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Abstract: Partial least square regression (PLSR) is a reference statistical model in chemometrics. In 

agronomy, it is used to predict components (response variables y) of chemical composition of veg-

etal materials from spectral near infrared (NIR) data X collected from spectrometers. PLSR reduces 

the dimension of the spectral data X by defining vectors that are then used as latent variables (LVs) 

in a multiple linear model. One difficulty is to determine the relevant dimensionality (number of 

LVs) for the given data. This step can be very time consuming when many datasets have to be pro-

cessed and/or the datasets are frequently updated. The paper focuses on an alternative, bypassing 

the determination of the PLSR dimensionality and allowing for automatizing the predictions. The 

strategy uses ensemble learning methods, such as averaging or stacking the predictions of a set of 

PLSR models with different dimensionalities. The paper presents various methods of PLSR averag-

ing and stacking and compares their performances to the usual PLSR on six real datasets on differ-

ent types of forages. The main finding of the study was the overall superiority of the averaging 

methods compared to the usual PLSR. We therefore believe that such methods can be recommended 

to analyze NIR data on forages. 
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1. Introduction 

Near-infrared spectroscopy (NIRS) is a fast and a nondestructive analytical method 

based on the physical and the chemical properties of organic products. It is used in many 

agronomic contexts, particularly to evaluate the nutritive quality of forages. Basically, 

spectral data X (matrix of n observations  p wavelengths) are collected on samples of the 

material to study (e.g., forages) using a spectrometer, and targeted response variables Y = 

{y1, …, yk} (k vectors of n observations, e.g., chemical compositions) are measured in a 

laboratory. For each response variable, a regression model is built between the training 

data X and y and then used to predict the response variable for new collected spectra. 

NIRS generate highly correlated variables, then ill-conditioned matrices X. Therefore, for 

predictions, the usual multiple linear regression model (MLR) is generally not applicable. 
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Partial least squares regression (PLSR) [1–3] is a regularization method very efficient for 

NIRS data in particular in agronomic contexts [4–6]. The general principle is to reduce the 

dimension of X to a limited number a << p of orthogonal n  1 vectors, referred to as scores, 

computed to maximize their squared covariance with y. The a scores are finally used as 

regressor latent variables (LVs) in an MLR. 

The determination of the dimensionality a (number of LVs) relevant for the available 

data is an important step in PLSR modeling. Many strategies have been addressed in the 

literature for guiding such a determination [7–9]. All of these strategies often require de-

cisions based on expertise. In general, some prediction error rates measuring the model 

performance are estimated for the different dimensionalities a = 0, 1, 2, etc., LVs (for in-

stance by cross-validation; CV) and the dimensionality showing the minimum error rate 

are selected. For data collected on heterogeneous biological material such as forages, how-

ever, it is frequent that the error curve does not have a “U-shape” with a clear minimum, 

in particular when the sample size of the training dataset becomes large (n > 500 observa-

tions). In such a context, the determination of a can become very time consuming in prac-

tice, in particular when many datasets (different types of forages and chemical composi-

tions) have to be processed and/or when the datasets are periodically updated with new 

reference observations (spectra plus laboratory chemical composition). This last case im-

plies many times re-running the overall process of determining relevant dimensionalities 

a. 

An alternative strategy is to automatize the PLSR predictions, bypassing the deter-

mination of a. An approach for such automatization, which is presented in this paper, uses 

ensemble learning methods that average or “stack” the predictions of a set of PLSR models 

with different dimensionalities a. Some methods of model averaging have already been 

implemented for PLSR in the past [10,11]. Nevertheless, their performances have not been 

explored on real datasets of forages. Forage datasets generally contain complex intrinsic 

material (mixing of stems, leaves, different stages of development, and geographical ar-

eas, etc.) and therefore information. 

