passage between adjacent vessels or at root branching sites (Shane et al.,, 2000).
Previous authors have also found discrepancies between calculated and measured axial conductance
(Bouda et al., 2018; Frensch and Steudle, 1989; Tixier et al., 2013). Here, we refined our approach to
simultaneously determine axial and radial conductances by model inversion in individual and real
RSAs. For this, we characterized root systems that were sequentially sectioned at a given distance
from their bases. The overall procedure is illustrated in Supplemental Figure 2A. Figure 2A and B
illustrates a series of pressure chamber measurements obtained after successive cuts of a same root
system from the tip towards the base. The successive cuts create direct hydraulic connections
between the cell bath and xylem lumen, and thereby J,(P) increases although overall root surface
area progressively decreases (Supplemental Figure 2C, Figure 2A and B). For reference, control intact
roots systems that underwent the same successive pressurization cycles showed a constant J,(P)

(Supplemental Figure 2B). Unlike previous analyses performed on elementary root segments
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(Frensch and Steudle, 1989; Meunier et al., 2018), the present experimental procedure results in a
complex mix of sections of various root orders, made at the same distance from the root base, but at
varying distances from their respective tip (Supplemental Figure 2). Thus, we used a parameter
adjustment procedure on HydroRoot running with digitized architectures, either intact or with the
indicated sections, to infer k (set constant over the overall RSA) and K (as a piecewise linear function
of the distance to tip, see Materials and Methods). The robustness of the multi-parameter
adjustment procedure for K, almost independent of the first guess parameter values, is displayed in
Supplemental Figure 3. When applied to 10 individual RSAs, this so-called cut-and-flow approach
confirmed the variability in K profile previously observed between plants (Figure 2C). Most
importantly, it pointed to adjusted K values that were markedly lower than those calculated using
Hagen-Poiseuille law, by a factor of 4-6. In relation to these new K estimates, k values inferred from
the cut-and-flow approach were higher (mean value + SE: 32.8 + 6.5 10® m.s".MPa) than when
using the first inversion method described above (Figure 2D).

Since a constant radial conductivity (k) represents a strong assumption of our model, we also
investigated roots in which k was set constant in root tips but, due to suberization, dropped to a 3-
times lower plateau value in the differentiated zone (Doussan et al., 1998b; Heymans et al., 2021;
Ranathunge and Schreiber, 2011). Using such k profile and cut-and-flow data from the same 10
plants as above, we obtained a slightly but non-significantly reduced average plateau value of k
(Supplemental Figure 4A). Moreover, this non-uniform k profile did not significantly modify the
variation of K along the root axis (Supplemental Figure 4B). We interpret this to mean that the
increase in Jy(P) observed upon successive cuts of the RSA, and opening of vessels, is much more

powerful to capture spatial variations of axial conductance (K) than k.

A general model of Arabidopsis RSA

In order to explore the combined impacts of k, K and RSA on root water transport, we went on to
apply the HydroRoot model to an extended, yet realistic, set of simulated RSAs. Our first step was
therefore to develop a general model of Arabidopsis RSA.

To do this, we first explored the organizing principles of Col-0 RSA by observing primary and
first and second order lateral roots in a set of 13 individual plants. When looking at the distribution of
root branching, we observed that this process was always initiated between 8 and 40mm from the
root tip, and then developed at a relatively stable rate, which was similar between the primary root
and the lateral roots (Figure 3A). Thus, the cumulated number of lateral roots that have emerged at a
given distance of any root tip can be described by a linear relationship defined by a nude tip length

and a slope determined by the average internode length.
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Next, we investigated the length of lateral roots with respect to their position along the
parental axis. The scattered data indicated a progressive but stochastic growth of laterals on the
bearing axis (Figure 3B). Yet, first order lateral roots showed a more pronounced growth than second
order lateral roots at a same distance of their respective parental root tip. We therefore established
distinct length laws for the two orders of lateral roots.

These observations allowed us to deduce the parameters of a root model that can be used to
generate RSAs. Using realistic ranges of nude tip length (between 5 and 35mm) and average
internode length (1-2.75mm), we modeled the stochastic process of lateral root branching by a first-
order Markov chain on growing root axes (Lucas et al., 2008). In addition, the length of simulated
lateral roots was determined by fitting lateral root length along parental root axes (Figure 3B). Root
diameters were set for each root order as indicated above. Setting the primary root length between
4 and 20 cm, we generated 9520 RSAs that spanned the whole range of input parameters. Figure 3C

illustrates the diversity of RSAs that can be generated using this pipeline.

Capturing features of RSAs using patterns of intercepted roots

In line with the cut-and-flow approach, we noted that phenotyping real RSAs by counting the number
of roots that can be sectioned (intercepted) at six distances from their base (e.g. 80, 60, 45, 30, 20,
10 mm) was at least five times as fast as a full RSA reconstruction. The latter needs determining the
nude tip length, position and length of all lateral roots. By comparison, the number of intercepted
roots at a few given distances from the base seems to be a more accessible yet informative indicator
of RSA. Figure 4A illustrates intercept number curves derived from discrete cuts in real RSAs or from
digitized Col-0 RSAs. These curves are overlapping with analogous intercept number curves, but
derived from simulated RSAs.

Analysis of the full data set showed that cumulated intercepts were significantly correlated
to architectural parameters of the root, such as the total root length (Supplemental Figure 5A).
Another feature of these curves is that they cumulate intercept distributions of first and second
order lateral roots thereby capturing a key aspect of root branching (Figure 4B).

