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Abstract

The efficiency of genomic selection strongly depends on the prediction accuracy of the genetic merit of
candidates. Numerous papers have shown that the composition of the calibration set is a key contributor to
prediction accuracy. A poorly defined calibration set can result in low accuracies, whereas an optimized one
can considerably increase accuracy compared to random sampling, for a same size. Alternatively, optimizing
the calibration set can be a way of decreasing the costs of phenotyping by enabling similar levels of accuracy
compared to random sampling but with fewer phenotypic units. We present here the different factors that
have to be considered when designing a calibration set, and review the different criteria proposed in the
literature. We classified these criteria into two groups: model-free criteria based on relatedness, and criteria
derived from the linear mixed model. We introduce criteria targeting specific prediction objectives includ-
ing the prediction of highly diverse panels, biparental families, or hybrids. We also review different ways of
updating the calibration set, and different procedures for optimizing phenotyping experimental designs.

Key words Calibration population, Optimization, Prediction accuracy, Genomic selection, CDmean,
PEVmean

1 Introduction

Several factors affect the accuracy of genomic prediction including
(1) trait-specific characteristics like the heritability and the genetic
architecture of the trait, (2) population-specific characteristics like
the level of linkage disequilibrium (LD) between markers and
quantitative trait loci (QTLs) and the number of effective chromo-
some segments (Me) segregating in the population, (3) the statisti-
cal method used to make predictions, and (4) experiment-specific
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characteristics such as the marker density, the size of the calibration
set (CS) and the degree of genetic relationship between the CS and
the predicted set (PS). The choice of the CS, i.e., reference indivi-
duals and their genotypic and phenotypic data, used to calibrate the
prediction model is therefore crucial, especially when predicted
traits are difficult or expensive to phenotype. In animal breeding,
the pedigree-based BLUP model has been used in routine for
several generations to predict the genetic value of candidates since
the pioneer work of Henderson [1]. The use of genomic selection
has modified the way the relationship between individuals was
estimated by adding marker genotypes to pedigree information.
In dairy cattle, it had little impact on the phenotypic data used to
calibrate predictions for traits previously addressed in routine, but
has opened the way to considering many new traits such as disease
resistance, which cannot be evaluated directly for all animals [2]. In
major crop species, the main focus is to select the best inbred lines
that can be produced after selfing generations within large biparen-
tal families, either for their direct use as varieties or as parents of
single-cross hybrid varieties. The number of candidate lines per
family is often larger than the phenotyping capacities and only a
small set of them can be evaluated in different environments to
evaluate their adaptation to various field conditions. In this context,
pedigree information is not useful to identify the best individuals
[3] within a given family and pedigree-BLUDP based on historical
data has therefore not been broadly used in crop breeding. With
genomic selection, the differences in genetic covariance between
pairs of individuals from a biparental family can be accounted for in
the model, unlike with pedigree data. Phenotypes are no longer
used exclusively as proxies of the genetic values of candidate indi-
viduals but also to train a predictive model involving molecular
markers as predictors, which potentially modifies phenotyping stra-
tegies. The advent of genomic selection clearly opens new possibi-
lities for improving the breeding efficiency of both animal and plant
species but raises the key question of how to define the best CS,
especially in plants. In the first part of this chapter, we provide some
general guidelines to be considered for this purpose. These guide-
lines are illustrated with examples and their biological bases are
discussed. In a second part, we present the different approaches
that have been proposed to optimize the reference population. In
the last part we show some applications of reference population
optimization, depending on the prediction objective. Even if geno-
mic predictions are also used in human genetics, this chapter
focuses on the application of genomic predictions for breeding
objectives in animal and plant species, with more emphasis on
plants where the issue of the optimization of the reference popula-
tion has been the most extensively considered.
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2 Impact of the Composition of the Calibration Set on the Accuracy of Genomic

Prediction

2.1 Calibration and
Predicted Individuals
Ideally Originate from
the Same Population

Most genomic prediction models such as GBLUP or in the decli-
nation of Bayesian models [4-6] assume that CS and PS individuals
are drawn from the same population. As described in the examples
below, this hypothesis is often violated and comes at the cost of a
reduced accuracy.