The objective of this paper is to present different averaging and stacking methods, 

and to compare their performances for a large panel of forage datasets to the usual PLSR 

(i.e., where an optimal number a of LVs is determined from the examination of an estimate 

of the prediction error rate). Six spectral datasets X, each collected on a different type of 

forage, and nine response variables y (each representing a component of the chemical 

composition) were considered. 

The methods of averaging and stacking evaluated in this paper were implemented 

with the same a priori (i.e., without any preliminary model optimization) for all the da-

tasets {X, y}. This corresponds to an “omnibus” strategy (i.e., a same model and parame-

terization are applied everywhere), well suited and easy to apply when many datasets of 

spectra and response variables have to be processed. 

2. Theory 

2.1. Notations 

Vectors and matrices are noted in bold. The paper considers univariate response 

models. Assume that y is a vector containing n training observations of one given response 

variable and x a vector of p independent predictors for one given observation. The training 

observation i is noted (xi, yi) where xi’ (1  p) is the row i of matrix X (n  p). A new obser-

vation to predict is noted (xnew, ynew). 
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2.2. Prediction Models 

2.2.1. Partial Least Squares Regression 

Partial least squares regression is a regularization method to solve the ill-conditioned 

problem 

𝑎𝑟𝑔𝑚𝑖𝑛𝒃 ||y − X b||2 (1) 

where {X, y} is the training set and ‖. ‖ the L2-norm. The general principle is to reduce 

the dimension of X by computing a limited number a of successive orthogonal n  1 vec-

tors {t1, t2, …, ta}  T, referred to as “scores”, then used as LVs to regress y by MLR with 

ordinary least squares. In other words, PLSR replaces in the MLR the high-dimensional 

and ill-conditioned matrix X by the low-dimensional and orthogonal matrix T. 

At each step r (r = 1, …, a), the score vector tr is computed so that it maximizes the 

squared covariance Cov(tr, y)2. This last constraint is expected to give better prediction 

performances, for the same given dimensionality a, compared to unconstraint latent re-

gression models, such as principal component regression (PCR). In the particular case of 

r = 0, the prediction is the mean of y. 

Fast and efficient algorithms are available to fit PLSR [12]. By-products of these algo-

rithms allow for re-computing the vector b, referred to as the b-coefficient vector, repre-

senting the coefficients of the linear model of Equation (1). 

2.2.2. Averaging PLSR 

Assume that xnew is a new observation to predict, and that 𝑦̂𝑛𝑒𝑤,𝐴 is the prediction 

returned by the PLSR-averaging model having a number A of LVs (in practice, A will be 

larger than the dimensionality a selected in the usual PLSR, i.e., corresponding to the min-

imum prediction error rate). We define the averaging model prediction by: 

𝑦̂𝑛𝑒𝑤,avg[𝐴] = 𝑤0𝑦̂𝑛𝑒𝑤,0 +𝑤1𝑦̂𝑛𝑒𝑤,1+. . +𝑤𝐴𝑦̂𝑛𝑒𝑤,𝐴 (2) 

where wr (r = 0, …, A) is the weight (bounded between 0 and 1) of the model with r LVs, 

with the constraint: 

∑ 𝑤𝑟 = 1.𝐴
𝑟=0    

As indicated in Section 2.2.1, 𝑦̂𝑛𝑒𝑤,0 (r = 0 LV) is the simple mean of y. Vector w = {w0, 

w1, …, wA} represents a pattern of weights. The shape of this pattern is specific to a given 

averaging method. 

Five PLSR-averaging methods (patterns w) are considered in this paper. The first 

method (AVG) assumes simply a uniform importance for each model, i.e., 

wr = 1/(A + 1).  