Finally, we wondered about the capacity of a determined intercept number profile to
distinguish between markedly different RSAs. Supplemental Figure 5B shows a set of simulated RSAs
that share intercept number profiles similar to those of reference real RSAs. The simulated RSAs
were indeed very close, although with some variation, in their total root length (Figure 4C). The
overall data establish that intercept number profiles allow to capture some fundamental features of

RSAs.
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Sensitivity analysis of root water transport to architecture and hydraulic parameters

Next, we applied the HydroRoot model to calculate the sap flow at a driving pressure of 0.3MPa
[4,(0.3MPa)] in our collection of simulated RSAs using three distinct, yet realistic hydraulic
configurations. For this, we selected three contrasting but uniform k values, all derived from cut-and-
flow experiments, and applied a varying multiplying factor (ax) to the median axial conductivity (K)
profile determined in the same approach (see Figure 2C). Thus, in addition to an intermediate
hydraulic configuration (mean k value: 32.8 10® m.s*.MPa™; ax=1), we defined a low hydraulic
(minimal k : 9.9 10® m.s™.MPa™; ax=0.5) and a high hydraulic (maximal k : 71.4 10® m.s*.MPa; ax=2)
setting. The three sets of simulations derived from these settings show a large range of J,(0.3MPa)
values for RSAs of varying size (surface) and encompass the 20 experimentally determined J,(0.3MPa)
values (Figure 5A).

The whole set of simulated RSA was used to explore the overall sensitivity of root water flow
to elementary input architectural parameters. A dependency of J,(0.3MPa) on primary root length
(Figure 5B) and average internode length (Figure 5C) can be observed whereas nude tip length
(Figure 5D) had no impact on simulated flow. In the latter case, this means that the presence or
absence of relatively short lateral roots close to the tip has a negligible impact on J,(0.3MPa). Finally,
when the intermediate hydraulic setting was used, the variation range of all input architectural
parameters was responsible for a variation of J,(0.3MPa) by about one order of magnitude.

J,(0.3MPa) was also dependent on variations in hydraulic parameters (Figure 6). Using the set
of 9520 simulated RSAs described above, we observed a positive and slightly saturating relationship
between J,(0.3MPa) and k (Figure 6A and 6B; Supplemental Figure 6A). A similar behavior was
observed when varying ax values were applied to the whole axial conductivity (K) profile (Figure 6A
and 6C; Supplemental Figure 6B). These behaviors were not independent since sensitivity of
J,(0.3MPa) to k or ax was higher and the saturation plateau was more pronounced when reference
ax or k parameters were set to lower values (Figure 6A; Supplemental Figure 6). Thus, J,(P) seems to
be co-limited by the radial and axial conductivity in a large range of values.

The strong dependence of K on vessel diameter, as indicated by Hagen-Poiseuille law, is
usually interpreted to mean that the small vessels present at root tips are by far the most limiting
(Steudle and Peterson, 1998). To examine this point in detail, we inspected the spatial variation of
sap flow when a constant reducing factor (ax < 1) was applied throughout the K profile.
Supplemental Figure 7 illustrates this approach on a representative RSA. Figure 6D summarizes the
results, showing the relative variation of primary root axial flow at the indicated distance from root
tip, under varying ax values. Although flow sensitivity was the highest close to root tip, we observed,
for moderate axial limitations (0.5<ax<1), a pronounced and somewhat comparable impact of ax

variation on axial flow all along the root. Thus, limitation of axial conductivity appears to be
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distributed over the whole primary root length. Since converging flows in a highly branched
architecture may create marked hydraulic constraints in basal root sections, we also considered the
simpler case of a cylindrical root harboring the same K profile as above (dashed lines, Figure 6D).
Although axial flow was less sensitive to axial limitation (ax < 1) than in highly branched roots, a flow
limitation along the whole root axis was also observed. These results emphasize the functional
relevance of profiles with increasing K along the whole root axis, as determined by the cut-and-flow
approach (Figure 2C).

We then investigated possible interactions between hydraulic and architectural parameters
in determining root water transport capacity (Supplemental Figure 8). For comparison of different
hydraulic settings, corresponding J,(0.3MPa) flow values were centered using a normalizing factor. In
such analyses, the relative response of J,(0.3MPa) to architectural input parameters was very similar
between high (k=71.4 10® m.s’.MPa™; ax=5) and low (k=9.9 10® m.s’.MPa™; ax=0.01) hydraulic
settings (Supplemental Figure 8).

Finally, we investigated the preferential sites of water uptake predicted in a whole root
placed in a pressure chamber. Figure 6E represents a heatmap of simulated radial inflow (j;, Figure
1C) throughout a typical RSA. Under intermediate hydraulic conditions (k = 32.8 10® m.s".MPa™;
ax=1), the highest radial flow is observed at the vicinity of the root base, in the primary root as well
as the first order lateral roots (Figure 6 E, middle). A similar pattern is observed after increasing two-
fold the axial conductance (ax = 2; Figure 6E, right). In contrast, water uptake by first order lateral
roots and downstream roots was strongly reduced under lower axial conductance (ax = 0.125; Figure
6E, left). When a non-uniform k profile was used (k was the highest in root tips and dropped 3 times
to a lower plateau value in the differentiated zone; see above), radial inflow was enhanced in root
tips but the remaining spatial pattern was comparable to that with uniform k (Supplemental Figure
4C). Overall, these analyses illustrate how the axial conductance can influence the whole root
hydraulic architecture, and determines the relative contribution of the root basal and distal parts to

whole root water uptake.

