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malaria prevalence. These variables account for two-
thirds of the spatial variability of malaria prevalence 
observed in Houet province. The intensity and direc-
tion of the relationship between malaria prevalence 
and geographical factors vary according to the vari-
able. Hence, only vegetation density is positively cor-
related with malaria prevalence. Average temperature, 
for soil clay content, annual rainfall and for distance 
to the nearest water body are negatively correlated 
with the disease prevalence. These results show that 
even in an endemic area, malaria prevalence has sig-
nificant spatial variation. The results could contribute 
to the choice of intervention sites, as this choice is 
crucial for reducing the malaria burden.

Keywords  Malaria · Burkina Faso · Ordinary least 
squares (OLS) · Vegetation · Rainfall · Temperature · 
Distance to water · Soil permeability

Abstract  Malaria is a permanent threat to health in 
western Burkina Faso. Research has shown that geo-
graphical variables contribute to the spatial distribu-
tion in its transmission. The objective of this study is 
to assess the relationship between malaria prevalence 
and potential explanatory geographical variables in 
the Houet province in Burkina Faso. Statistics on 
malaria prevalence registered by health centres in the 
Houet province in 2017 and potential geographical 
variables identified through a literature review were 
collected. An Ordinary Least Squares (OLS) regres-
sion was used to identify key geographical variables 
and to measure their association with malaria while 
the Getis Ord Gi* index was used to locate malaria 
hotspots. The results showed that average annual tem-
perature, vegetation density, percentage of clay in the 
soil, total annual rainfall and distance to the nearest 
waterbody are the main variables associated with 
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Abbreviations 
ANAM	� Agence Nationale de la Météorologie 

(National Meteorological Agency)
BNDT	� Base Nationale des Données 

Topographique (National Topographic 
Data Base)

ER	� Exploratory Regression
GWR​	� Geographically Weighted Regression
IGB	� Institut Géographique du Burkina (Geo-

graphical Institute of Burkina Faso)
IGN	� Institut Géographique National (National 

Geographical Institute)
INSD	� Institut National de la Statistique de la 

Démographie (National Institute of Statis-
tics and Demography)

IPTp-SP	� Intermittent preventive treat-
ment of malaria in pregnancy using 
sulfadoxine-pyrimethamine

ISRIC	� International Soil Reference and Informa-
tion Centre

ITN	� Insecticide-Treated bed Net
NBDOT	� Nouvelle Base de Données d’Ocuppation 

des Terres (New Land Use Database)
NDV I	� Normalized Difference Vegetation Index
OLS	� Ordinary least squares
WHO	� World Health Organisation
SCP	� Seasonal malaria chemoprevention

Background

Malaria is threatening 40% of the world’s popula-
tion (WHO, 2015). The number of malaria cases was 
estimated to 241 million in 2020. Sub-Saharan Africa 
is a large endemic area, with most of the worldwide 
cases (95%) occurring in Africa (WHO, 2021) due 
to favourable natural conditions and poverty (WHO, 
2015). Taking into account the new methodology for 
calculating the deaths toll in children under five being 
caused by malaria (Perin et al., 2022), the number of 
deaths due to malaria has been estimated at 627 000 
in 2020. The WHO African Region continues to bear 
the largest burden with 96% of all malaria deaths in 
2020 (WHO, 2021).

Burkina Faso is one of the six countries with 
the highest number of malaria cases and deaths in 
the world (WHO, 2021). Statistics from 2020 show 
that Burkina Faso has registered 12,410,000 cases 
of malaria and 21 100 deaths from malaria (WHO, 

2021). The country is subdivided into three (3) 
malaria transmission zones: a short seasonal trans-
mission zone in the north, a long seasonal transmis-
sion zone in the centre and a permanent transmis-
sion zone in the south.

The province of Houet is located within the per-
manent transmission zone (IGN France Interna-
tional & IGB, 2015; Mouchet et  al., 1993; Zon & 
Barrère, 2002). The average prevalence of malaria 
was 47.39% or 715,920 cases in the Houet province 
for a population of 1,510,638 in 2020 (Ministère 
de la Santé, 2020; Ministère de l’Economie des 
Finances et du Plan, 2022). These malaria cases 
are distributed as follows: 692,826 cases of simple 
malaria and 23,094 cases of severe malaria. On the 
same period, the country registered 250 death due 
to severe malaria (Ministère de la Santé, 2020).