The three next methods (referred to as AVG-CV, AVG-AIC, and AVG-BIC, respec-

tively) are detailed in Section 2.2.3. All assume that weight wr decreases when the perfor-

mance of prediction of the model decreases. Assume that dr is a prediction error rate esti-

mated on the training data {X, y} for the PLSR model with r LVs. In the three methods, 

pattern w is computed from the rates {d0, d1, …, dA} given as input data in a bi-square 

weighting function [13]. Examples of bi-square function curves are given in Figure 1. The 

principle is as follows. Let us note 𝑑̃𝑟 the error rate normalized to an upper limit dup that 

represents the value above which the model with r LVs is removed from the average dis-

played in Equation (2): 

• 𝑑̃𝑟 = dr/dup if dr < dup 

• 𝑑̃𝑟 = 1 if dr ≥ dup (this case implies a null weight). 

The bi-square weights are defined by 

𝑤̃𝑟 = (1 − 𝑑̃𝑟
2)2.  
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In practice, PLSR models with dr < dup have a decreasing weight 𝑤̃𝑟 when their error 

rate dr increases. Models with dr ≥ dup receive a null weight (𝑤̃𝑟 = 0). To compute the aver-

age in Equation (2), the final weights are normalized to sum to 1, i.e., 

𝑤𝑟 = 𝑤̃𝑟/∑ 𝑤̃𝑟
𝐴
𝑟=0 .  (3) 

The scalar dup is defined by the quantile of order 1 − α (where α is a parameter to set 

between 0 and 1) of the set d = {d0, d1, …, dA}, i.e., the set of the error rates estimated for the 

A + 1 PLSR models initially considered in the average. In other words, the 100  α% less 

performant models are removed from the average (Equation (2)). Increasing α allows for 

selecting only the models with the better performances that, in the end, may be expected 

to return better predictions. 

 

Figure 1. Example of weight curves computed from a bi-square function for α = 0 and α = 0.3. Dis-

tances d were simulated from a Chi-squared distribution (ν = 1 df). In the paper, the “distance” is 

the error rate of the models. 

Finally, the fifth method of computing w (AVG-SHENK) was proposed by Shenk et 

al. [14] for their local (i.e., k-nearest-neighbors based method) PLSR algorithm referred to 

as “LOCAL”. For each new observation xnew to predict and the PLSR model with r LVs, 

the weight 𝑤̃𝑟 is defined by the product between the root mean squared x-residuals for x 

(i.e., the residuals between xnew and its projection to the model PLS space) and the norm 

of the b-coefficients vector. As before, the final weights are normalized to sum to 1, such 

as in Equation (3). 

2.2.3. Weights for Methods AVG-CV, -AIC, and -BIC 

In this paper, three types of error rates d are used to compute w in AVG-CV, -AIC, 

and -BIC methods. 

• AVG-CV: For the PLSR model with r LVs, the error rate dr is the root mean squared 

error of predictions (RMSEP) estimated on the training data {X, y} from a random K-

fold (K = 5) CV (RMSEPCV). The K-fold CV was repeated ten times and dr was com-

puted by the average of the ten RMSEPCV estimates; 

• AVG-AIC: dr is the Akaike information criterion [15,16]: AIC = log(SSR) + 2 df, where 

SSR is the sum of the squared residuals computed on the training data {X, y} and df 

the complexity (or “effective” dimension or number of degrees of freedom) of the 

model. The AIC penalty “2 df” increases when the complexity of the model increases 

(in contrary to SSR) and counter-balances the optimism of SSR to measure the per-

formance of the model for predicting new observations. When several models are 
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compared (i.e., in this paper, the PLSR models with different numbers r of LVs), mod-

els with the lowest AICs are considered to be the most performant, as with RMSEPCV 

in CV. The complexity df is known to be difficult to estimate for PLSR [17–20]. This is 

due to the fact that the response variable y is involved in the computation of the LVs, 

which is not the case, for instance, for PCR models. Nevertheless, approximations are 

available and, in particular, several methods are detailed and compared in Lesnoff et 

al. [21]. In the paper, df was computed from the conjugate gradient least square algo-

rithm [22,23]. Since CV and AIC estimate approximately the same type of prediction 

error [21,24], both methods are expected to estimate close weights patterns w and 

therefore close results of averaging in Equation (2); 

• AVG-BIC: here, dr is another common parsimony criterion, the Bayesian information 

criterion (BIC) [25]. In BIC, the AIC penalty constant “2” is replaced by log(n), where 

n is the number of training observations): BIC = log(SSR) + log(n) df. Since the penalty 

added to SSR is increased compared to AIC, BIC is more conservative and selects (by 

minimal error rate) models with lower dimensions. 