Dissecting the root hydraulic architecture of esk1 mutants

ESKIMO1 (ESK1) is a xylan-specific O-acetyltransferase (Yuan et al., 2013) which interferes with
cellulose fibril organization and deposition of plant secondary cell walls. As a consequence, eskl
mutants exhibit an irregular xylem (irx) syndrome (Lefebvre et al., 2011). Here, we decided to re-
examine the hydraulic defects observed in these mutants (Lefebvre et al.,, 2011) with a
comprehensive analysis of their root hydraulic architecture, based on the numerical approach
developed above. Morphological inspection of real plants of two allelic mutants of ESK1 (esk1-1,

esk1-5) showed root growth alterations. While primary root growth was not different between

10
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genotypes, the intercept number profiles based on digitized RSAs of 7 esk1-1 plants and 7 esk1-5
plants highlighted, with respect to Col-0, a clear reduction in root density in the 25-75mm range from
the base (Figure 7A and 7B). This is attributable to a reduction in length of first order laterals which
translates into a deficit in second order laterals. Lefebvre et al. (2011) hypothesized from discrete
anatomical cuts of the root that axial conductance might be reduced in esk1. We then used cut-and-
flow experiments assisted by the HydroRoot model developed above to further characterize the
hydraulic properties of esk1 roots. The analyses indicated that the median K of esk1-1 and esk1-5 was
markedly reduced compared to Col-0 by factors from 1.6 up to 19.1 along the primary root axis
(Figure 7C). The cut-and-flow approach also allowed us to estimate k, which, by comparison to Col-0,
appeared to be reduced by 55 % to 33 % in esk1-1 and esk1-5, respectively (Figure 7D) and by 40 %
(P= 0.11; Student’s t test) in cumulated data from esk1-1 and esk1-5. Thus, in complement of an
earlier report (Lefebvre et al., 2011), our results suggest that the loss of ESK1 function impacts not
only xylem conductance, but also other determinants of root water transport capacity. More
generally, this study shows how our model assisted phenotyping allows to dissect the Arabidopsis
root hydraulic architecture into three major components (RSA, radial and axial conductivities), and

analyze their interplay in various genotypes.
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Discussion

Investigating Arabidopsis root hydraulic architecture

Over the last two decades, the Arabidopsis root has emerged as a model of choice to address
molecular and physiological aspects of aquaporin regulation (Boursiac et al., 2008; Lee et al., 2012),
and more recently, to dissect plant tissue hydraulics by means of quantitative genetics (Shahzad et
al.,, 2016; Tang et al., 2018). Although produced in adult plants, the data were interpreted using a
simplified representation of the root as a single, continuous barrier between two homogeneous
compartments, e.g. the soil solution and the xylem sap (Javot et al., 2003). Thus, the complexity and
organizing principles of RSA in these plants, and its impact on the root uptake capacity have not yet
been addressed. By comparison, more elaborate root hydraulic models exist in other plant species
such as maize and lupine (Lupinus albus) (Meunier et al., 2018; Zarebanadkouki et al., 2016), which
are indeed more amenable than Arabidopsis to root water transport assays and anatomical
dissection. With respect to these high-yielding crops, the wild species Arabidopsis exhibits moderate
growth but comparable transpiration rates (Hosy et al., 2003; Macho-Rivero et al., 2017; Yang et al.,
2012). Thus, it has been unclear whether its system of thin, highly branched roots is also hydraulically
optimized for high water flows.

Here, we have investigated the organizing principles of Arabidopsis root hydraulic
architecture, using interplay between experimental and computational modelling approaches. To
ensure a maximal physiological meaning, experimental measurements and numerical simulations
were performed at a water potential gradient (i.e. 0.3 MPa) consistent with water flows driven by
transpiration under standard growth conditions. In addition, starting from a fine characterization of
wild-type (Col-0) plants, our study was extended to possibly encompass a large panel of accessions
and genotypes.

Our major concern was to understand the relative impact of elementary axial and radial
hydraulic parameters on sap flow. Whereas confrontation of theoretical and experimental data
through model sensitivity analysis remains the most common approach, there is a restricted number
of studies whereby hydraulic parameters were deduced from inverse modelling and integration of
architectural components (Doussan et al., 2006; Doussan et al., 1998b; Meunier et al., 2018; Pascut
et al., 2021; Zarebanadkouki et al., 2016). While these earlier studies relied on functional analyses of
individual axial roots of maize, lupine or Arabidopsis, we describe here a procedure based on cut-
and-flow measurements for simultaneous determination of axial and radial conductance in highly

branched root systems.
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Assessing radial conductance

A direct experimental dissection of radial conductance components is, at present, not achievable. It
would require an exact knowledge of the water potential across the root section, and the
experimental determination of elementary hydraulic conductivities corresponding to different
transport pathways. Even though cell membrane permeability can be measured using cell pressure
probe or protoplast swelling assays (Hisken et al., 1978; Ramahaleo et al., 1999), all cell types are
not amenable to these experimentations. Furthermore, the permeability of other components of
radial water transport, such as the apoplast, has not been clearly determined yet (Buttersack and
Basler, 1991). The present HydroRoot model proposes to synthetize the overall radial pathway
through a single radial conductance (k) value. Here, we used an inverse modeling scheme similar to
those developed in Arabidopsis and maize (Couvreur et al., 2018; Pascut et al., 2021) to determine k
from RSA, J,(P) and K. In a simplified representation of Arabidopsis root anatomy, the outer tissues
can be reduced to 3 concentric cylinders (cell layers) corresponding to the epidermis, cortex and
endodermis, with 6 cellular membranes in series. Cell pressure probe measurements in Col-0 cortical
cells have given a cell membrane hydraulic conductivity of 1-4 10° m.s™.MPa™ (Boursiac et al., 2008;
Sutka et al., 2011). We note that the order of magnitude of k determined in this work by inverse
modelling (3 107 m.s.MPa™) fits with 1/6™ of this range, in agreement with the idea that radial
water transport in the Arabidopsis root is predominantly mediated through cell membranes
(aguaporins)(Tournaire-Roux et al., 2003).