The first case is the application of genomic prediction in a
population stratified into genetic groups. This scenario has been
the subject of several studies to investigate (1) to which extent a
generic CS can be efficient to predict over a wide range of genetic
diversity, (2) or to which extent genetic groups with limited
resources can benefit from the data originating from other genetic
groups with more resources. In general, when a genomic prediction
model is trained on one genetic group to perform predictions in
another genetic group, the accuracy tends to be lower than what
can be achieved within each group. This phenomenon has been
illustrated in many animal and plant species including dairy cattle
[7-9], sheep [10], maize [11, 12], soybean [13], barley
[14], oat [15], or rice [16]. This case can also be extended to the
prediction between families, as shown in mice [17], maize [18, 19],
wheat [20], barley [21], or triticale [22]. In the worst case, the
addition of individuals to the CS that are genetically distant from
the PS can lead to a deterioration in the accuracy, as shown for
instance in barley [23] and maize [24].

Beyond genetic groups and families, differences in type of
genetic material (e.g., purebred and crossbred) between the CS
and PS can lead to reduced accuracies compared to what can be
achieved when the CS and the PS are of the same type of genetic
material. Examples are the prediction of crossbred individuals using
a purebred parental CS, as shown in pig [25], the prediction of
maize admixed population between two heterotic groups using one
of the parental population as CS [26], or the prediction of inter-
specific hybrids, as shown in Miscanthus [27].

Finally, the CS and PS may be drawn from the same population
but different breeding generations. This scenario is very common
when cycles of selection are done solely based on predicted genetic
values to shorten breeding cycles or when candidates are prese-
lected to reduce their number and limit phenotyping costs.
Decrease in accuracies can generally be observed over cycles when
prediction models are not updated with data from the selected
generation, as shown using simulations [28], or real data in pig
[29], sugar beet [30], alfalfa [31], maize [32], wheat [33], barley
[34], and rye [35]. Note that genotype-by-environment interac-
tions can also contribute to the drop in accuracy when the CS and
PS are not evaluated in the same environments.
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2.1.1 LD Between
Markers and QTLs Can Be
Different Between
Populations

2.1.2 QTL Allele
Frequencies Can Be
Different Between
Populations

As illustrated with these examples, a decrease in accuracies can
be expected when CS and PS individuals come from different
populations or breeding generations, and this decrease may result
from different factors that are presented in the following
subsections.

Since the early development of genomic prediction, the LD
between molecular markers and QTLs has been identified as a
major factor of accuracy [4]. It can be defined as the nonindepen-
dence between alleles at different loci on the same gamete. In
general, LD between markers and QTLs is assumed to be homoge-
neous within a population, but it may vary when the population is
stratified, which affects the success of across-breed genomic predic-
tion [7, 36]. Differences in LD between markers and QTLs may
indeed lead to differences in effects estimated at markers, impacting
the accuracy when one population is used to predict another. LD
between two loci is a function of recombination rate, minor allele
frequency (MAF) at both loci and effective population size
[37]. Differences in MAF and effective population size are very
common whenever a population is stratified into groups [38], but
differences in recombination rate can also be observed between
genetic groups, as shown in maize [39]. Differences in LD extent
estimated with markers have been observed among populations in
dairy and beef cattle [40, 41], pig [42], chicken [43], maize
[44, 45], or wheat [46]. Differences in the sign of the correlation
between the allelic state of loci pairs can also be found and are
referred to as differences in the linkage phase [40, 45]. In presence
of dense genotyping, the effect of differences in LD between popu-
lations on the accuracy is expected to be minimized [40, 47], as
most QTLs are expected to be in high LD with at least one shared
marker in both populations. The ideal situation is that only causal
loci are captured by the genotyping.

In addition to differences in LD, genomic prediction accuracy
across populations can be affected by differences in QTL allele
frequencies. The most extreme scenario consists of a QTL for
which an allele is fixed in the CS but is segregating in the PS. The
effect of such a QTL cannot be estimated using the CS, and the
genetic variance that it explains will not be accounted for in the
prediction [48, 49]. In the context of prediction across biparental
populations, Schopp et al. [50] proposed to adapt the formula of
Daetwyler et al. [48], used to forecast the accuracy, by including a
new term: the proportion of markers that segregates in both the CS
and PS relative to the total number of markers segregating in the
PS. Based on simulations, they showed that this criterion computed
using markers is a good approximation of the equivalent criterion
based on QTLs when the marker density is sufficiently large, and is
critical for the accuracy of predictions across families. In more
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complex populations, one can estimate the genetic differentiation
(Fst) using markers, as an indication of how QTL alleles frequency
differ between the CS and PS, which was shown to be negatively
related to the accuracy of genomic prediction [51].

The consistency of alleles frequency between the CS and PS can
be extended to the consistency of the frequencies of genotypic
states at QTLs (i.e., the two homozygous states and the heterozy-
gous state for a biallelic QTL). One example consists of dominance
effects at QTLs that can only be accounted for if some individuals
present a heterozygous state in the CS [52]. This phenomenon can
explain the decrease in accuracy observed when predicting cross-
bred individuals using purebred individuals for traits with substan-
tial dominance effects [25].