2.2.4. Stacking 

Similar to averaging, the stacking method (STACK) consists in a weighted sum of the 

predictions of the A + 1 PLSR models (r = 0, …, A LVs): 

𝑦̂𝑛𝑒𝑤,stack[𝐴] = 𝜃0𝑦̂𝑛𝑒𝑤,0 + 𝜃1𝑦̂𝑛𝑒𝑤,1+. . +𝜃𝐴𝑦̂𝑛𝑒𝑤,𝐴 (4) 

but the coefficients 𝜃𝑟 are now estimated from a “top” model ([24]). A K-fold CV is done 

on the training data {X, y} from which is computed the n  (A + 1) prediction matrix 𝒀̂𝐶𝑉 

= {𝒚̂𝐶𝑉,0, 𝒚̂𝐶𝑉,1, …, 𝒚̂𝐶𝑉,𝐴}. The top model consists in regressing y to 𝒀̂𝐶𝑉. 

In this paper, the top model is an MLR (without intercept), but other types of models 

can be used [24]. Contrary to weights wr, the returned MLR coefficients {𝜃0, 𝜃1, …, 𝜃𝐴} 

used in Equation (4) are unbounded and can be negative. 

3. Materials and Methods 

3.1. Datasets and Software 

The study datasets are presented in Table 1. The data were collected from forages of 

tropical areas (TROP1 and TROP2), France (LUS1-2 and THEIX), and Belgium (WAL) and 

from various species (grasses, legumes, sorghum, mixtures) and various types of vegetal 

materials (stems, leaves, green, and preserved forages, etc.). All the biological samples 

collected on the field were dried and grounded, and the absorbance spectra X were col-

lected on Foss NIR Systems Instruments 4500, 5000 or 6500 models. The spectral range 

1100 nm to 2498 nm (2 nm step) (Figure 2) was used, except for dataset WAL for which 

the range was 1300 nm to 2398 nm (2 nm step). 
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Figure 2. Example of forage NIR spectra: dataset THEIX (n = 1894). 

Nine components of the chemical compositions y (Table 2) were studied. The sam-

pling sizes available for the models ranged from n = 797 observations to n = 5694 observa-

tions, depending on the datasets {X, y} (Table 3). Only three datasets (all coming from 

WAL) contained less than 1000 observations. 

Before fitting the models, the spectra were pre-processed by a standard normal vari-

ate (SNV) transformation, followed by a Savitzky–Golay 2nd derivation (polynomial of 

order 2 and window of 11 spectral points). This pre-processing was efficient to predict 

forage data [21,26], even if not always optimal. Other pre-processing methods could have 

been used but comparing preprocessing was beyond the objective of this paper. Figure 3 

illustrates the variability (clustering) between the six spectral datasets. 

All the computations (spectra pre-processing and PLSR model computations) were 

implemented with the package Jchemo [27] written in the free language Julia [28]. 

Table 1. The six study datasets. 

Dataset n Type of Material Source 

TROP1 1608 

Mixtures of plants collected mainly from the Mediterranean, Reunion Is-

land, and Sahelian areas (e.g., Burkina Faso, Chad, Mali, and Senegal): 

grasses, herbs, legumes, shrubs, etc. 

CIRAD, France 

TROP2 1483 Tropical sorghum forage CIRAD, France 

LUS1 5626 Grass forage species (Lusignan, France) INRAE, France 

LUS2 1827 Legume forages with mainly alfalfa (Lusignan, France) INRAE, France 

THEIX 1894 
Forages of diversified permanent grasslands collected mainly from the 

Massif Central (France) 
INRAE, France 

WAL 797 Grass forages from different areas in Wallonia (Belgium) CRA-W, Belgium 

Table 2. Components of the chemical compositions (response variables y) predicted by the models. 