Another line of simplification of HydroRoot is that, in most of our simulations, k was set
constant from the root tip to base. Besides its simplicity, this hypothesis is supported by several
studies, including a hydraulic dissection of developing maize roots through segment analysis (Frensch
et al., 1996) and a hydraulic model inversion approach (Meunier et al., 2018) in young lateral and
seminal roots of maize and lateral roots of lupine. Yet, plant roots show a progressive development
of endodermal and peridermal barriers (Calvo-Polanco et al., 2021; Campilho et al., 2020; Doblas et
al., 2017; Ranathunge and Schreiber, 2011) and longitudinal variations in aquaporin gene expression
(Gambetta et al., 2013). Measurements of water uptake profiles in lupine or maize roots have also
suggested a steady decrease of k over root length (Doussan et al., 1998b; Zarebanadkouki et al.,
2016). Here, we investigated a two-step radial conductivity profile with a constant value of 3 k from
tip to the appearance of full suberization and a value of k beyond. Our simulations indicate that this
more realistic k representation does not impact the main conclusions on axial conductance (see

below) drawn from HydroRoot running with uniform k values.
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Assessing axial conductance

Most often, axial conductance is roughly evaluated using the Hagen-Poiseuille law and there are only
a few instances where the axial conductance of roots was experimentally determined (Bramley et al.,
2009; Frensch and Steudle, 1989; Meunier et al., 2018). The overall literature data indicate that the
axial conductance can show a steep increase, from the root tip along the root axis, and most
importantly varies between plant species, by up to 5 orders of magnitude (Meunier et al., 2018).

Here, we investigated the importance of axial conductance in the context of highly branched
root systems. One first challenge was to develop a method for measuring K profiles throughout such
complex root systems, where axial flow measurements in individual thin root axes are not feasible.
However, microscopic observations suggested that K profile may be similar between root orders. This
allowed us to reduce the problem to only one K profile. The cut-and-flow approach provided an
efficient method, where the impact of multiple sections in roots of different orders was analyzed
through a complex parameter optimization. We note that, because of its design, the cut-and-flow
approach preferentially captures the features of axial transport and not radial transport. This is due
to the fact that the progressive increase in sap flow observed upon successive cuts, which result in a
progressive decrease in root surface, essentially reflects xylem vessel opening and suppression of
resistance of corresponding root tips.

Surprisingly, the experimentally determined K profile indicated values that were up to 10
times lower than concomitant estimates using anatomical measurements together with Hagen-
Poiseuille law. (Frensch and Steudle, 1989) and (Sanderson et al., 1988) also found that the measured
values were 2-5 times lower than the calculated ones, in maize and barley (Hordeum vulgare) roots,
respectively. Thus, it is likely that Hagen-Poiseuille estimates of single vessel conductance overlook
the resistance due to connections between finite vessel elements, to possible vascular constrictions
at the sites of root ramifications, or xylem surface properties (Sanderson et al., 1988; Shane et al.,
2000). As elegantly modelled by (Bouda et al., 2019), the failure of Hagen-Poiseuille estimates may
also be due to the functioning of xylem as a network integrating resistive connections between
functional vessels of distinct sizes.

Here, we further explored the importance of root axial conductance in a set of RSAs that
were built, by extension, on well-defined parameters captured in real plants. Our analyses which
extend the theoretical study of (Bouda et al., 2018), show that highly branched root systems can
show pronounced axial limitation for water transport. Firstly, Jy(P) showed a typical saturation in long
root systems (with primary root length > 14 cm)(Figure 5B) which somewhat reflects the plateau
shown by K along root length (Figures 2C). Increased root branching, while increasing the root
surface to the same extent as root length, may not necessarily reveal an axial limitation in the first

place (Figure 5C). However, spatially defined sensitivity analysis showed that hydraulic limitation due
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to xylem transport can occur along the whole root axis (Figure 6D). This may typically happen at the
base of highly branched RSAs which convey converging flows from multiple root axes. Thus, although
root tips truly represent particular sites for hydraulic limitation, our analyses show that the hydraulic
load is somewhat spread over the whole root architecture. In other terms, the large metaxylem
vessels present at root bases are not as oversized as initially claimed (Steudle and Peterson, 1998). A
trade-off likely occurs on this trait as big vessels typically increase vulnerability of vascular tissues to
cavitation (Tyree et al., 1994).

The conceptualization of water transport through sequential radial and axial water transport
has somewhat led to independent estimates and functional analyses of the two processes. This
approach may be misleading as this and a previous study show that water transport is actually co-
limited by radial and axial conductances (Figure 6A) (Zarebanadkouki et al., 2016). As a consequence,
experimental determination of either one of these components strongly depends on the accuracy by
which the other component is evaluated or truly measured. In physiological terms, our work
indicates that real root systems can act on multiple cues to alter their water capacity. Interestingly,
conductivity of the radial pathway can be adjusted over short or medium term through aquaporin
regulation or root suberization whereas changes in RSA or vascular structures occur during much
longer (days) adaptive responses of the root. Yet, these distinct traits have surely to be coordinately
regulated, to ensure that root hydraulic architecture properly matches the plant’s environmental
conditions and developmental stages. ABA was recently shown to play such a coordinating role under

water stress (Rosales et al., 2019).

