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ABSTRACT Genomic prediction (GP) has revolutionized crop breeding despite remaining issues of transfer-
ability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than
genomic markers leads to the possibility of building phenomic prediction (PP) models that can account, in part,
for this challenge. Here, we compare and contrast GP and PP models for three growth-related traits, namely,
leaf count, tree height, and trunk diameter, from two coffee three-way hybrid (H3W) populations exposed to a
series of treatment-inducing environmental conditions. The models are based on seven different statistical
methods built with genomic markers and chlorophyll a fluorescence (ChlF) data used as predictors. This
comparative analysis demonstrates that the best performing PP models show higher predictability than the
best GP models for the considered traits and environments in the vast majority of comparisons within H3W
populations. In addition, we show that PP models are transferrable between conditions, but to a lower extent
between populations and we conclude that ChlF data can serve as alternative predictors in statistical models
of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to
further improve the prediction of growth-related traits for crops.
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INTRODUCTION

Food production must increase by 60-70% by 2050 to feed the
increasing world’s population. In parallel, climate change is ex-
pected to reduce the yields of key crops (Arora 2019). One way of
addressing these challenges is by devising policies conducive to
sustainable agricultural production, which competes for resources
(e.g. arable land and water) with other industrial sectors. Another
way, that makes use of the growing phenotypic and genotypic data,

Copyright © 2022 by the Genetics Society of America
Manuscript compiled: Wednesday 29th June, 2022
1Corresponding author: Systems Biology and Mathematical Modeling Group, Max Planck
Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm,
Germany. Bioinformatics Group, Institute of Biochemistry and Biology, University of
Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany. Email:
nikoloski@mpimp-golm.mpg.de

is to speed-up the breeding of crop varieties (i.e. genotypes) which
are resilient to environmental cues exacerbated by climate change
(e.g. water availability, ambient temperature), while increasing
yield.

Before the era of genomic prediction (GP) (Meuwissen et al.
2001), the development of improved plant varieties has mostly
relied on classical breeding whose implementation is limited due
to the long selection cycles, high phenotyping costs, reduced reli-
ability when dealing with low heritable traits, and sensitivity to
environmental fluctuation (Tuberosa 2012). GP aims to overcome
these limitations by combining genotypic data and phenotypic
data of the training population through a predictive model that
in turn is used to compute genomic estimated breeding value for
individuals in a population with genotypic data but yet to be phe-
notyped (Poland et al. 2012). With the proliferation of cost-effective
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high-throughput genotyping platforms, GP is rapidly changing
breeding perspectives in both crop (Jannink et al. 2010; Heslot et al.
2015) and animal (Goddard and Hayes 2007; Hayes et al. 2009)
breeding.

Further, the genetic evaluation in animal breeding when full
pedigree and genomic information are combined (Dou et al. 2017),
and when some genotypes are missing (Christensen and Lund
2010) paved the way for their application in crop breeding. In the
latter and for low heritable traits, it has been shown that combining
pedigree information and single nucleotide polymorphism (SNP)
based relationships in a kinship matrix can improve predictabil-
ity of genomic prediction models (Velazco et al. 2019). However,
classic estimators for genetic relatedness using molecular markers
are less effective for low-coverage sequencing data, which often
exhibits high levels of genotype uncertainty and missing data (Dou
et al. 2017); moreover, access to high-quality reference genomes still
remains a challenge for several species (e.g. polyploid species).

Effective growth and performance evaluation using non-
invasive methods has been identified as one of the key challenges
in plant and crop improvement programs (Baker and Rosenqvist
2004). High phenotyping costs and developmental delays to the
emergence of important traits in perennial crops, such as coffee,
justify the popularity of GP. In the quest for alternatives to geno-
typing, using endophenotypes as predictors has been recently
proposed and used (Fernandez et al. 2016; Guo et al. 2016; Schrag
et al. 2018). The resulting findings suggest that phenomic predic-
tion (PP), based on availability of phenotypes used as predictors in
the training and testing population, may be a suitable alternative
to GP.

ChlF has been routinely used for many years to non-invasively
monitor the photosynthetic performance of plants (Baker 2008) and
to evaluate plant tolerance to abiotic stressors (Stirbet et al. 2018).
In a recent study (Gamboa-Becerra et al. 2021), the effectiveness of
this technique in assessing the physiological state of coffee plants
subjected to a combination of biotic and abiotic stress has also been
demonstrated. The observations that ChlF measurements can be
used to estimate the operating quantum efficiency of electron trans-
port in coffee leaves, that directly relates to coffee plant health and
oxidative stress level, have led to the use of this trait in examining
photosynthetic performance in contrasted field situations (Toniutti
et al. 2017, 2019). Further, near-infrared reflectance spectroscopy
(NIRS) wavelength data on wheat grain and leaf tissues have been
shown to result in PP models that outperform GP models (Rincent
et al. 2018).

Because changes in fluorescence induced by illumination of
dark-adapted leaves are qualitatively correlated with changes in
CO2 assimilation, under some circumstances fluorescence emis-
sions in photosynthetic organisms could be correlated to their
photosynthetic rates (Stirbet et al. 2018). Using this approach,
we hypothesize that ChlF transients can be employed in high-
throughput screens for growth and vigor in coffee. The objectives
of our study is to assess if there is a relation between the photosyn-
thesis efficiency and the vigor/growth of coffee trees in different
contexts that can potentially be used in breeding program. To this
end, we make use of facile to obtain phenomic data (i.e. ChlF) and
compare the performance of GP and PP for three growth-related
traits from two three-way hybrid (H3W) coffee populations. The
resulting models are used to understand the impact of conditions
that mimic different coffee growing contexts.

MATERIALS AND METHODS

Three way hybrid populations
Clonally propagated F1 hybrid “Centroamericano” (T.05296 x
Rume Sudan, henceforth H1) plants were used as maternal donor
in crosses with Ethiopian lines ET47 and Geisha 3, producing two
segregating populations (H3W). Note that T.05296 (a Sarchimor
cultivar) is known for its tolerance to coffee leaf rust disease ob-
tained through introgression from the Timor Hybrid. T.05296 is
also wind resistant, widely adaptable to varying altitudes and cli-
mates, and has an exceptional root system enabling it to adapt to
different types of soil.