Abbreviation Unit Description 

ADF %DM 1 Acid detergent fiber [29] 

ADL %DM Acid detergent lignin [29] 

ASH %DM Ashes 

CF %DM Crude fiber [30] 

CP %DM Crude protein [30] 

DM % Dry matter, 103 degrees Celsius, 24 h 

DMDCELL %DM Pepsine–cellulase dry matter digestibility [31] 

NDF %DM Neutral detergent fiber [32] 
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OMDCELL %OM 2 Pepsine–cellulase organic matter digestibility [31] 
1 Dry matter; 2 Organic matter. 

Table 3. Number of observations by dataset and response variable (minimum and maximal values 

of the response variables y are in brackets). 

Response   Dataset    

Variable (y) TROP1 TROP2 LUS1 LUS2 THEIX WAL 

ADF 1530 (8.8, 66.9) 1126 (12.4, 61.1) 1310 (10.3, 36.5) 1355 (17.4, 50.8) 1507 (15.0, 46.5) – 

ADL 1423 (0.7, 43.1) 1126 (0.4, 13.6) – 1139 (3.0, 10.9) 1620 (2.7, 27.1) – 

ASH 1597 (1.5, 66.4) 1476 (0.4, 57.4) 3526 (4.5, 15.8) 1242 (5.8, 17.7) – – 

CF – 1302 (7.5, 57.3) – – – 797 (12.0, 42.1) 

CP 1564 (1.6, 32.3) 1389 (0.7, 28.5) 4029 (3.1, 24.9) 1612 (2.4, 39.2) 1564 (3.9, 37.8) 797 (4.0, 34.2) 

DM 1607 (72.2, 97.7) 1481 (84.7, 98.8) – – – 797 (89.3, 98.4) 

DMDCELL 1459 (9.9, 95.0) 1137 (14.6, 93.3) 5194 (41.0, 95.0) 1584 (38.7, 87.3) 1386 (20.7, 91.4) – 

NDF 1529 (16.0, 85.7) 1119 (26.3, 88.0 3948 (20.6, 68.4) 1386 (26.0, 67.8) 1672 (27.6, 76.9) – 

OMDCELL 1459 (8.6, 94.3) 1137 (10.9, 90.0) – – – – 

 

Figure 3. PCA projection of the spectral data, illustrating that the datasets represent different clus-

ters. The PCA was implemented on the pre-processed data. Percentages of explained variance by 

the principal components were: PC1 = 40%, PC2 = 20%, PC3 = 11%, and PC4 = 6%. 

3.2. Overall Approach to Evaluate the Models 

The method of evaluation of the performance of the models was identical for all the 

datasets. 

Let us consider a given dataset {X, y} of sample size n. We randomly split the dataset 

into two parts: 

• A number of ntrain observations {Xtrain, ytrain} are used as a training set to calibrate a 

given model, say f. This learning step is detailed in Section 3.3; 

• A number of ntest observations {Xtest, ytest} (with n = ntrain + ntest) are used to compute 

the performance of model f learned on {Xtrain, ytrain}. The model performance was de-

fined by the RMSEP computed on the ntest predictions (RMSEPtest). 

The split of {X, y} between {Xtrain, ytrain} and {Xtest, ytest} was randomly repeated 100 

times to consider, in the results, the sampling variability. The final performance was meas-

ured by an average (over the 100 above repetitions) relative error rate. This average rela-

tive error rate was defined by the ratio of the mean RMSEPtest (over the 100 replications) 
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to the mean of the response y. This standardization by the mean (as for a coefficient of 

variation) allowed for summarizing the results of the nine variables together. 