Deciphering complex root phenotypes
Another major focus of our work was to work out the organizing principles of fully grown Arabidopsis
root systems and dissect their branching properties. First, we showed that steady-state lateral root
formation on a parent axis occurs over time and space in pretty well determined patterns that can be
characterized using two constant parameters, nude tip length and average internode length. Yet, the
growth and arrest of lateral roots appeared as a highly stochastic process. Overall, this process was
encapsulated in specific length laws thereby defining a complex pattern comprising several orders of
lateral roots. In addition, our data set allowed to generate a set of virtual RSAs that covers real RSAs
of distinct Arabidopsis genotypes. Conversely, it was critical for us to develop tools that would allow
identifying the branching profiles of specific genotypes. Here, we show that intercept number
profiles allow such kind of rapid and discriminative overview of RSA organization.

Earlier work has shown that defect in ESKIMO1 function results in xylem collapse. This
phenotype was tentatively associated with a reduced Lp, (Lefebvre et al., 2011). Since then, ESKIMO1

was shown to function as a xylan-specific O-acetyl transferase during secondary cell wall synthesis
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(Grantham et al., 2017; Yuan et al.,, 2013). Due to pleiotropic effects of cell wall alteration, esk1
mutants also show enhanced ABA accumulation (Lefebvre et al., 2011) and constitutive defense
responses (Escudero et al., 2017), which could both interfere with tissue hydraulics. Here, we chose
eskl genotypes as typically complex cases and used our full set of hydraulic and architectural
phenotyping and modelling approaches to revisit their root water uptake properties. In agreement
with early anatomical work on xylem defects in this genotype, our study provides a quantitative
estimate of reduction in axial conductance. Our analysis also pointed to a probable decrease in radial
conductance (Figure 7D) and profound changes in root architecture (Figures 7A and B). Thus, the
reduced water uptake capacity of eskl results from more complex root alterations than initially
thought. This example emphasizes the power of model-assisted hydraulic phenotyping which will
prove extremely valuable in support of quantitative genetic analyses of root hydraulics (Shahzad et
al., 2016; Tang et al., 2018). Along these lines, the MECHA model was recently used to infer distinct
radial hydraulic profiles present in maize roots, either wild-type or with deregulated Plasma

membrane Intrinsic Protein 2;5 (PIP;2;5) (Ding et al., 2020).

In conclusion, we have developed a model-assisted pipeline for accurate dissection of root hydraulic
architectures in complex, highly branched root systems. While much emphasis has been put so far on
aquaporin-mediated control of radial transport, our approach points to the complementary
importance of axial hydraulic conductance. Drawbacks in inferring this conductance from anatomical
measurements and the common idea that it is only limiting in root tips have led to underestimating
its importance. As a consequence, RSA is most often analyzed as the root foraging capacity for water
whereas it can be associated with true hydraulic limitations. More generally, we have developed
here a toolbox that can be used for dissecting the multiple root alterations that may interfere with
root uptake capacity, in different genotypes (this work) and, by extension, in various environmental
conditions. In particular, our study brings key tools to investigate, in Arabidopsis and possibly other
species, the impact on root hydraulic architecture of environmental factors (e.g. drought) or

hormones (e.g. ABA) acting on xylem differentiation (Ramachandran et al., 2020).
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Materials and methods

Plant culture

Arabidopsis (Arabidopsis thaliana) seeds were surface sterilized (7min incubation in 86% (v/v)
ethanol and 0.03% (v/v) chlorine followed by 4 washes with 70% (v/v) ethanol) and germinated onto
a half-strength Murashige and Skoog medium with 0.9% (w/v)agar in square petri plates. Plates were
incubated in a growth chamber with 70% humidity, 16h light, 21°C for germination, and kept vertical
for 10 days. Seedlings were then transferred to a hydroponic culture medium (1.25 mM KNO3, 0.75
mM MgSQO,, 1.5 mM, Ca(NOs),, 0.5 mM KH,PO,4, 50 uM FeEDTA, 50 uM H3BOs;, 12 pM MnSQ,, 0.70
UM CuSOy4, 1 uM ZnSQO,, 0.24 uM MoO4Na,, and 100 uM Na,SiO3) for 9-10 additional days in the same
growth chamber. Columbia (Col-0) (N70000), eskimol-1 (Xin and Browse, 1998) and eskimol-5
(SALK_089531)(Bouchabke-Coussa et al., 2008) plants were used in this study.

Digitalizing of root architectures

Excised root systems were spread out in a Petri dish containing a thin film of water, and gently
brushed prior to being digitized at 600-900ppi with a desktop scanner. Images were analyzed with
Imagel) software. For a given axis, internodes and lateral roots were traced back with straight or
segmented lines, which were then saved in the ROl manager. This procedure was applied for the
primary root as well as each lateral root carrying lateral roots, which resulted in a table containing

the internodes and lateral roots length for each branched root.