DNA extraction
DNA was extracted from leaf tissues of 8-month-old plants us-
ing DNeasy Plant kit (Qiagen). DNA quality was evaluated by
Agilent 2100 Bioanalyzer High Sensitivity DNA assay (Agilent
technologies, Santa Clara, CA, USA) and quantified by Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA).

Probe design
The three parental genotypes (i.e. ET47, Geisha and H1) were
first sequenced to identify polymorphic regions. Libraries were
prepared using ‘Celero™ DNA-Seq’ kit (NuGEN, San Carlos, CA,
USA) per manufacturer’s instructions and quantified using the
Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Sequenc-
ing was performed on an Illumina NovaSeq6000 (Illumina, San
Diego, CA, USA) in paired-end 150 mode. Low quality reads and
adapter regions were removed using ERNE (2.2.1) (Del Fabbro et al.
2013) and Cutadapt v1.18 (–overlap 10 –time 2 –minimum-length
50 -mask-adapter) (Martin 2011). Reads were aligned using BWA-
MEM (0.7.17) (Li and Durbin 2009) to a draft genome of Coffea
arabica from a Caturra red cultivar (RHJU01) (Zimin et al. 2018).
Variant calling was performed using GATK (4.1.0.0) (McKenna
et al. 2010).

Sequencing resulted in >400M reads for each parental geno-
type, supporting the identification of an 3,127,161 SNPs. Due to
the allotetraploid genome of Coffea arabica, many of these were
likely false-positives. SNPs associated with repeat regions of Coffea
canephora were first removed resulting in 1,212,811 SNPs (Denoeud
et al. 2014; Smit et al. 2013-2015). To further remove collapsed home-
ologous regions a custom Perl script was used to retain only those
which were homozygous in at least one of the three parental lines.
Relative levels of heterozygosity for each variety in this remaining
260,015 SNPs reflected those anticipated, with 35162 (14%), 32150
(12%) and 219479 (84%) heterozygous sites in ET47, Geisha and
H1, respectively.

For ET47 and Geisha, 18,514 heterozygous SNPs were selected
with a minimum span of 50bp. For H1 further examination was
applied to identify regions with high numbers of SNPs that are
likely to be regions of introgression from the ancestral rust tolerant
Timor Hybrid variety. For putative introgressed regions, 35274
SNPs were selected (minimum span 100bp) and for other regions
32,838 SNPs were selected (minimum span 50bp). The total of
86,626 SNPs were reduced to 80,584 when selecting for regions
critical to probe design for single primer enrichment technology
(SPET) (Scaglione et al. 2019). 151,362 probes were designed for
regions up- and down-stream of the target SNPs (NuGEN, Tecan
Group).
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H3W genotyping

H3W populations from crosses between the F1 hybrid and each
Ethiopian line (i.e. H1xET47 and H1xG) were then subjected to
targeted sequencing for SNP genotyping. Libraries were prepared
using the “Allegro Targeted Genotyping” protocol from NuGEN
Technologies (San Carlos, CA) with the described probes and 100
ng/µL of DNA as input. Libraries were quantified using the
Qubit 2.0 Fluorometer, and their size was checked using the High
Sensitivity DNA assay from Bioanalyzer (Agilent technologies,
Santa Clara, CA) or the High Sensitivity DNA assay from Caliper
LabChip GX (Caliper Life Sciences, Alameda CA). Libraries were
quantified through qPCR using the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA) and se-
quenced on the Illumina NovaSeq 6000 (Illumina, San Carlos, CA)
in 150bp single-end mode. Low quality reads and adapter regions
were removed using ERNE (1.4.6) (Del Fabbro et al. 2013) and Cu-
tadapt v1.18 (Martin 2011), both with default parameters. Reads
were aligned using BWA-MEM (0.7.17) (Li and Durbin 2009) to
RHJU01 (Zimin et al. 2018) and retained where mapping quality
> 10. SNP calling was performed in GATK following best practices
for germline short variant discovery (DePristo et al. 2011).

SNPs with smaller than 5% minimum allele frequency (MAF)
and call rate (CR) smaller than 95% were removed. Additionally,
we excluded all samples with more than 10% missing genotypes
and those without a match in the phenomic (i.e. ChlF) and phe-
notype data. Mean imputation of the missing values in the SNP
data that passed the filtering rules was then performed, resulting
to a final data with: 74 and 119 samples for H1xET47 and H1xG
populations, respectively with altogether 61,950 markers.

Field experiment

Each of the two segregating hybrid populations were cultivated
at La Cumplida farm, in Matagalpa region, Nicaragua (GPS co-
ordinates 13.0008989-85.8514005). Plants were first grown in
polypropylene cells containing 540mL of a 70% mixture of blonde
peat (PG-mix) and 30% sand, supplemented with 4g/L of fertiliser
(Multicote). After 45 days, each cell received 3g of fertilizer (Mul-
ticote). At 10-months after sowing, plants were transferred to 5
gallons pots (height 0.37m; width 0.32m) and subsequently treated
with 5g/L of fertilizer (Multicote) every 4 months.

Immediately after transferring to 20L pots, plants were moved
into the first treatment condition shown in (Table 1). Plants were
first maintained under shade for a complete acclimation at alti-
tude level 600m where average daily high temperatures were 24℃.
Then, they were transferred to full sun conditions for 2 months,
followed by 3 months under shade and similar temperature condi-
tions. Finally, the plants were transferred to full sun at an altitude
of 1300m where average daily high temperatures were 20℃. Con-
sistent shading to 50% was achieved by use of an artificial shade
net.

Phenotypic data

At the end of each treatment, plants were phenotyped for several
characteristics (e.g. trunk diameter, height, total number of leaves
and ChlF). The first measurement (i.e. after acclimation) took place
when ET47, G, H1xET47 and H1xG were 13 months old, the second
and third measurements were respectively taken when the plants
were 16 and 18 months old. For the three measurements, H1 parent
clones were four months younger than the other genotypes due to
differences in the plant production time.