Agronomic data, such as forages, have large intrinsic variability due to the heteroge-

neity of their biological material. If this variability is under-represented in the test set {Xtest, 

ytest}, this can generate overfitting, optimistic estimates of the performance of the models, 

and finally misleading conclusions in methods’ comparisons [21]. For preventing such 

effects, we decided to implement a “severe” split between the training and the test: in each 

of the 100 above repetitions, the {Xtrain, ytrain} and {Xtest, ytest} represented each half of the 

dataset (i.e., ntrrain/n = ntest/n = 1/2), while often a softer choice in machine leaning studies is 

ntrain/n = 2/3 and ntest/n = 1/3. 

3.3. Learning Step for Models f 

This section describes the learning process of the models f (listed in Table 4) on a 

given training dataset {Xtrain, ytrain} of sample size ntrain. 

3.3.1. Usual PLSR 

The usual approach to calibrate a PLSR model is to determine the dimensionality a 

by taking the minimum value of an estimation of the prediction error. In this paper, a 

repeated CV (K = 3 blocks; 30 repetitions) was implemented on {Xtrain, ytrain} in which the 

PLSR dimensionality varied from r = 0 LV and r = 50 LVs. The dimensionality r = a showing 

the minimum value in the mean RMSEPCV curve (average over the 30 repetitions) was 

selected. An example of such a curve is given in Figure 4. 

As a remark, considering the all process including the splits “training vs. test” de-

scribed in the previous section, the approach used here belongs to the family of repeated 

double CVs [33,34] for PLSR (a CV splits {X, y} to {Xtrain, ytrain} and {Xtest, ytest} to estimate a 

generalization error and another CV is done internally to {Xtrain, ytrain} for the model cali-

bration, this double process being repeated a number of times). 

 

Figure 4. Example of RMSEPCV curve (mean over 30 repetitions) for PLSR: X-data TROP1 and y-

variable ADF. Red point: a = 22 LVs selected by minimum RMSEPCV; Green point: a = 14 LVs selected 

with Wold’s criterion. 

3.3.2. Parsimonious PLSR (PLSR-P) 

For some data, selecting the PLSR dimensionality a by minimal RMSEPCV can gener-

ate overparameterization (excessively large values for a). For instance, this can occur when 

the error rate curve reaches a plateau without increasing values on larger values r or even 

shows a continuously decreasing trend, instead of a clear “U-shape”, such as that in Figure 

4. To get parsimonious PLSR models, a simple heuristic criterion is the “Wold’s ratio” R 

[35–37]. This ratio is defined by 
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R = 1 − RMSEPCV(r + 1)/RMSEPCV(r)  

R represents the relative gain in prediction efficiency after a new LV is added into the 

model. When selecting a, the iteration r → r + 1 continues until R becomes lower than a 

threshold value q. In this paper, q was set to 1%. In general, using this ratio returns a di-

mensionality (a) lower than with the usual selection approach (Figure 4). 

3.3.3. PLSR Averaging and Stacking 

Contrary to models PLSR and PLSR-P, models AVG, AVG-CV, -AIC, -BIC, and 

STACK were not preliminarily optimized on training sets. They were directly fitted on 

{Xtrain, ytrain} after setting an “omnibus” maximal number of LVs (A in Equations (2) and 

(4)). To keep the operational interest of the methods, A must be given a priori. A heuristic 

has therefore to be defined (this point is discussed in the final section). Based on our expert 

experiences on PLSR and our knowledge on the intrinsic heterogeneity of forages data, 

we defined the following heuristic rule: A = 50 LVs for training sizes ntrain > 400 observa-

tions and A = 30 LVs for training sizes ntrain  400 observations (in this paper, this concerned 

only WAL datasets). The decrease from 50 LVs to 30 LVs (ntrain  400) relates to the fact 

that small datasets cannot support dimensionalities that are too high. Other simple heu-

ristics could be studied (e.g., with functional relations to sample size ntrain) but this goes 

beyond the objective of this paper. 