Like in most malaria-endemic countries, malaria 
control is carried out in Burkina Faso through vec-
tor control and chemoprophylaxis. Thus, since 
2010, national campaigns have been carried out by 
the Health ministry to distribute massively mos-
quito net to the population. To date, the insecticide-
treated bed net (ITN) use rate is about 76% on the 
country scale compared to 80% in the Houet prov-
ince (INSD, 2018). ITN distribution campaigns are 
supported by indoor residual spraying (Ministère 
de la santé, 2016). Chemoprophylaxis is conducted 
through seasonal malaria chemoprevention (SCP) 
for children from three (3) to fifty-nine (59) months 
of age and Intermittent preventive malaria treat-
ment using sulfadoxine-pyrimethamine (IPTp-SP) 
for pregnant women (Ministère de la santé, 2016). 
More than 80% of the SCP targets were given treat-
ment (Ministère de la santé, 2016) and at least 57% 
of women in the country as well as in the Houet 
province receive three doses of IPTp-SP (INSD, 
2018). In addition, 82,5% of malaria cases were 
treated with ACT, 3,3% with artesunate or arthem-
eter injectable. At the provincial scale, these statis-
tics reach 94,0% and 4,9% (Ministère de la Santé, 
2020).

Despite these control measures, malaria remains 
the main cause of medical consultation, hospitaliza-
tion, and death in Burkina Faso. In-depth studies are 
required to improve the understanding of the persis-
tence of the disease. The results of such studies can 
guide field intervention programs and improve their 
efficiency.
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Several studies have shown the role of geograph-
ical factors (climate, vegetation, soil, surface water, 
etc.) in malaria development and transmission. 
Rainfall and temperature are the two main param-
eters most associated with the disease (Kakmeni 
et  al., 2018; MARA/ARMA, 1999) because they 
directly influence the vector’s reproductive cycle 
(Carnevale & Robert, 2009) and set the pace of the 
mosquito and plasmodium development cycle (Adi-
gun et al., 2015; Nkurunziza et al., 2010; Samadou-
lougou et al., 2014). However, the role of other fac-
tors is not negligible. Vegetation can be used as a 
resting and protective site against adverse weather 
conditions, or as a barrier to adult mosquito move-
ment (Adigun et al., 2015; Minale & Alemu, 2018; 
Rageau & Adam, 1953; Samadoulougou et  al., 
2014). Topography and nature of the soil, through 
the retention time of water, can influence larval for-
mation pools in puddles that serve as breeding sites 
for mosquitoes (Carnevale, & Robert, 2009; Dem-
bélé & Somé, 1991; Hasyim et al., 2018; Kazembe 
et  al., 2006). These breeding sites add to the local 
malaria transmission risk because mosquitoes that 
emerge from them develop and breed nearby (Epopa 
et  al., 2019). The probability of malaria transmis-
sion is a function of distance from larval habitats 
(Kleinschmidt et  al., 2001; Samadoulougou et  al., 
2014; Tuyishimire et al., 2016).

Geographical factors appear to be amongst the 
main factors that modulate the likelihood of malaria 
transmission. Their relationship with the pathology 
can be multidirectional through impacts on the vec-
tor and the parasite, hence the need to understand, 
for any ecosystem, how these relationships works to 
adapt control policies. Models which include these 
variables while measuring the intensity of their rela-
tionship with the disease are necessary for disease 
surveillance (WHO, 2015).

The province of Houet is located in the western 
Burkina Faso, most watered part of the country with 
a relatively dense hydrographic network and vegeta-
tion cover. Despite these quasi homogeneous condi-
tions, the observed prevalence is quite heterogeneous. 
Recent research has shown that malaria prevalence 
can be heterogeneous even on a fine scale (Ndiaye 
et al., 2020). The objective of this study is to model 
the relationship between geographical variables 
and malaria prevalence in the Houet province. The 
aim is to determine the direction and strength of the 

relationship between disease and geographical vari-
ables within the Houet province.