Hagen-Poiseuille law estimate of axial conductance

The axial conductance along a root axis was estimated from direct observations of xylem vessels,
using the Hagen-Poiseuille law applied to elliptic conduits. Root segments from the primary root, and
first and second order lateral roots were sampled every 2 cm, embedded in 7% (w/v) low-melting
agarose and sliced with a vibratome. Slices were imaged under an optical microscope and xylem
vessel dimensions were measured (Supplemental Figure 1A). Since vessel sections were not always
circular but possibly oblong, vessel conductance (in m*.s*.MPa™) was computed according to the
general formula for elliptic conduit conductance (Lewis and Boose, 1995):

_ (nxa®xb?)
" 64 xn x (a? + b?)

where a and b are long and short axis diameters (m), respectively, and n is the viscosity of water

(1.107 Pa.s at 20°C). In all cases, a was less than two times b.
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Root water transport measurements

Root water transport was measured on de-topped plants with a set of pressure chambers, as in
(Javot et al., 2003). The hypocotyl of an excised root system was inserted into an adapter and sealed
within the pressure chamber lid seal with silicone (Coltene Whaledent, France). The root was then
placed into the pressure chamber in a container filled with filtered (20 um) hydroponic solution. The
adapter was connected to a flowmeter (Bronkhorst, France) in order to record the flow of sap from
the hypocotyl. After a first pressurization of 10min at 0.35 MPa, three successive flow measurements
were taken at 0.32, 0.16 and 0.24 MPa. A linear fit of the flow-to-pressure relationship (with 0.92 < r?
< 0.99) was used to deduce the sap flow at 0.3 MPa [Jv(0.3 MPa)].

Modeling principles

The HydroRoot model was developed in a Python programming language, as a component of the
OpenAlea platform (Pradal et al., 2008; Pradal et al., 2015). HydroRoot uses a Multiscale Tree Graph
(MTG) (Godin and Caraglio, 1998) to represent root hydraulic architecture, which consists of the
topology of a root system (branching positions, root lengths, root radii, etc.) and its hydraulic
structure (local radial and axial conductivities). The RSML format (Lobet et al., 2015) is used to import
and export the data to/from the HydroRoot model. The model is open source and available through
its public repository (https://github.com/openalea/hydroroot).

The hydraulic aspects of HydroRoot consisted in two main components: the radial water flow
between the bathing solution and the xylem vessels and the axial transport through the xylem
vessels. Following Doussan and colleagues (Doussan et al., 1998a; Doussan et al., 1998b), the root
was discretized as a network of elementary segments consisting of a microcircuit containing both
radial (k;) and axial (K;) hydraulic conductances (Figure 1C). The local radial flux was written as
Ji = ki(wei —1;)S; and the local axial flow as J; = K; (¥oue — ¥:)/Li, Si and L; being the surface
area and the length of the elementary segments, respectively. By analogy with Ohm’s law, both
1/(k:S;) and L/K; may be modeled as electric resistances, and the hydraulic architecture may be
assimilated to an electrical network (Doussan et al., 1998a; Prusinkiewicz et al., 2007). According to
the boundary conditions (uniform pressure around the root and atmospheric pressure at its base),
we are able to calculate the equivalent resistance of the network and then calculate the outflow rate.
In brief, let us consider an elementary segment j, with R; = L;/K; and r; = 1/(k;S;) as axial and

radial resistances, respectively. Its equivalent resistance Reqi is calculated as follows, assuming that

the apical equivalent resistance R,q,_, is known:
1 1 4
Req;, Req, +7i i
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By implementing this equation, step by step from the tips, and by considering a branched root as a
parallel network, we end up with an equivalent resistance for the whole network, and as a
consequence, an equivalent hydraulic conductance K,, (Albasha et al., 2019; Prusinkiewicz et al.,

2007). The basal outgoing flux (J,) is then calculated according to:

Jv= eq (We — Ypase)

Cut-and-flow experiments

An entire root system was excised and inserted into a pressure chamber, and water transport was
measured as explained above, to check for the linearity of the flow-to-pressure relationship, but with
a 10 um filtered solution. If correct, the pressure was set to 0.3 MPa and the sap flow was recorded.
After 3-5 min, the pressure was released and the root system was taken out of the pressure chamber
and laid onto a 12x12cm Petri dish filled with filtered hydroponic solution. All roots were stretched
and aligned thereby allowing all longest root tip segments to be sectioned with a fresh razor blade, at
1-3cm from the tip of the longest root. The remaining root system was put back in the pressure
chamber at 0.3 MPa and flow measurement resumed for another 3-5 min. These steps
(Supplemental Figure 2) were repeated 3 to 8 times with the remaining tip segments of the root
system being cut each time according to the same principle. Sap flow measured at 0.3 MPa for each
cut step was then averaged, and plotted against the cut position on the primary root (See Figure 2B
as an example).

At each step, the released root segments and the remaining basal part of the root were
digitized and processed to reconstruct the initial architecture of the measured root (Supplemental
Figure 2). For each cut, roots segments were sorted in decreasing order of their total length (segment
length plus the sum of its lateral root length, if any) and positioned accordingly on the primary root.
Due to its diameter, the primary root was easily identified and could be attributed correctly for each
cut. This allowed us to determine the position of each cut along the primary axis, and therefore
reconstruct the whole RSA.