For AVG-CV, -AIC, and -BIC, two values of parameter α used in the bi-weight func-

tion (Section 2.2.2) were considered to study the sensitivity of the methods to this param-

eter: 

• α = 0, i.e., q = max{d0, d1, …, da}, which means that only the less performant model 

within r = 0, …, 50 LVs is removed from the average; 

• α = 0.3, which means that the 30% less performant models within r = 0, …, 50 LVs are 

removed. 

Figures 5–7 show illustrations of AIC and BIC curves and related weights wr. 

Table 4. PLSR models compared in this study. 

Abbreviation Method 

PLSR 1 Dimensionality is selected by minimal RMSECV.  

PLSR-P Parsimonious dimensionality (Wold criterion on RMSECV). 

“Omnibus” methods  

AVG Averaging with uniform weights. 

AVG-CV Averaging with weights computed from CV errors. 

AVG-AIC Averaging with weights computed from AIC errors. 

AVG-BIC Averaging with weights computed from BIC errors. 

AVG-SHENK Averaging with the LOCAL weights [38] 

STACK Stacking with MLR as “top” model. 
1 Model taken as reference in this paper. 
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Figure 5. Example of AIC and BIC curves for PLSR: X-data TROP1 and y-variable ADF. 

 

Figure 6. Example of CV, AIC, and BIC weights for AVG models in which α = 0: X-data TROP1 and 

y-variable ADF. 

 

Figure 7. Same as Figure 6 but with α = 0.3.  
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4. Results 

The relative errors estimated for the different models are displayed in Figure 8. 

Larger standard errors were observed for the WAL datasets, probably due to their lower 

sample size. Overall, the three less performant models were PLSR-P, PLSR, and AVG-

SHENK (except for TROP2 where AVG-SHENK was as performant as other averaging 

methods). 

For PLSR, lower dimensionalities a were selected for WAL datasets (a  20) compared 

to the others, in relation to their lower size. As expected, PLSR-P also selected lower di-

mensionalities a than the usual PLSR (Table 5). Nevertheless, PLSR-P was always less ef-

ficient (Figure 8) than PLSR. This indicates that selecting high values a in PLSR (up to a = 

50 LVs in certain repetitions; Table 5) did not generate overfitting on these data. 

 

Figure 8. Relative errors (100  RMSEPtest/mean(y)) for the study models and datasets. The relative 

errors were computed over the 100 repetitions of test sets: dots are the means and whiskers are  

the standard errors of the means. 

Table 5. Dimensionality a (nb. LVs) selected by RMSEPCV for PLSR and PLSR-P models. 

Dataset Dimensionality a 

 PLSR PLSR-P 

 Mean Min. Max. Mean Min. Max. 

TROP1 20.8 12 43 13.5 6 22 

TROP2 17.9 8 44 13.9 8 19 

LUS1 26.1 11 50 14.9 9 19 

LUS2 21.0 11 47 15.2 11 19 

THEIX 18.8 13 46 13.8 9 19 

WAL 10.3 1 18 8.3 1 14 

Globally, averaging models showed better performances than stacking (Figure 8), 

even if both types of methods returned close relative errors. On our forage data, building 

a top model over the (A + 1) PLSR models was therefore not advantageous when com-

pared to a direct averaging of the predictions. 
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Within the averaging methods, computing model weights from CV-, AIC-, or BIC-

error rates has tended to slightly increase the performances compared to a uniform aver-

age. Nevertheless, the differences were very low (e.g., for LUS2 in Figure 8, the relative 

error was 5.0% for AVG-BIC vs. 5.1% for AVG) with orders of magnitude that have no 

agronomic importance in practice. Differences between the weighting methods were also 

clearly dataset dependent (e.g., in TROP2, AVG was almost equal to other averaging). 

Even with a uniform weighting, it is important to note that averaging was always better 

than the usual PLSR. 