Methods

Study area

The study area is the Houet province, located in the 
Hauts-Bassins region of western Burkina Faso. It 
includes the urban municipality of Bobo-Dioulasso, 
the country’s second largest city, 12 rural communes, 
207 villages, and covers an area of 11,582 km2 (IGB, 
2015) (Fig.  1). The choice of the province as the 
study area is justified by its location in the continuous 
transmission zone. This allows a better assesment of 
the intensity of the relationship between the disease 
and the geographical variables. The results obtained 
could also be extrapolated to areas with similar physi-
cal characteristics.

The Houet province is characterized by a tropical 
climate marked by two main seasons: a wet season 
which lasts from May to October and a dry season 
which extends from November to April. The average 
annual temperatures are between 25  °C and 30  °C. 
The region benefits from an average annual rainfall 
ranging between 800 and 1100  mm but this is not 
evenly distributed geographically (Malo, 2017). In this 
environment, the vegetation is mainly composed of 
savannah, which covers 31.19% of the total area of the 
province. This vegetation is supported by six classes 
of soil: organic soils with sesquioxide and rapid min-
eralization, Mull soils, hydromorphic soils, fersiallitic 
soil, raw mineral soils and vertisols (Malo, 2017).

Houet province is covered by the Health Districts 
of Dafra, Dô, Lena, Dandé and Karangasso Vigué 
(Ministère de la santé, 2018). These districts have 104 
Health and Social Promotion Centres, two standard 
medical centres, two medical centres with surgical 
units and one university hospital.

Study population

It is estimated that the province had a population of 
1,510,638 in 2020. It is distributed in the six health 
districts of the province as follows 36.3% in the Do 
health district, 23.1% in the Dafra health district, 
18.4% in the Dandé health district, 10.0% in the 
N’Dorola district, 7.1% in the Karangasso Vigué 
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district and 5.1% in the Léna health district (Ministère 
de l’Economie des Finances et du Plan, 2022). The 
populations are still disaggregated in the health care 
areas (HCA) that are the observation units in this 
study. Lack of administrative boundaries separating 
the HCA does not allow accurate population estimate.

The literature on modelling malaria using geo-
graphical and environmental variables allows the 
selection of potential variables associated with 
malaria transmission: minimum temperature, maxi-
mum temperature, average temperature, total annual 
rainfall, vegetation density, clay concentration in the 
soil, elevation, distance from the nearest water body, 
distance from the nearest health facility, population 
density (Hasyim et  al., 2018; Kleinschmidt et  al., 
2000; Kleinschmidt et  al., 2001; Nkurunziza et  al., 
2010; Rouamba et  al., 2019; Samadoulougou et  al., 
2014; Tuyishimire et al., 2016). In this present study, 

waterbody is composed of the lakes, ponds and riv-
ers listed in the BNDT and NBDOT 2012. The char-
acteristics of the selected variables are presented in 
Table 1.

Data collection

The data on malaria were collected from the Regional 
Health Direction of the Hauts-Bassins. They were 
collected during the year 2017, from January to 
December from the health facilities: CSPS, CM, 
MCA and CHU. These data assess number of cases 
for both simple and severe malaria, the number of 
deaths, information on awareness sessions as well as 
the number of people reached. Malaria cases were 
confirmed by rapid diagnostic test (RDT) or thick 
blood smear and registered in the consultation regis-
try (Ministère de la Santé, 2020).

Fig. 1   Location of the province of Houet. Source: Base Nationale des Données Topographique (BNDT) 2012
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Data pre‑processing

Due to the variety of sources, formats and resolutions, 
the data have been pre-processed. This treatment 
allowed us to harmonize the data format in order to 
prepare the modelling. Thus, Thiessen polygons were 
plotted to delineate the HCA of each health care 
facility.

Then, the contours of the Thiessen polygons define 
the area closest to each health centre considering 
all other surrounding health centres. This technique 
assumes that patients use the nearest health centre 
despite the results of studies which have shown that 
the use of care follows other spatial logics (Cisse, 
2007). This choice is justified by the non-availability 
of a layer of HCA boundaries. Then, the total num-
ber of malaria cases as well as the total population of 
villages within the HCA were reported to the health 
centre layer to calculate malaria prevalence. Finally, 
potential explanatory variables were prepared. Thus, 
the land-use units contained in the New Land Use 
Database (NBDOT) were reclassified according to 
the vegetation density using a visual interpretation of 
the photographs contained in the database user guide. 
The classification was done according to a score 
assigned to each vegetation class and the results were 
rasterized (Table 2).