Phenomic measurements: Chlorophyll a fluorescence

ChlF measurements were conducted between 2 and 4 AM with a
Handy PEA chlorophyll fluorimeter (Handy-Plant Efficiency Anal-
yser, Hansatech Instruments, Norfolk, UK) on mature leaves (L3).
Every measurement was performed on apparently healthy, fully
light-exposed leaves. Measurements were taken five times on each
plant during three consecutive nights at the end of each treatment,
resulting in 1980 measurements per plant or 7920 measurements
in total for the analysed populations. During night, leaves are dark
adapted and when they are illuminated, ChlF intensity shows
characteristic changes called fluorescence transient (Stirbet et al.
2018). ChlF transients were induced by 1s illumination with an
array of six light-emitting diodes providing a maximum light in-
tensity of 3000 PAR. The fast fluorescence kinetics (from F0 to FM,
where F0 and FM are, respectively, the minimum and maximum
measured chlorophyll fluorescence of PSII in the dark-adapted
state) were recorded from 10µs to 1s. For the analysis, 18 param-
eters (Table T1 in File S2) were selected as the most relevant to
explain photosynthesis (i.e. IBR, PI total, phi(Ro), phi(Eo), psi(Eo),
phi(Po), phi(Po)/((1-phi(Po)), dRo/(1-dRo), psi(Eo)/(1-psi(Eo)),
RC/ABS, REo/RC, DIo/RC, ETo/RC, TRo/RC, ABS/RC, Fo, Fm
and Fv/Fm).

Statistical methods

Throughout the text, the term “phenotypic” refers about the target
traits (i.e. response variables) while the term “phenomic” refers
to endophenotypes (i.e. predictors in the PP models). The com-
parative analysis is concerned with evaluating the performance of
genomic and phenomic predictions on three growth-related traits
(i.e. leaf count, tree height, and trunk diameter) under the follow-
ing settings: Setting S1 that aims to select the best performing H3W
family by comparing hybrids H1xET47 and H1xG based on pre-
dictability of GP and PP models. Traits and phenomic data were
constructed by concatenating the respective measurements over
all treatment conditions after the acclimation period. Setting S2
contrasts the predictive abilities of GP and PP models in H1xET47
and H1xG under established agroforestry system (AFS) that corre-
sponds to treatment 3 in Table 1. To this end, only traits and ChlF
data of the corresponding treatment were considered. This setting
also evaluate the effect of including more predictors in PP models.
For this second goal, ChlF measurements were concatenated from
treatment 2, 3 and 4 while using the traits only from treatment
3. Setting S3 evaluates GP and PP models based on their abilities
to predict traits in the next treatment condition. Specifically, we
compare the predictive abilities of these models using the current
environmental conditions for H1xET47 and H1xG as the training
set and the successive conditions as the test one. Because the two
hybrids have one parent in common (i.e. H1), we finally consider
Setting S4, where we train the models with data from one family
and predict traits of the other one. Phenomic and traits data are
constructed as in the setting S1. For completeness, Figure F3 in
File S1 provides a graphical representation of data construction for
each setting.

In what follows, we present the statistical models used in the
comparative analysis and the details of the cross-validation strat-
egy. Since in our case the number of markers is much larger than
the number of observations, the following modeling approaches
were used instead:
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Ridge regression: The marker effects are estimated by solving the
following optimization problem:

b̂i(RR) = argmin
bi

∥∥∥yi − Xbi

∥∥∥
2
+ λ

∥∥∥bi

∥∥∥
2
, (1)

where λ ≥ 0 is a penalty parameter, estimated via cross-validation.

LASSO: Replacing the L2-norm by the L1-norm, the optimization
problem in Eq (1) becomes the least absolute shrinkage and selec-
tion operator (LASSO) (Tibshirani 1996) that simultaneously select
variables and shrink coefficients by solving

b̂i(LASSO) = argmin
bi

∥∥∥yi − Xbi

∥∥∥
2
+ λ

∥∥∥bi

∥∥∥
1
. (2)

Equivalently B̂(mLASSO) = argmin
B

∥∥∥Y − XB
∥∥∥

2
+ λ

∥∥∥B
∥∥∥

1
for

multi-response.

Elastic net: To overcome some shortcomings of LASSO, such as
SNPs in high linkage disequilibrium (LD) and lack of group se-
lection, elastic net (EN) (Zou and Hastie 2005; Ogutu et al. 2012),
an extension of LASSO can serve as a remedy. EN blends RR and
LASSO penalties and optimizes

b̂i(EN) = argmin
bi

∥∥∥yi − Xbi

∥∥∥
2
+ λ1

∥∥∥bi

∥∥∥
2
+ λ2

∥∥∥bi

∥∥∥
1
. (3)

LASSO’s variable selection ability is preserved via the L1 penalty
in Eq (3) and its L2 counterpart enables group selection.

Genomic best linear unbiased predictor: Implemented in this
study with the R-package BGLR (de los Campos and Pérez-
Rodríguez 2014), genomic best linear unbiased predictor (GBLUP)
was obtained considering the linear mixed effect model formulated
as,

y = Zu + ε. (4)

The residual error ε is assumed to be normally distributed with
zero-mean and var(ε) = Iσ2

ε , with I the identity matrix of ap-
propriate dimension. In this setting, Z represents the incidence
matrix for individual effects, u is a vector of genotype random
effects assumed to follow a multivariate Normal distribution with
var(Zu) = Kσ2

u, where σ2
u is the genetic additive variance and

K = ZZ
′

is the realized genomic relationship matrix.