In most genomic prediction models, the effects of QTLs are
assumed to be consistent between the CS and PS. But this assump-
tion can be violated when the CS and the PS are drawn from
different populations. “Statistical” additive effects reflect the aver-
age effect of substituting an allele with the alternative allele in the
population and are implicitly or explicitly taken into account in
most models, including GBLUP. “Functional” dominance and
epistatic effects at QTLs contribute to the statistical additive effect
along with the functional additive effect, but, unlike the latter, their
contributions depend on allele frequencies [52-54]. From this
phenomenon emerges the concept of genetic correlation between
populations that aims at quantifying this difference in statistical
additive effects [55, 56]. Practically, note that genetic correlations
are often estimated using markers and then also include the hetero-
geneity generated by differences in LD between markers and QTLs.

In the present chapter, we define genetic relationships as standar-
dized covariances between individuals relative to the genetic com-
ponents of traits. In this context, they are defined at QTLs (i.e., at
causal loci) level and reflect the sharing of alleles at these loci.
Genetic relationships notably include additive genetic relationships
(AGRs) that describe relationships between individuals for additive
allele effects. As causal loci are generally unknown, AGRs must be
estimated based on the pedigree or by using markers. From a
pedigree perspective, the sharing of alleles at QTLs is considered
to result from their inheritance from a common ancestor. Those
alleles are characterized as identical-by-descent (IBD, see Thomp-
son [57] for a review), with IBD being defined relative to a founder
population as a reference starting point of the pedigree. In this
context, the coefficients of the pedigree relationship matrix
(PRM) consist of expected AGRs conditional on pedigree informa-
tion. Since the advent of molecular markers, AGRs can be estimated
using the genomic relationship matrix (GRM) in GBLUP, often
allowing better estimates of additive genetic variances compared to
those obtained using the PRM (see Speed and balding [58] for a

review).
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In the early developments of genomic prediction, the ancestral
LD between markers and QTLs was suspected of contributing
alone to the genomic prediction accuracy [4]. Ancestral LD can
be defined as statistical dependencies between loci that already
existed within the population founders of the pedigree, which
were generated by ancestral evolutionary forces. Thus, it does not
characterize additional dependencies between loci that arise from
the pedigree relationships between individuals. When individuals
are not related by pedigree, the GRM can only capture AGRs
through ancestral LD, as illustrated in Fig. 1A. However, when
CS and PS individuals are related by pedigree, the GRM captures
AGRs even in absence of ancestral LD between markers and QTLs
[5, 59-61], as illustrated in Fig. 1B. In this scenario, the GRM
describes IBD at markers and can be considered as a proxy for the
PRM. It explains why nonnull accuracies can be obtained when
applying genomic predictions with only few markers. The contri-
bution of ancestral LD and pedigree relationships to the accuracy
depends on the genomic prediction model. Variable selection
approaches like LASSO, or Bayesian approaches like Bayes-B tend
to better exploit ancestral LD than GBLUP to make predictions
[60, 62, 63]. In addition, for a given pedigree structure, the relative
contribution of ancestral LD and pedigree relationships to the
prediction accuracy depends on population size: pedigree relation-
ships tend to have a greater effect than ancestral LD on the accuracy
for CS of small size, and conversely for CS of large size [63—
65]. This contribution of ancestral LD relative to pedigree relation-
ships is an important parameter to consider when applying genomic
prediction between genetically distant CS and PS, as the accuracy
due to pedigree relationships will drop more quickly than that due
to ancestral LD with decreasing relatedness [59, 62].