Using the Near (Analysis) tool in ArcGIS 10.4®, 
a distance matrix was generated between each village 
in the study area and the nearest waterbodies. This 
matrix was joined to the health facility layer and the 
water point to generate a map of distances (in meters) 

to health centres. The same operation was performed 
on the localities and health facilities layer to gener-
ate a map of distances to the nearest health facility. 
For temperature, elevation and soil clay content, the 
global scale rasters downloaded were reprojected to 
WGS84_UTM_Zone_30N. Then, the Houet prov-
ince zone was extracted to produce the correspond-
ing maps. Due to its deterministic nature, total annual 
precipitation for each station was calculated and 
interpolated by the kriging method (Gunarathna et al., 
2016) to produce the map.

The rasters of the generated explanatory variables 
were projected to the WGS84_UTM_Zone_30N 
coordinate system and resampled at a spatial resolu-
tion of 100 m and their average values were plotted in 
the health facilities layer. The average values of each 
variable in the health facility layer were calculated 
using the Euclidian Allocation tool and the Extract 
Multiple Values (Spatial Analyst) tool was used to 
report the previously calculated mean values in the 
health facility layer. Figure  2 summarizes the data 
preprocessing steps.

Data processing and modelling framework

The modelling process consisted in two steps: the 
first one is the selection of potential explanatory 
variables and second one is the determination of the 
direction and strength of the relationship between 
malaria prevalence and the identified explanatory 
variables. An Exploratory Regression (ER) with 
ArcGIS Exploratory Regression (Spatial Statistics 

Table 2   Level of 
vegetation density in 
land use classes from the 
NBDOT

NBDOT land use unit Vegetation density Score

Bare rock Low 1
Bare soil (eroded, bare, cuirass, etc.) dune and sand
Water surface
Residential area
Wet area Moderately Low 2
Irrigated crop
Rainfed culture and agroforestry territory
Tree savannah Moderately high 3
Shrubby and grassy savannah
Clear forest High 4
Gallery forest
Plantation forest
Orchard
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tools) was performed on the potential explanatory 
variables of vegetation density, annual precipita-
tion, average annual temperature, percentage of 
clay in soils, elevation, distance to the nearest water 
body, population density, and distance to the near-
est health centre. The objectives of this step were, 
firstly, to identify the variables that are statistically 
correlated with malaria prevalence (p-value < 0.05), 
and secondly, to find the model with the least vari-
ables and the highest coefficient of determination 
(R2). Note that the ArcGIS® ER tool constructs 
Ordinary Least Squares (OLS) regression models 
using all possible combinations of potential explan-
atory variables and evaluates which models pass 
the necessary controls (Eq. 1). Linear least squares 
regression formula

y: the dependent variable
β: regression coefficient.
x: explanatory variable.
ε: residual.

(1)y = �0 + �1X1 + �2X2 + �3X3 + ⋅ ⋅ ⋅ + �nXn + �

The ER gives two types of output. The first is 
a table presenting the correlation coefficients and 
the p-values allowing the identification of the vari-
ables statically associated with malaria and the 
second is a table giving the general diagnosis of 
the constructed model. The latter gives the values 
of the Multiple R-Squared [d], Adjusted R-Squared 
[d], Joint F-Statistic [e], Joint Wald Statistic [e], 
Koenker (BP) Statistic [f] et Jarque–Bera Statistic 
[g] to judge the performance of the model under 
construction.

Since the ER results do not give the specific con-
tribution of each of the selected variables, an OLS 
regression (using ArcGIS Ordinary Least Squares 
tool) was as the second step of the modelling pro-
cess. OLS regression is used to measure and under-
stand the relationships between two or more entity 
attributes at a specific location, and also to predict 
where another event is likely to occur (https://​pro.​
arcgis.​com/​fr/​pro-​app/​tool-​refer​ence/​spati​al-​stati​
stics/​ordin​ary-​least-​squar​es.​htm).