Bayesian Lasso: Previously discussed GP methods assume com-
mon variance for all SNP effects. However, for some traits, depar-
ture from normality is often exhibited in practice and should be
accounted for. Bayesian LASSO (BL) (de los Campos et al. 2009;
Park and Casella 2008) allows to take such effects into account.
It can be shown that, Eq (2) is minimized when regression coeffi-
cients are assumed to be independently distributed with Laplace
(i.e. double-exponential) priors (Hans 2009). With a product of p
independent and zero-mean double-exponential densities as prior
on bi, BL solves

p(yi|bi, σ2
ε ) =

n

∏
l=1
N (yil |x

′

ilbi, σ2
ε ). (5)

Using the scale-mixture parametrization and the hierarchical
model, see (Park and Casella 2008) for details, BL was implemented
using the R package BLR (Pérez et al. 2010) with the hyperparam-
eter as recommended in the package and using a chain of 20,000
iterations, and a burn-in sample of 5,000 iterations. We would
like to point out that, 20,000 iterations were considered because
beyond this number, no substantial change was observed on the
predictability.

Unlike single-trait, multiple-trait (MT) genomic prediction models
combine information from individual lines and analyze multiple
traits simultaneously. The potential of MT methods to improve pre-
dictive ability in genomic prediction has been proven (Lado et al.
2018; Jia and Jannink 2012; Budhlakoti et al. 2019). For complete-
ness, the following two MT prediction methods are also included
in the comparative analysis.

Multiple-trait BayesB: Most MT genomic prediction models are
built upon a restrictive assumption that a given locus affects simul-
taneously all the traits or none of them. To overcome this limitation,
(Cheng et al. 2018) used mixed priors to develop multiple-trait
Bayesian regression methods allowing a locus to influence any
combination of traits. Our comparative analysis focuses only on
their multiple-trait BayesB (mBayesB), where vectors of marker
effects are assumed to be multivariate normally distributed with
mean zero and locus-specific covariance matrix having an inverse
Wishart prior. Details regarding the derivation of full conditional
distributions of parameters can be found in (Cheng et al. 2018).

L2,1-norm regularized multivariate regression and covariance es-
timation: To account for possibly shared information among traits
of interest, facilitate selection of markers, while not compromis-
ing prediction accuracy, the L2,1-norm regularized multivariate
regression and covariance estimation (L21-joint) (Mbebi et al. 2021),
models traits jointly by assuming that the response variables fol-
low a multivariate Gaussian distribution with precision matrix
Ω.

f (B, Ω) = argmin
B,Ω

{
J(B, Ω) + λ1

∥∥∥Ω
∥∥∥

1
+ λ2

∥∥∥B
∥∥∥

2,1

}
, (6)

with tuning parameters λ1 ≥ 0 and λ2 ≥ 0 to be obtained from the
data and

J(B, Ω) = tr
[

1
s
(Y

′ − B
′
X

′
)Ω(Y

′ − B
′
X

′
)
′
]
− log |Ω|.

As shown in Eq (6), the L2,1 and L1 losses are respectively ap-
plied on the marker effects and precision matrix to provide sparse
estimates of the regression coefficients and the precision matrix
using an iterative optimization procedure. At each iteration, the
estimated Ω is used to refine the estimation of marker effect until
convergence.

K-folds cross-validation and hyperparameters: Given the mod-
erate sample size after data filtering, n = 74 and n = 119
for H1xET47 and H1xG, respectively, we perform K-fold cross-
validation, randomly sampling individuals in phenotype, SNP
and ChlF data sets into K = 3 blocks of approximately equal size.
We divided each data set into training and validation sets, com-
posed of two and one fold, respectively. We used two folds to train
the statistical models and the remaining fold for validation. We
quantified model performances by the Pearson correlation coeffi-
cient between predicted and observed trait values in the validation
set (Crossa et al. 2010; Ober et al. 2012). This was done until every
fold was used as validation and the performance is then computed
as the average value over the three folds (Zhou et al. 2017).

Nevertheless, some models in the comparative analysis have
hyperparameters that need tuning (i.e. optimizing). To avoid us-
ing the same data to optimize model parameters and performance
evaluation, that often leads to overfit (Cawley and Talbot 2010),
nested 3-folds cross-validation (NCV) was used. This is accom-
plished by two loops and splitting the data into training, validation,
and test sets. In the inner loop, each training set is used to fit the
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model and the hyperparameters are subsequently selected after
evaluating the model on the validation set. In the outer loop, the
independent test set is used to quantify the prediction abilities. For
a better assessment, we then used re-sampling and repeated this
procedure 20 times.

Heritability and genetic correlation: We next recall two of the most
important genetic parameters to consider for breeding. (1) Her-
itability is defined as the proportion of phenotypic variance ex-
plained by underlying genetic effects (Falconer 1996). The broad-

sense heritability is computed as H2 =
σ2

G
σ2

G + σ2
E + σ2

GxE/e + σ2
ε /e

(Hallauer et al. 2010), where e represents the number of environ-
ments (i.e. treatment conditions), σ2

G, σ2
E, σ2

GxE and σ2
ε are respec-

tively the genetic, environment, genetic by environment and resid-
ual components of the variance. The variance partition of each
factor, is estimated by fitting a linear mixed model with all above
effects as random and fixed effect of intercept. The computations
were implemented with the R package lme4 (Bates et al. 2015).

(2) Genetic correlation between trait i and j is defined as

r2
g =

cov(gi, gj)√
var(gi, gj))

, where gi and gj are the genetic effect of trait

i and j, respectively and is equivalent to the Pearson correlation
coefficients between their genetic effect (Galic et al. 2019). The
genetic effects are obtained based on the SNP data using rrBLUP
model for each trait and Pearson correlation coefficients between
phenotypic traits (i.e. LC, TH and TD) and ChlF parameters as the
genetic correlations.