The final step of the whole procedure consisted in adjusting radial (k) and axial (K) conductances, to
fit the sap flow measured after each cut. As mentioned above, K varies along each root axis with the
distance to the tip. Here, K was represented as a linear piecewise function of nine points for an axis
length up to 19.75 cm which corresponds to the longest root among those analyzed for anatomical
data (Figure 2C). K was therefore represented by up to nine parameters. The radial conductivity k,
which is set uniform in our model, represented an additional parameter. Consequently, up to ten
parameters had to be adjusted from a data set of four to nine measurements. The system being

underdetermined, we constrained the first derivative of K between two consecutive points to a
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minimum of -3.10™ m?s™.MPa™. This negative value represents the minimum observed on the
lowess smoothing (Figure 2C). The fit was then performed by minimizing the sum of square of the
residuals. The averaged radial conductivity from ten Col-0 plants (Table 1), ki, and the nine axial
conductance data points from the lowess fit (Figure 2C), K., were set as initial parameters. The most
effective procedure was obtained following these steps:

- k; and K; were first estimated by adjusting two multiplying factors, ax and ar, with lower bounds of
10, such that k; = ar X kip; and Ky = ax X Kiyj;

- keeping k;, the axial conductance points were then adjusted (with the constraint above and with a
non-negative lower bound) from K;, leading to K;;

- keeping K, the radial conductivity was then adjusted from k; without bounds neither constraint,
leading to k;;

- the k and K adjustment loop (steps 2 and 3) was repeated until the variation in radial conductivity
falls below 10™ m.s*.MPa™.

We used the function optimize.minimize of the SciPy Python library to perform these
minimizations. The minimizations 1 and 2 were done with the default solver according to bounds and
constraints whereas the minimization of the radial conductivity (step 3) was done with the “Nelder-
Mead” solver. The robustness of the fitting procedure was eventually tested by starting from

different initial parameters (Supplemental Figure 3).

Statistical Analysis
All data sets were obtained in at least four independent biological repeats (plant cultures) with the
indicated total number of plants. Pairwise comparisons of model parameters were performed using a

Student t test (P < 0.05).

Accession Numbers

Accession number of ESK1 is At3g55990.

Supplemental Data

Supplemental Figure S1. Parametrization of root axial conductance using Hagen-Poiseuille law.

Supplemental Figure S2. Experimental details on the cut-and-flow procedure.

Supplemental Figure S3. Robustness of axial conductance curve estimation procedure.
Supplemental Figure S4. Influence of a two-step radial conductivity profile on simulated root water

uptake.
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Supplemental Figure S5. Relationship between cumulated number of intercepts and integrative
properties of RSA.

Supplemental Figure S6. Dual dependency of J,(P) on radial (k) and axial conductance (K).
Supplemental Figure S7. Effects of varying axial conductance profiles (ax) on local axial flow (J).
Supplemental Figure S8. Sensitivity analysis of J,(0.3MPa) to RSA parameters in two distinct hydraulic

settings.

Supplemental Table S1. Parameters of HydroRoot model.
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Table

Table 1: Measured architectural parameters and calculated elementary hydraulic radial conductance
(k) of individual root systems. Water flow was measured using the pressure chamber technique in
excised root systems from the indicated individual plants (2 biological replicates). RSAs were then
exhaustively analyzed. The table summarizes integrated parameters from these measurements and
the k values calculated using HydroRoot to match the measured water flows. The axial conductance
was calibrated according to Hagen-Poiseuille law, and the same lowess fit profile, as shown in

supplemental Figure 1, was used for all RSAs.

Total length Surface area Calculated k
Plant number
(m) (10* m?) (108 ms* MPa™)
#1 1.63 4.63 3.39
#2 1.88 5.18 7.08
#3 1.60 4.48 8.70
#4 0.71 2.20 5.59
#5 1.88 5.10 13.12
#6 1.12 3.36 8.30
#7 2.13 6.03 19.22
#8 2.11 6.05 22.13
#9 0.76 2.49 12.76
#10 0.78 2.59 4.03
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Figure legends.

Figure 1. Modelling water transport in real RSAs.

(A) Representative RSA of a 21-day-old Arabidopsis plant grown in hydroponics. The excised root
system was spread out in a petri dish and scanned. For clarity, the primary root, the first order and
second order lateral roots are shown in blue, green and red, respectively. Scale bar: 10mm (B) Bi-
dimensional representation of the same digitized RSA. Note that the emergence angle of root
segments is arbitrarily set. Same color conventions as in A. Scale bar: 10mm (C) Schematic
representation of an elementary root segment of rank i consisting of a derivative microcircuit
containing both radial (k;) and axial (K;) hydraulic conductances. Each segment is connected with the
root bathing solution (exterior, at ¥, water potential) and basal and apical neighboring segments (at
Y; and Y;,; water potentials, respectively, except for the last segments). Combination of k; and W.-¥,,
or K; and W~V yield segment water uptake (j) and overall flow through the segment (J),
respectively. (D) Elementary root segments are inserted into a dynamical Multiscale Tree Graph
(MTG) builder of RSA to yield the HydroRoot model. The inset shows the specific case of a root

ramification.

Figure 2. Determination of axial and radial conductances using cut-and-flow experiments.

(A) Kinetic measurement of pressure-induced sap flow (J,) during a representative cut-and-flow
experiment. J, (black trace) was measured at constant pressure (magenta trace; P= 0.3 MPa). The
intermittent drops in pressure (P) correspond to the maneuvers for opening the chamber and partial
ablation of the root system. (B) Corresponding plot of J, as a function of the root length that was cut
from the primary root tip. (C) Profile of axial conductance (K) along the root axis as determined after
parameter adjustment in cut-and-flow experiments. Data from 10 individual Col-0 plants, each being
identified by a specific color. The figure shows (in magenta) the median K curve (solid line) and the
95% confidence interval (dashed lines). For reference, the lowess K profile and corresponding 95%
confidence interval, as determined using Hagen-Poiseuille law (See Supplemental Figure 1b), are
drawn in grey solid and dotted lines, respectively. (D) Mean values of radial conductance (k * SE, n
=10) as determined by model inversion, using Hagen-Poiseuille law or cut-and-flow experiments for

evaluation of K. The two values are statistically different (Student t test; P<0.01).