Fig. 2   Modelling process. This figure shows the data preprocessing process, the selection of key variables and the modelling pro-
cess. Source: A. A. MILLOGO, 2018

https://pro.arcgis.com/fr/pro-app/tool-reference/spatial-statistics/ordinary-least-squares.htm
https://pro.arcgis.com/fr/pro-app/tool-reference/spatial-statistics/ordinary-least-squares.htm
https://pro.arcgis.com/fr/pro-app/tool-reference/spatial-statistics/ordinary-least-squares.htm
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Validation of the results

The performance of the selected model was evalu-
ated through several parameters generated either 
by the ER analysis or by the OLS analysis. A pass-
ing model is composed of variables that are stati-
cally associated with malaria prevalence (p < 0.05) 
with Variance Inflation Factor (VIF) values (> 7.5), 
meaning that there is no collinearity between the 
selected variables. The model with R2 and the high-
est Akaike Information Criterion (AICc) is the one 
that best fits the data. The joint F[e], Wald and 
Koenker (BP) statistics are used to determine the 
overall significance of the model. When this Wald 
and Koenker (BP) test is statistically significant 
(p < 0.01), the modelled relationships are not con-
sistent (either because of non-stationarity or heter-
oskedasticity). Finally, the Jarque–Bera statistic [g] 
is used to evaluate the normality of the residuals. 
When this test is statistically significant (p < 0.05), 
the model predictions are biased. The Moran auto-
correlation test (Moran index) was performed on 
the residuals to check the Jarque–Bera statistic [g]. 
In the interpretation of the table of correlations 
between the dependent variable and the explanatory 
variables, the coefficient [a] represents the inten-
sity and type of relationship (positive or negative) 
that the variable has with the dependent variable. 
The probability fields [b] and Robust_Pr [b] fields 
present the p-values of the relationship between the 
two types of variables. When the value of the Prob-
ability [b] field is not significant and that of Robust_
Pr [b] is significant, the variable is considered to be 
statistically correlated with the dependent variable. 
(ESRI, https://​deskt​op.​arcgis.​com/​en/​arcmap/​10.5/​
tools/​spati​al-​stati​stics-​toolb​ox/​how-​ols-​regre​ssion-​
works.​htm). The steps in the process are presented 
in Fig.  2. Finally, an analysis of hotspots and cold 
spots using Getis -Ord Gi* tools on the predicted 
prevalence values were carried out. A hotspot is an 
area with a strong positive correlation between the 
explanatory variable and malaria prevalence, while 
a cold spot is an area with a strong negative correla-
tion between the explanatory variable and malaria 
prevalence. The Gi* statistic makes it possible to 
identify hotspots when Gi* is positive and statisti-
cally significant (< 0.05) and cold spots when it is 
negative and statistically significant (< 0.05).

Results

Mapping the prevalence of malaria in Houet province

The province of Houet recorded 491,098 cases 
of malaria in 2017 for an estimated population of 
1,386,433 people. This corresponds to an average 
prevalence of 35.42%.

Morans Index shows and Index of −  0.005; a Z 
score of 0.114 and a p-value of 0.9 showing that apart 
from the extreme values observed in the city of Bobo-
Dioulasso, the HCA with high prevalence are ran-
domly distributed throughout the province (Fig. 3).

Selection of key variables

According to the exploratory least squares regression, 
the best performing model is composed of vegetation 
height, total annual precipitation, average annual tem-
perature, percentage of clay in the soil and distance 
to the nearest water body. These variables are statis-
tically associated with malaria prevalence (p < 0.05). 
The diagnosis of exploratory least squares regression 
is presented in Table 3.

The Adjusted R2 value shows that the variables 
account for 63% of malaria prevalence in the study 
area. The joint F statistic [e] and the joint Wald statis-
tic [e] (p-value < 0.05) show that this is a significant 
model. According to the probability value (0.32) of 
the Koenker (BP) Statistic [f], the explanatory vari-
ables of the model have a consistent relationship with 
the dependent variable both in geographical space 
(stationarity) and in data space (heteroskedasticity). 
The Jarque–Bera statistics is also not statistically 
significant (0.38), which proves that all the variables 
are related to the prevalence of malaria in the Houet 
province and that no key variable is missing from 
the model. This statistic also attests that the model’s 
residuals are not spatially autocorrelated. It was con-
firmed by the Moran’s autocorrelation test (Moran’s 
index) carried out on standard errors (StdError). This 
is illustrated in Fig. 4, showing a Z score of 0.98 for 
a p-value of 0.33, proof that there is no spatial aggre-
gation. If the almost correlation between the selected 
variables and malaria prevalence is significant, it is 
important to understand the intensity of the associa-
tion and the location of areas of high correlation with 
malaria prevalence.

https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-statistics-toolbox/how-ols-regression-works.htm
https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-statistics-toolbox/how-ols-regression-works.htm
https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-statistics-toolbox/how-ols-regression-works.htm
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Assessing the contribution of each key variable

The least squares regression results showed that the 
intensity and direction of the relationships vary from 
one variable to another. The correlation coefficients 
for the variables with a significant spatial correlation 
with malaria prevalence are presented in Table 4.