RESULTS AND DISCUSSION

Heritabilities and genetic correlations of the studied traits

First, we quantify heritability since it directly relates to the extent
to which a given trait is predicted by genetic factors, and therefore
can be improved by breeding. To this end, we partition the vari-
ance into environment (E), genetic (G), genetic by environment
(G× E) and residual (ε) components. We considered phenotypic
traits (i.e. leaf count (LC), tree height (TH) and trunk diameter
(TD)) as well as the 18 ChlF traits in each family and estimated
their broad-sense heritability. Strong variability of traits heritabil-
ity was exhibited (Tables T2 and T3 in File S2), with maximum
values always observed for TH in both H1xG (H2 = 62%) and
H1xET47 (H2 = 77%) families. Although some mild peak values
of about (24%) could be observed, overall heritability for most
ChlF traits were very small in both families. Further look at the
GxE component of the phenotypic variance, indicates a genetic
component to the plasticity of these traits.

To further assess the usability of ChlF traits in PP models, we
quantified the proportion of variance shared by two traits due to
genetic effects using the genetic correlations (Galic et al. 2019) be-
tween phenotypic traits (i.e. LC, TH and TD) and ChlF parameters.
Since in this setting, a trait expressed in multiple environments
is treated as a different trait, this lead to a 9× 54 genetic corre-
lation matrix (i.e. respectively 3 and 18 traits for each treatment
condition). Our findings (Tables T4 and T5 in File S2) show that in
both families, the highest genetic correlations between ChlF and
the target traits were achieved with ChlF parameters measured
under the acclimation condition (e.g. IBR, ΨEo, ϕEo). Further, the
high variability of genetic correlation observed between treatment
conditions could indicate that in line with the large GxE compo-
nent, ChlF is sensitive to environment, that a different set of genes

influences the studied traits differently and that responses of geno-
types with respect to the studied traits may not be consistent across
environments.

Accuracy of genomic prediction (GP) and phenomic prediction (PP)
were evaluated using 3-fold CV with the final model performance
computed as the average over 20 replications. For all statistical
models, except for GBLUP, we evaluated the performance of PP
by using ChlF data instead of the SNPs for each hybrid.

Comparison of trait predictability based on GP and PP models
for three traits and identification of the best performing H3W cof-
fee family
To assess the predictability of three growth related traits, namely,
leaf count, tree height, and trunk diameter, we consider setting S1
to built and compared seven models (i.e. L21-joint, RR, mLASSO,
EN, BL, mBayesB and GBLUP) based on SNPs for GP and ChlF
data in three treatments (see Table 1) for PP for the H1xET47 and
H1xG families. Our findings show that under all treatment con-
ditions, GP and PP models from the H1xET47 family achieve the
highest predictability for all traits of interest (Figure 1 and Figure
F1 in File S1). Further, with Hotelling’s T2 test (Hotelling 1992)
indicating significant statistical difference (p− value = 0.0002876)
between the mean performance of the two population, we can con-
clude that the traits for H1xET47 hybrids can be predicted better
than those from H1xG. Moreover, for all hybrids and traits, the
highest predictability was seen at treatment 3 and the lowest was
always exhibited by mLASSO.

Within population and for all treatment conditions, a clear
decision regarding the systematic outperformance of GP or PP
could not be made because the highest predictability for the traits
of interest was achieved in at least one combination of popula-
tion and treatment by each approach. As shown by Tables T4
and T5 in File S2 where the maximum genetic correlation (Galic
et al. 2019) between the growth related traits and ChlF measure-
ments are repectively .35 and .38 for H1xET47 and H1xG, one may
favour GP because ChlF parameters seem to have small heritabil-
ity (0 ≤ H2 ≤ 0.24, Tables T2 and T3 in File S2). However, ChlF
can be used as a valuable predictor because increased electron
transport efficiency leads to better carbon partitioning (Toniutti
et al. 2019; Ni et al. 2009; Shen et al. 2015; Ko et al. 2016). Further,
the chlorophyll content measured on plants cultivated either in
phytotron or in field (i.e. full-sun and shade) always being higher
in hybrids compared to line varieties together with the strong re-
lationship between ChlF and the expression of genes related to
the photosynthetic electron transport chain (Toniutti et al. 2019)
allowed to define PI, the chlorophyll content and the oxidative
stress level as indicators of productivity and plant health. This
indicates that, ChlF is a good proxi for hybrid vigor. This vigor
is translated in Arabica by a faster development of the seedling
which can be measured by the diameter at the collar, the size of the
plant or its number of leaves. We then conclude that PP models
compete with the GP counterpart when predicting vigor in H3W
coffee at an early developmental stage.

Comparative analysis of GP and PP under AFS
Performance comparison of GP and PP was conducted with L21-
joint, RR, mLASSO, EN, BL, and mBayesB to predict each of the
three growth-related traits under 50% shade net equivalent to es-
tablished AFS (i.e. Setting S2). As depicted in (Figure 2), our results
show that under AFS, for H1xG hybrids and the corresponding
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Figure 1: Predictability of traits in H3W coffee families based on GP and PP models. We used the following models: L21-joint, ridge
regression (RR), multi-response LASSO (mLASSO), elastic-net (EN), Bayesian LASSO (BL), multiple-trait BayesB (mBayesB) and GBLUP
to predict leaf count (left), tree height (middle) and trunk diameter (right). This is Setting S1 with traits and phenomic data obtained
by concatenating the respective measurements over all conditions after the acclimation. The predictability is computed as the average
Pearson correlation coefficient between observed and predicted values for the nine traits (i.e. three traits for each treatment) in the
validation set, based on 20 repetitions of 3-fold cross-validation. Two H3W coffee populations were considered for the comparative
analysis: H1xET47 and H1xG, where, Centroamericano (H1) is an F1 hybrid cultivated clonally and results from a cross between T.05296
and Rume Sudan, and Geisha 3 (G) and ET47 (the mother plant) are two Ethiopian landrace varieties. The average accuracy obtained
from repeated cross-validations are reported as the height of the bars, and standard errors are included.

ChlF data, the best performing PP and GP model outperformed
each other on one count out of three and achieved similar pre-
dictability for the remaining trait. With respect to the H1xET47
population, a similar pattern could be observed, whereby L21-joint
and EN are the GP and PP model with highest predictability for
tree height and leaf count respectively.