For CV-, AIC-, and BIC-averaging, the effect of parameter α (Figure 9) was dataset 

and method dependent, without showing a clear pattern. For instance, removing the 30% 

less performant models in Equation (2) (i.e., α = 0.3) did not improve the predictions for 

BIC weighting (all the datasets), while this was more successful in other situations (e.g., 

for CV-weighting). 

 

Figure 9. Mean relative errors (100  RMSEPtest/mean(y)) for the study models, datasets, and values 

of parameter α: α = 0 in purple, α = 0.3 in yellow. 

5. Discussion and Conclusions 

The major finding of this paper is the overall superiority of the averaging methods 

compared to the usual PLSR selecting dimensionality a by minimum RMSEPCV. In our 

evaluation, we chose a severe splitting of the data (test set = half of the data) to prevent 

optimistic estimates of performances, which can occur frequently when the study materi-

als have complex structures. To check the consistency of the results, we replicated all the 

same computations presented in this paper but with the more usual splitting {training set 

= 2/3, test set = 1/3}. The same types of patterns were observed in the performances (not 

detailed in this text), in particular the superiority of the averaging methods to the usual 

PLSR. 

When using averaging or stacking, the maximal dimensionality A has to be set as 

input parameter. In practice, A can be optimized based on each dataset {X, y}, as the di-

mensionality a in the usual PLSR. However, the methods have the advantage of allowing 

a strategy where A is set a priori as an omnibus value, with the expectation that this value 

will provide results that are sufficiently efficient even if not fully optimal for each dataset. 

Such a strategy was implemented in this work. The a priori choices A = 50 LVs (ntrain > 400) 
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and A = 30 LVs (ntrain  400) appeared relevant for our forages data. More generally, for 

any type of data, relevant orders of magnitude of A can be easily estimated on a few pre-

liminary validation samples. For instance, with a few runs of CV on other datasets than 

those presented in this paper (containing lower heterogeneity and lower sample sizes; 

ntrain  200), we observed that A = 20 LVs was very efficient for these data. This easy and 

fast calibration process can help the user to find a value of A that will be efficient “every-

where” on his data. 

On our data, the SHENK weights [38] did not provide good performances. This was 

not in adequation with the observations of Zhang et al. [11] on smaller and less complex 

datasets. Stacking results were also disappointing. Optimizing the weights by a top re-

gression model did not improve the prediction performances. 

Averaging with CV-, AIC-, and BIC-weighting appeared to be the best methods over-

all. Nevertheless, uniform weighting was often almost as performant. The AVG method 

has the advantage of being simpler and much faster to compute (no need to internally 

estimate training error rates on {Xtrain, ytrain}, required to compute the variable model 

weights). AVG can therefore be recommended for a fast strategy, providing efficient re-

sults even if not always optimal. 

This paper focused on forages, a priority material studied in feed research teams for 

which significant data in numbers and representativity are available. Forage data have the 

characteristic to contain a high level of heterogeneity due to scattering effects in the NIR 

signals, diversity of origins, species, climate, conditions of data collections, spectrometers, 

etc. The presented averaging methods may be advantageous for other materials, such as 

foods and other agricultural products, when they present heterogeneity. The readers are 

encouraged to test these generic and easy-to-implement methods on many other types of 

materials than forages to eventually validate this guess. 

Finally, averaging methods presented in this paper can be easily embedded in pipe-

lines of local PLSR [26,39–42]. Such pipelines fit a PLSR model for each new observation 

to predict, after having selected a neighborhood of this observation. Local PLSR are par-

ticularly efficient when the relation between y and X is nonlinear. This occurs for instance 

when the data contain clustering and the relation y = f(X) varies between clusters. As for 

PLSR, local PLSR can become time consuming to optimize when many datasets {X, y} 

have to be processed. Again, with the objective of automatized predictions, local AVG 

PLSR methods can represent fast and safe alternatives to methods requiring time consum-

ing calibrations. 
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