Vegetation density and average annual temperature 
are the variables with the highest correlation coeffi-
cients, indicating that these variables explain a large 
part of the variability of malaria prevalence in the 
province. Furthermore, only vegetation density shows 
a relatively strong positive spatial correlation with 
malaria prevalence, while all other variables have 

Fig. 3   Distribution of the prevalence of malaria in each of the health areas. Source: Ministère de la santé Burkina Faso 2017; Base 
Nationale des données Topographique (BNDT) 2012 of Institut Géographique de Burkina (IGB)

Table 3   Diagnosis of 
exploratory least squares 
regression

Number of Observations: 97 Akaike’s Information Criterion (AICc) [d]: 273.40
Multiple R-Squared [d]: 0,64 Adjusted R-Squared [d]: 0.62
Joint F-Statistic [e]: 32,82 Prob (> F), (5,91) degrees of freedom: 0.00*
Joint Wald Statistic [e]: 125,22 Prob (> chi-squared), (5) degrees of freedom: 0.00*
Koenker (BP) Statistic [f]: 5,84 Prob (> chi-squared), (5) degrees of freedom: 0.32
Jarque–Bera Statistic [g]: 2,06 Prob (> chi-squared), (2) degrees of freedom: 0.36
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a negative relationship. Using the set of correlation 
coefficients, the malaria prevalence equation has been 
established (Eq. 2) Prevalence equation.

(2)

Malaria prevalence (%) =67.86 + 1.90 ∗ Vegetation density (score)

− 1.89 ∗ Temperature (◦C) − 0.01 ∗ Rainfall (mm)

− 0.25 ∗ Soil clay content (%)

− 0.01 ∗ Distance to the nearest waterbody (m) + �

ε represent the residual of the model. It summarises 
the remaining 37% of the information that is not taken 
into account in the linear equation established.

Fig. 4   Histograms of 
standardised residuals. 
Source: A. A. MILLOGO. 
2018

Table 4   Correlation of explanatory variables with malaria prevalence

Source: A. A. MILLOGO. 2018

Variable Coefficient [a] StdError t-Statistic Probability [b] Robuste_SE Robust_t Robust_Pr [b] VIF [c]

Intercept 67.86 17.53 3.87 0,00* 16.30 4.16 0.00* –
Vegetation 1.90 0.17 11.06 0,00* 0.18 10.61 0.00* 1.99
Mean annual temperature  − 1.89 0.50  − 3.76 0,00* 0.48  − 3.92 0.00* 2.20
Soil clay content  − 0.25 0.09  − 2.73 0,01* 0.08  − 3.18 0.00* 1.39
Total annual rainfall  − 0.01 0.00  − 3.58 0,00* 0.00  − 3.76 0.00* 2.94
Distance to the nearest 

waterbody
0.00 0.00  − 1.92 0.06 0.00  − 2.29 0.02* 1.10
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The association between malaria and explanatory 
variables.

Concerning areas of high correlation, it is notice-
able that the intensity and their distribution also vary 
from one variable to another (Fig. 5).

The average temperature across the year is 
27.61  °C (26.0–28.2  °C). These high temperatures 
are favourable for both the malaria vector and the 
malaria parasite (Carnevale, & Robert, 2009). The 
temperature hotspots are located in a sector that 
extends from Bobo-Dioulasso (in the centre) to the 
west of the province and from Bobo-Dioulasso to the 
south. Another hotspot zone can be identified in the 
north towards the Malian border. Moreover, a cold 
spot is located in the north and northeastern part of 
the province, which shows that the two variables 
evolve in divergent directions. This is the area where 

temperature has less influence on malaria transmis-
sion. The average annual total rainfall is 971  mm 
(874–1030  mm). The spatial distribution of rainfall 
shows a gradient, with the south being relatively wet-
ter than the north. Thus, rainfall has a greater influ-
ence on the transmission of malaria in the south of 
the city of Bobo-Dioulasso than in the north. The 
average distance from localities to water bodies is 
651.58 m (271.8–3579.5 m). This value indicates that 
the populations are close to water bodies, which are 
potential mosquito breeding sites. The only hotspot 
is identified at the Malian border. No significant rela-
tionship is observable in the rest of the provincial ter-
ritory. The Malian border is in the extreme north of 
the province. The average vegetation density score is 
6.7 (5.6–9). These values indicate a certain density of 
vegetation in this part of the country that is relatively 