Because a single genotyping experiment suffices to determine
the predictors used in GP models, while multiple phenomic data
collection at different stage of growth may be needed to obtain reli-
able predictability of PP models, one may argue that GP should be
favored. However, SNPs in polyploid and heterozygote species,
like Coffea Arabica, are more difficult to determine, while endophe-
notypes (e.g. ChlF) can be easily measured. Since PP relied only on
18 predictors for each treatment condition and GP on 16950 SNPs,
and because genotyping (i.e. about 220 €/sample) in this case is
more expensive than phenomic data collection (i.e. 5300 € for all
samples including fluorimeter purchase), our results indicate that
PP can be a competitive approach in predicting growth-related
traits in coffee while requiring some efforts to obtain the endophe-
notypes.

Predictability of traits based on PP models and the effect of in-
cluding more predictors

To see if including ChlF measurements from all conditions impacts
the performances of PP models for the two H3W families, we con-

sidered changes with respect to established AFS conditions. To
this end, plants were moved from shade and exposed under full
sun, the altitude level was increased by 700m and temperature
decreased to 20℃, as described in (Table 1). To account for these
changes, we make use of the second aim of setting S2 with phe-
nomic measurements concatenated over all treatments except the
acclimation, and the phenomic predictive ability on the traits of
interest evaluated. With respect to the best performing statisti-
cal model, our findings show an increased PP accuracy with the
augmented fluorescence data model for both H1xET47 and H1xG
families on two out of three traits (i.e. leaf count and trunk di-
ameter, Figure F2 in File S1). Moreover, when considering only
H1xET47, a clear pattern of improved predictability for the aug-
mented model could be observed for all traits with the multi-trait
models (i.e. mBayesB and L21-joint). The inclusion of additional
predictors from different environmental conditions exhibiting a
change on PP performances and especially for multi-trait mod-
els could suggest that ChlF measurements over different growth
periods could be helpful in boosting the model performance.

A comparative analysis of GP and PP models using condition-
ahead prediction

Our interest with condition-ahead prediction (i.e. setting S3) is to
further compare the performances of GP and PP models based on
their abilities to predict the next environmental condition while
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Figure 2: Comparison between GP and PP models under AFS conditions. We used L21-joint, ridge regression (RR), multi-response
LASSO (mLASSO), elastic-net (EN), Bayesian LASSO (BL) and multiple-trait BayesB (mBayesB) for PP and the best performing GP
model for each H3W coffee plant and trait. For the selected traits, Bayesian LASSO (BL) and GBLUP are the best performing GP models
for H1xG, while EN, L21-joint and GLUP are the best GP models for H1xET47. The predictability is computed as the average Pearson
correlation coefficient between observed and predicted trait values in the validation set based on 20 replicates of 3-fold cross-validation.
The comparative analysis is concerned with setting S2 where the best performing genomic prediction models for H1xET47 and H1xG
populations (i.e. GP-H1xET47 and GP-H1xG) using their respective SNP data, are contrasted with phenomic predictions of the same
hybrid families (PP-H1xET47 and PP-H1xG) under established AFS. Models were evaluated after treatment 3 (Table 1) with phenotypic
and phenomic data following setting S2. The average accuracy obtained from repeated cross-validations are presented as the height of
the bars along with their corresponding standard errors.

being trained on the previous one (e.g. use treatment 2 as train-
ing data to predict the corresponding trait values in treatment 3).
With phenomic and trait data from H1xET47 and H1xG at the tar-
geted training treatment, we start by estimating GP and PP models
parameters before using them to predict the first 20 lines in the
corresponding test data. Because SNPs are recorded only once and
for a fair comparison between GP and PP, we trained the models
without the first 20 samples, such that they can be used as unseen
data in the prediction phase. Our results show that, with H1xET47
and when the models were trained with data from acclimation
to predict traits under established AFS, GP outperformed PP on
two counts (i.e. for tree height and trunk diameter) out of three
as quantified by the correlation coefficient between measured and
predicted traits values and reported in Table 2. Compared to the
performance with GP when training the model with data from
established AFS to predict traits under higher altitude, leaf count
and trunk diameter were better predicted using PP. With the family
H1xG, for all traits and under all training and predictions settings,
PP and GP achieved in most cases comparable predictability with
slight improvement observed for PP on some occasions. Because
the highest predictabilities were mostly observed with PP mod-
els for both crosses, we conclude that PP models exhibits better
performance. This is likely due to the fact that different ChlF data
are recorded in each environmental conditions and accounted for
in the training process of PP, while the same SNPs are constantly
used across environments for GP. The highest accuracies often
occurring when GP and PP models for both families were trained

under established AFS to predict traits in treatment 4 could also
suggest that models reach their best training abilities under shade.
Under Setting S4 and since the two families have one parent (i.e.
H1) in common, we next considered comparing the predictabili-
ties of GP and PP models trained with data from H1xET47 and
evaluated on traits from H1xG and vice versa. With traits and
fluorescence data constructed as in Setting S1, our results in Table
3 show that PP models exhibit higher predictability than GP model
of the considered traits when transferred from H1xET47 to H1xG,
but not vice versa. This findings shows that while PP models may
be a suitable alternative to GP, they have similar problems to the
transferability of models on unseen populations.

Model performances based on selection ability of the best and
the worst performing lines

To further assess the performance of GP and PP models on each
H3W population, by ranking the genotypes based on the mea-
sured and predicted values of each trait. The 20 best and worst
performing lines for each category were then retained and used to
compute the proportion of the best and the worst performing lines
that were correctly predicted as the best and the worst performing
respectively. Our findings in Table 4 identified on two counts EN
as the best performing genomic prediction model for H1xG family,
whereas L21-joint outperformed the contenders when leaf count
and tree height were the traits of interest using H1xET47 popula-
tion. Decision regarding the best statistical model with respect to
H3W family and condition could not be made because each model
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was ranked first at least once, for a specific trait. However, one
can observe that the highest performances were attained under
phenomic prediction with trees from H1xET47 family (Table 4).