Figure 3. Organizing principles of Col-0 RSA.
(A) Profile of lateral formation along the parental root axis. The dots show the cumulated number of
lateral roots formed at the indicated distance from the root tip, in individual primary (black) and first

order lateral (grey) roots. (B) Length of lateral root as a function of distance to tip of parental root.
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We observed that the absolute lengths of first order lateral roots (i.e. carried by the primary root)
were very similar between plants of a same age, despite the variations in length shown by the
primary root. Thus, plotting lateral root length as a function of the relative distance to the tip of the
bearing axis provides a comprehensive description of lateral root length repartition. This
representation was conserved in second order lateral roots, whose length was referred to the
longest first order lateral. (A) and (B) show cumulated data from 13 individual primary roots (black)
and 9 first order lateral roots (grey). (C) Representative examples of simulated RSAs in (from left to
right) the 25 percentile, median, and 75 percentile of total root length. Same color code for the

primary root, the first order and second order lateral roots as in Figure 1.

Figure 4. Intercept number profiles in real and simulated RSAs.

(A) Total number of intercepted roots at the indicated distance from the root base. Continuous lines
correspond to experimental measurements of two real RSAs entirely digitized while dashed lines
correspond to discrete measurements of two other real RSAs. The grey area delineates the whole set
of intercept number curves derived from 9520 simulated RSAs. Data are presented in a limited range
of distances from tip (10-80 mm), to match the discrete experimental measurements. (B) Profiles of
first and second order intercepted lateral roots. Data from a RSA digitized from a real plant showing
that the total intercept number curve (orange, continuous) can be decomposed into three curves
representing the primary root (blue, dashed), and the first (green, dashed, one dot) and second
(magenta, dashed two dots) order lateral roots. (C) Relationship between total root length in 10
individual real plants (pink squares) and their close simulated RSAs (grey circles), screened by an
absolute normalized difference in the intercepts at 10, 20, 30, 45, 60 and 80mm from the tip. See

example in Supplemental Figure 3B.

Figure 5. Sensitivity analysis of pressure-induced sap flow to RSA parameters.

(A) Root surface-to-flow relationship. The figure shows pressure-induced flow simulations
(J/v(0.3MPa)) for 9520 RSAs harboring three distinct hydraulic configurations derived from cut-and-
flow experiments (i) low (blue): minimal experimental k (9.86 10® m.s®.MPa™) and all values of
median K profile reduced two-fold (ax=0.5) (ii) intermediate (brown), mean k value (32.76 10® m.s’
! MPa™) and median K profile (iii) high (green): maximal experimental k (71.43 10® m.s*.MPa™) and
all values of median K profile enhanced two-fold (ax=2). Jy(0.3MPa) and root surface measured in 20
real RSAs (Table 1, Figure 2D) are shown as black dots. (B) Primary root length-to-flow relationship in
9520 simulated RSAs harboring a mean k value (32.76 10° m.s*.MPa™) and median K profile. The

median response curve is shown as a solid orange line. (C) Dependency of Jy(0.3MPa) on average
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internode length. Same procedures and conventions as in (B). (D) Relationship between nude tip

length and Jy(0.3MPa). Same procedures and conventions as in (B).

Figure 6. Sensitivity analysis of pressure-induced sap flow to hydraulic parameters.

(A) Dual dependency of J,(0.3MPa) on radial (k) and axial conductance (K). The latter is expressed as
a multiplying factor (ax) applied to the median K profile. The figure shows Jy(0.3MPa) variations in a
representative RSA. (B) Dependency of J,(0.3MPa) on k in a set of 9520 RSAs, with fixed K (ax=1). The
median response curve is shown as a solid orange line. (C) Dependency of J,(0.3MPa) on axial
conductance (ax) in a same set of 9520 RSAs, with fixed k (32.76 10® m.s*.MPa™). (D) Effects of
varying axial conductance profiles (ax) on primary root axial flow (J) at the indicated distance from
root tip. The figure shows simulations for the same RSA as in A (solid lines) or an unbranched
(cylindric) root (dotted lines). Orange: ax=0.95; light blue: ax= 0.75; green: ax=0.5; magenta: ax=
0.25; blue: ax=0.05. All flow values are normalized with respect to the local flow observed in the
same root and same position at ax=1. (E) Heat map representation of local radial flows for three

levels of axial conductance (ax).

Figure 7. Root architecture and hydraulic phenotyping of esk1 mutants.

(A) Total number of intercepted roots at the indicated distance from root base in Col-0 (black, n= 6),
esk1.1 (green, n=7) and esk1.5 (blue, n=7). The figure shows, for each genotype, the mean curve and
the envelope delineated by the 95% confidence interval for the number of intercepts at every mm.
(B) Representative RSAs of Col-0, esk1.1 and esk1.5 plants. The primary root, the first order and
second order lateral roots are shown in blue, green and red, respectively. (C) Profile of axial
conductance (K) along the root axis as determined from cut-and-flow experiments in esk1.1 (green,
n=5) and esk1.5 (blue, n= 7). The figure shows, for each genotype, measurements on individual
plants and the corresponding median curve. The median curve of Col-0 (grey) is redrawn from Figure

2C. (D) Corresponding radial conductivity values (k £ SE) (Col-0: n = 10; esk1-1 : n=5; esk1.5:n=7).
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