Fig. 5   Getis -Ord Gi* carried out with the predicted prevalence of malaria according to the relationship between each variable and 
malaria prevalence. Source: IGB 2012, ISRIC 2015, ANAM 2017, WorldClim 2017 and Ministère de la santé 2017
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well-watered. The major hotspots are concentrated 
around the city of Bobo-Dioulasso. Cold spots can 
be observed in the north-east, north and west of the 
province. Around Bobo-Dioulasso, the relationship is 
due to the low density of vegetation cover. The aver-
age clay content of the soil is 60.51% (57.8–63.7%). 
A high clay content confers low permeability, favor-
ing mosquito breeding in stagnant water. Hotspots at 
this level can be observed where the clay contents are 
the highest, i.e. to the west of Bobo-Dioulasso and to 
the north. In contrast, cold spots are observed to the 
east and north, towards the Malian border. They can 
be overlaid on the parts of the province with low clay 
content, which are therefore more permeable.

Discussion

This study identified the geographical variables corre-
lated with malaria transmission in the Houet province 
and determined their relationships with the disease 
prevalence by using ordinary least squares (OLS) 
regression. It reveals that vegetation density, average 
annual temperature, average annual rainfall, soil clay 
content and distance to nearest standing water are 
key variables explaining the transmission of malaria 
in the Houet province. This method was used in Mali 
in the Malaria Atlas for Africa (MARA/ARMA) pro-
ject with an R2 of 0.73 (Kleinschmidt et al., 2000), in 
Kenya with an R2 of 0.81 (Noor et al., 2009) and in 
Burkina Faso to model malaria risk in children under 
five years old with an R2 of 0.77 (Samadoulougou 
et  al., 2014). An author from Indonesia used Geo-
graphically Weighted Regression (GWR) to achieve 
an R2 of 0.69 (Hasyim et al., 2018).

The western part of Burkina Faso has higher rain-
fall than the rest of the country. Its environmental 
parameters offer optimal conditions for the devel-
opment and persistence of malaria. In this area, the 
denser the vegetation, the lower the prevalence of 
malaria. Dense and high vegetation can prevent the 
spread of Anopheles by providing them with a kind of 
screen on which they will land. This explains why an 
increase in mosquito density is commonly observed 
in newly cleared areas (Amat-Roze, 2002; Carnevale 
& Robert, 2009). However, studies using the Normal-
ized Difference Vegetation Index (NDVI) in Burkina 
Faso, Kenya and Bangladesh concluded that malaria 
prevalence was associated with high Normalized 

Difference Vegetation Indices (NDVI) (Noor et  al., 
2009; Reid et al., 2010; Samadoulougou et al., 2014). 
In this study, temperature is negatively associated 
with malaria prevalence. The average temperature in 
the Houet province is 27.61 °C. Experimental studies 
have shown that the prevalence of infected mosqui-
toes was 16%, 8% and 6% at 27 °C, 30 °C and 32 °C 
respectively (Okech et al., 2004). Mosquito infection 
rates decrease with increasing temperature (Carnevale 
& Robert, 2009) and field data have confirmed that 
the disease is negatively associated with temperature 
in West Africa (Arab et  al., 2014) and East Africa 
(Nkurunziza et  al., 2010). Rainfall is favourable to 
malaria vectors as it feeds ponds and puddles used by 
mosquitoes to breed. However, beyond certain quanti-
ties of rainfall, the larvae are washed away by running 
water, which reduces the chances of disease transmis-
sion. The peak of transmission is observed in October 
when the rainfall decreases, while the rainiest month 
is July (Okech et  al., 2007). Thus, in Burkina Faso 
and Burundi, malaria is positively associated with 
rainfall (Nkurunziza et  al., 2010; Rouamba et  al., 
2019). In the Houet province, malaria prevalence and 
distance from water bodies are negatively correlated. 
Water bodies are breeding sites and studies have 
shown that mosquitoes do not move away from the 
breeding site when they can feed (Epopa et al., 2017). 
Similar observations have been made in Indonesia 
(Hasyim et al., 2018), where the distance from rivers 
and lakes was correlated with malaria prevalence, and 
in Rwanda, where malaria infection increases with 
proximity to irrigated farmland (Tuyishimire et  al., 
2016).