Regarding the selection ability on worst performing lines (Table
T6 in File S2), similar conclusions can be reached, whereby for
GP models on H1xG family, GBLUP outperformed the contenders
when predicting leaf count and tree height and L21-joint was the
best performing model for the same traits with H1xET47 family. In
addition, we still observed at the population level that the highest
ability for negative selection (i.e. proportion of worst performing
lines predicted as worst performing) was achieved with PP on
H1xET47 family.

CONCLUSION

Our comparative analyses provided a comprehensive investiga-
tion of the differences in the performance of GP and PP models
for three growth-related traits from two H3W coffee families ex-
posed to a succession of treatments. The PP models are based on
measurements of ChlF after the exposure to each environmental
condition. The comparative analyses contrasted seven different sta-
tistical models that differ with respect to whether they are aimed
at predicting single- or multiple-traits. In the three considered
settings for the comparison of PP and GP models within and be-
tween H3W coffee families, we showed that although ChlF param-
eters in both H1xET47 and H1xG seem to have small heritabilities
(0 ≤ H2 ≤ 0.24), PP tend to outperform GP models and ChlF can
be used as a suitable alternative to genomic markers when predict-
ing plant vigor. . Interestingly, however, in the fourth scenario,
that tests the transferability of the models between the families, we
showed that PP suffers the same issues as GP models, and here the
consideration of more phenomic data (e.g. NIRS) may improve the
performance.

In (Toniutti et al. 2017; Gamboa-Becerra et al. 2021), it has been
demonstrated that parameters related to Photosystem II and pho-
tosynthetic electron transport chain components are powerful in-
dicators of the physiological status of the coffee plants and predict
infection intensity, respectively, of Hemileia vastatrix and fusar-
ium isolates, in combination with different kind of abiotic stress.
These works highlight the relevance of ChlF as an early and high-
throughput phenotyping tool for plant stress. Although the mecha-
nisms underlying heterosis remain largely unknown, several recent
studies have shown that hybrid vigor is due, at least in part, to
a deregulation of certain central genes of the circadian cycle. (Ni
et al. 2009) showed that, in Arabidopsis hybrids and allopolyploids,
increased photosynthetic and metabolic activities are linked to al-
tered expression of two central genes of the circadian clock. The
authors demonstrated that an epigenetic deregulation of circadian
clock regulators, which control many genes and are involved in
many biological processes, resulted in an increase in chlorophyll
content and starch biosynthesis leading to growth vigor and in-
creased biomass (Miller et al. 2012). Monocots like maize and rice
produced similar results (Ko et al. 2016; Song et al. 2010). For exam-
ple, (Shen et al. 2015) showed that deregulation of three circadian
clock genes, and consequently the downstream genes involved
in the chlorophyll and starch metabolic pathways could also be
related to heterosis. (Toniutti et al. 2019) demonstrated a simi-
lar relationship between circadian cycle dysregulation and carbon
metabolism in coffee tree, and established the relationship between
the increased photosynthetic electron transport efficiency and the
clone’s better performance. ChlF measurement is a good indicator
of the coffee tree’s physiological status for the breeder and is an
excellent proxy for photosynthesis in coffee, making it a tool of

choice for assessing the vigor of a genotype, which the present
study tends to prove.
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n Table 1: Successive treatment conditions applied on the H3W coffee populations before their transfer to the field. Altitude, dura-
tion and temperature are respectively measured in meters (m), months and ℃. AFS denotes agroforestry system.

Treatment Altitude Temperature Condition Duration Mimicking

1 600 23.6 Shade 3 n/a (acclimation)

2 600 24.5 Full sun 2 Open field

3 600 23.5 Shade 2.5 AFS established

4 1300 20 Full sun 2 Cooler temperatures
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n Table 2: Comparison between GP and PP models based on condition-ahead predictive abilities. We used L21-joint, ridge regression
(RR), multi-response LASSO (mLASSO), elastic-net (EN), Bayesian LASSO (BL) and multiple-trait BayesB (mBayesB). The performance
is computed as the correlation coefficient between measured and predicted leaf count (LC), tree height (TH) and trunk diameter (TD).
For populations H1xET47 (i.e. top panel) and H1xG (i.e. bottom panel). This is setting S3, where models are trained on the current envi-
ronmental condition to predict the next one. Numbers in bold represent the best performance and mLasso is not represented because all
the corresponding standard deviation were zero.

H1xET47

GP of treatment 3 using treatment 2 PP of treatment 3 using treatment 2

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.276 0.164 0.086 0.06 0.032 0.34 LC 0.429 0.539 0.376 0.387 0.315

TH 0.055 0.324 0.419 0.307 0.063 0.186 TH 0.297 0.076 0.303 0.392 0.083

TD 0.016 0.049 0.079 0.164 0.516 0.115 TD 0.273 0.491 0.205 0.104 0.314

GP of treatment 4 using treatment 3 PP of treatment 4 using treatment 3

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.191 0.124 0.012 0.111 0.153 0.068 LC 0.224 0.167 0.111 0.012 0.163

TH 0.182 0.168 0.493 0.483 0.188 0.271 TH 0.146 0.107 0.418 0.317 0.051

TD 0.202 0.338 0.028 0.23 0.082 0.095 TD 0.36 0.365 0.165 0.042 0.056

GP of treatment 4 using treatment 2 PP of treatment 4 using treatment 2

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.279 0.122 0.106 0.173 0.173 0.484 LC 0.0187 0.495 0.023 0.083 0.084

TH 0.204 0.168 0.427 0.482 0.036 0.052 TH 0.359 0.131 0.496 0.382 0.223

TD 0.004 0.154 0.047 0.239 0.061 0.13 TD 0.069 0.138 0.0425 0.369 0.287

H1xG

GP of treatment 3 using treatment 2 PP of treatment 3 using treatment 2

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.197 0.081 0.026 0.218 0.191 0.142 LC 0.213 NA 0.069 0.098 0.052

TH 0.043 0.009 0.117 0.112 0.065 0.022 TH 0.105 0.09 0.07 0.194 0.289

TD 0.314 0.125 0.116 0.069 0.025 0.372 TD 0.094 0.072 0.316 0.024 0.023

GP of treatment 4 using treatment 3 PP of treatment 4 using treatment 3

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.14 0.037 0.133 0.121 0.072 0.005 LC 0.294 0.186 0.332 0.181 0.369

TH 0.08 0.076 0.053 0.188 0.094 0.355 TH 0.508 0.37 0.03 0.13 0.136

TD 0.012 0.23 0.059 0.35 0.132 0.155 TD 0.207 0.01 0.151 0.097 0.359

GP of treatment 4 using treatment 2 PP of treatment 4 using treatment 2

BL EN GBLUP L21joint mBayesB RR BL EN L21joint mBayesB RR

LC 0.334 0.103 0.136 0.167 0.096 0.383 LC 0.279 NA 0.191 0.389 0.386

TH 0.027 0.11 0.068 0.081 0.063 0.361 TH 0.434 0.381 0.381 0.582 0.305

TD 0.015 0.175 0.036 0.149 0.19 0.288 TD 0.018 0.087 0.231 0.2964 0.149
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n Table 3: Comparison between GP and PP models based on between-family predictive abilities. We used L21-joint, ridge regression
(RR), multi-response LASSO (mLASSO), elastic-net (EN), Bayesian LASSO (BL) and multiple-trait BayesB (mBayesB). The performance
is computed as the correlation coefficient between measured and predicted leaf count (LC), tree height (TH) and trunk diameter (TD)
at each treatment condition. For populations H1xET47 (i.e. top panel) and H1xG (i.e. bottom panel). This is setting S4, where models
are trained with data from one family to predict traits of the other one, with traits and phenomic data constructed by concatenating the
respective measurements over all treatment conditions after the acclimation period. Numbers in bold represent the best performance
and NA is used to denote that the corresponding standard deviation was zero.

GP of H1xG using H1xET47 PP of H1xG using H1xET47

BL EN GBLUP L21joint mBayesB mLasso RR BL EN L21joint mBayesB mLasso RR

LC2 0.038 0.13 0.056 0.038 0.114 0.03 0.308 0.099 0.137 0.009 0.102 NA 0.02

TH2 0.002 0.095 0.022 0.061 0.168 0.072 0.103 0.305 0.123 0.236 0.294 NA 0.094

TD2 0.025 0.07 0.078 0.007 0.079 0.168 0.042 0.111 0.273 0.01 0.225 NA 0.359

LC3 0.1 0.118 0.046 0.003 0.052 0.194 0.222 0.027 0.164 0.128 0.177 NA 0.223

TH3 0.066 0.203 0.035 0.083 0.127 0.039 0.073 0.345 0.153 0.168 0.322 NA 0.032

TD3 0.078 0.209 0.066 0.168 0.076 0.114 0.079 0.14 0.018 0.138 0.096 NA 0.058

LC4 0.025 0.095 0.064 0.037 0.143 0.108 0.138 0.144 0.087 0.096 0.143 NA 0.167

TH4 0.009 0.09 0.068 0.128 0.018 0.015 0.224 0.252 0.084 0.277 0.279 NA 0.051

TD4 0.069 0.074 0.154 0.027 0.114 0.139 0.051 0.211 0.096 0.214 0.163 NA 0.039

GP of H1xET47 using H1xG PP of H1xET47 using H1xG

BL EN GBLUP L21joint mBayesB mLasso RR BL EN L21joint mBayesB mLasso RR

LC2 0.201 0.025 0.343 0.072 0.29 NA 0.008 0.118 0.066 0.081 0.018 NA 0.098

TH2 0.143 0.169 0.078 0.04 0.006 NA 0.349 0.008 0.002 0.116 0.047 NA 0.053

TD2 0.009 0.196 0.204 0.111 0.127 NA 0.161 0 0.037 0.054 0.007 NA 0.052

LC3 0.07 0.197 0.052 0.157 0.106 NA 0.025 0.005 0.11 0.018 0.021 NA 0.144

TH3 0.016 0.214 0.077 0.122 0.029 NA 0.194 0.129 0.002 0.126 0.04 NA 0.082

TD3 0.038 0.021 0.142 0.099 0.117 NA 0.093 0.086 0.068 0.067 0.151 NA 0.326

LC4 0.213 0.101 0.036 0.002 0.142 NA 0.036 0.096 0.103 0.033 0.064 NA 0.058

TH4 0.004 0.116 0.214 0.118 0.002 NA 0.214 0.096 0.09 0.048 0.003 NA 0.049

TD4 0.345 0.186 0.194 0.125 0.294 NA 0.244 0.133 0.203 0.178 0.111 NA 0.08
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n Table 4: Selection performance of L21-joint, ridge regression (RR), multi-response LASSO (mLASSO), elastic-net (EN), Bayesian
LASSO (BL) and multiple-trait BayesB (mBayesB). The performance is computed as the proportion of correctly selected best performing
lines with respect to leaf count (LC), tree height (TH) and trunk diameter (TD). For populations H1xG (i.e. left panel) and H1xET47
(i.e. right panel), the assessment is conducted for genomic and phenomic predictions models accounting for environmental conditions.
Numbers in bold represent the best performance and we write xx to express that, the corresponding statistical approach was not used
for phenomic prediction.

Selected proportion of best performing lines

RR Mlasso EN GBLUP BL mBayesB L21-Joint RR Mlasso EN GBLUP BL mBayesB L21-Joint

(A1): GP_H1xG (A2): GP_H1xET47

LC 15 20 5 20 10 5 20 15 20 25 25 25 35 30

TH 15 10 20 5 15 15 15 30 20 20 20 30 30 35

TD 15 10 25 20 15 15 20 10 10 15 25 10 20 25

(B1): PP_H1xG (B2): PP_H1xET47

LC 15 10 10 xx 20 20 20 25 5 25 xx 30 25 30

TH 0 10 15 xx 15 5 10 20 15 35 xx 30 25 30

TD 5 10 35 xx 15 15 25 30 25 25 xx 25 30 30
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