The specificity of this study lies in three key 
points. Firstly, this study highlighted the contribu-
tion of soil to malaria prevalence. This variable 
influences vector ecology by extending or shorten-
ing the lifespan of breeding sites through infiltration 
rate. This variable has been identified as a major risk 
factor in the Fayoum governorate in Egypt (Has-
san et  al., 2003) and as an environmental determi-
nant of malaria in Benin (Pierrat, 2010). The nature 
of the substrate of the breeding sites (clay or sandy 
substrates or lake water without substrate) influences 
the vectorial competency of An. gambiae in relation 
to P. falciparum (Okech et  al., 2007). These results 
are confirmed by preliminary studies (Amat-Roze, 
2002; Rageau & Adam, 1953). Secondly, the study 
has identified malaria hotspots in the Houet province. 
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These results are consistent with recent studies that 
have indicated the importance of geographical factors 
in identifying malaria transmission hotspots in Gam-
bia (Ndiaye et al., 2020). It is particularly important 
as studies are underway in the same province to find 
an effective method to control residual malaria trans-
mission (Niang et al., 2021). Thirdly, this study used 
prevalence data from the general population while 
most other studies are based on children under five 
years of age (Samadoulougou et al., 2014) or 10 years 
of age (Kazembe et al., 2006). It also takes adults into 
account, a group considered relatively less vulnerable 
to malaria. Despite their small proportion in the sta-
tistics of consultations and deaths (> 5%) (Ministère 
de la santé, 2018), the impact of their absence due to 
illness impacts on their household and the wider com-
munity in terms of decreased working time and finan-
cial loss.

Despite its specificities, this study had some limi-
tations. Firstly, unlike previous studies in Burkina 
Faso and Tanzania (Kienberger & Hagenlocher, 2014; 
Msugupakulya et  al., 2020; Rouamba et  al., 2019; 
Samadoulougou et al., 2014), it did not integrate data 
on the socio-economic characteristics of populations 
despite malaria prevalence being a complex phenom-
enon that is determined by both socio-economic and 
physical environmental variables. This is due to the 
difficulty of collecting these data in all of the vil-
lages within the study area. Moreover, the relevance 
of using this type of data on a large scale has been 
questioned because of its variability within a single 
locality (Pierrat, 2010). This question is still relevant 
in the current context given the variability of these 
types of data. Secondly, concerning the data that were 
collected, the temperature data used in this study is 
based on a period covering the years 1970–2000, as 
the province is covered by a single synoptic weather 
station that would not allow any spatial variation to 
be observed. Spatial modelling based on 30 years of 
data (Fick & Hijmans, 2017) seems to be a reliable 
source to overcome this difficulty. Similarly, we used 
projected population data up to 2017 because the 
available data come from the 2006 population and 
housing census. Due to political instability (insurrec-
tion in October 2014 and coup d’état in September 
2015), the country was unable to update the demo-
graphic data in 2016. Thirdly, the average values of 
malaria prevalence and independent variables were 
reported to the CSPS, which is the centroid of the 

polygons of the health area. This procedure leads to 
a significant loss of information and does not allow 
an adequate appreciation of the local variability of the 
disease, health seeking migration, and local associa-
tions with the independent variables. However, these 
limitations are perspectives for further research.

Conclusion

This study confirmed the relevance and intensity 
of the relationship between several key geographi-
cal variables and malaria prevalence. The least 
squares regression showed a strong positive associa-
tion between vegetation density and malaria preva-
lence, and a strong negative association between 
both temperature and soil clay content with malaria 
prevalence. Rainfall, population density and dis-
tance from water bodies play a secondary role. The 
correlated variables explain two-thirds of the vari-
ability of malaria in the province. Further analysis 
should investigate the contribution of socio-economic 
variables.
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