In addition to pedigree relationships and ancestral LD between
markers and QTLs, Habier et al. [61] also demonstrated that the
GRM captures cosegregations between markers and QTLs. Cose-
gregations characterize the nonrandom association of alleles
between linked loci that can be observed within the individuals of
a given family of the pedigree. It can be distinguished from ances-
tral LD that characterizes the nonrandom association between
alleles of different loci that were already established in the founders
of the pedigree. In the absence of ancestral LD between markers
and QTLs, marker alleles will, nevertheless, cosegregate with QTL
alleles to which they are physically linked when new individuals are
generated, as illustrated in Fig. 1C. This information will be
accounted for in the GRM and will contribute to the genomic
prediction accuracy. Note that cosegregations help to describe
genetic covariances between individuals of the same family. When
several families are pooled into a common CS, differences in linkage
phase can be observed and may considerably limit the contribution
of cosegregations to the accuracy [24].
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Fig. 1 Hypothetical scenarios adapted from Habier et al. [61] illustrating different types of information captured
by the genomic relationship matrix (GRM): (A) Ancestral LD only, (B) Pedigree only, and (C) Pedigree +
cosegregations (CoS). For each scenario, 50 QTLs and 50 markers are considered with minor allele frequency
of 0.5. In scenario (A), QTLs and markers are assigned in pairs to chromosomes (a single pair per chromosome
with each loci pair being in LD = 0.8). In scenario (B), QTLs and markers are assigned to different
chromosomes (a single locus per chromosome). In scenario (C), QTLs and markers are assigned in pairs to
chromosomes (a single pair per chromosome with each loci pair being genetically distant by 5 cM but not in
LD). In scenario (A), gametes are generated independently from different founders of the population, while
they are generated from individuals resulting from the crossing of founders for scenarios (B) and (C). The
additive genetic relationship (AGR) between gametes is computed by applying the formula of [124] to QTLs
using simulated allele frequencies. The pedigree relationship matrix (PRM) between gametes is constructed by
assigning a coefficient of 0.5 between gametes originating from the same individuals, and 0 otherwise. The
GRM is calculated like the AGR but using markers. In scenario (A), the GRM can estimate the AGR using
ancestral LD, even in absence of pedigree relationship between gametes. In scenario (B), the GRM can
estimate the AGR by tracing pedigree relationships between gametes (like the PRM), even in absence of
ancestral LD between markers and QTLs. In scenario (C), the GRM can better estimate the AGR within a family
of gametes compared to the GRM in scenario (A) and the PRM, thanks to cosegregations between QTLs and
marker alleles that are physically linked on chromosomes. Note that we considered haploid gametes to
simplify the schematic representation but those concepts can be generalized to relationships between diploid
individuals
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2.3 CGalibration Set
Should Be As Large as
Possible

2.4 Genetic
Relationships Between
CS Individuals Should
Be Limited

Several studies have shown that the accuracy of genomic pre-
diction is linked to the AGRs between CS and PS individuals. Based
on simulation, Pszczola et al. [66] established the link between the
deterministic reliability of genomic prediction and the average
squared genomic relationship coefficient between CS and PS indi-
viduals. Habier et al. [60] illustrated that the accuracy of genomic
prediction increased with increasing a-max in dairy cattle, where
a-max is defined as the maximum pedigree relationship coefficient
between CS and PS individuals. This result was confirmed in maize
[67] and oil palm [68]. More generally, the need for close pedigree
relationships between CS and PS individuals has been illustrated in
several species like in mice [17].

In addition to AGRs, other types of genetic relationships can be
modeled to improve genomic prediction accuracies such as domi-
nance and epistatic genetic relationships. Like AGRs, these other
relationships directly reflect the sharing of alleles at QTLs and can
be estimated using the pedigree [57] or using markers
[52, 69]. However, they are often not accounted for in genomic
prediction models, as they generally have a limited contribution to
the overall genetic variance, except for specific applications such as
the prediction of hybrids (see Subheading 4.3).

When building a CS, increasing the number of individuals is gener-
ally beneficial. The importance of CS size has been shown theoreti-
cally using deterministic equations of the accuracy of genomic
prediction [48, 70-74]. They showed that the population size
should be large enough to properly estimate the effect of each of
the effective chromosome segments that segregate in the popula-
tion (quantified by their number Me), in particular for low herita-
bility traits. The effect of the CS size on genomic prediction
accuracy has been illustrated experimentally in plants [62, 75-77]
and animal species [78, 79], as well as in Human [80]. However,
one should keep in mind that increasing the number of individuals
should be done with caution if additional individuals are genetically
distant from the PS individuals, as mentioned in the previous
subsection. There is also a compromise to be found between the
number of phenotyped individuals and the accuracy of the pheno-
typing that can be increased in plants by increasing the number of
observations per individual (see discussion in Subheading 4.4).

Finally, it is generally admitted that genetic relationships among
individuals should be limited within the CS. This idea is related to
the common assumption that, in genomic prediction, experimental
designs should aim at replicating alleles rather than individuals
[81]. Because individuals with high degrees of genetic relationship
can be considered as partial replicates and somewhat redundant,
including them all may not be the best allocation of resources
regarding genomic prediction accuracy. Based on simulations,
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Pszczola et al. [28, 66] have shown that average reliabilities of
genomic prediction decreased with increasing genetic relationships
within the CS. These results were confirmed in dairy cattle
[82]. However, limiting the genetic relationships between CS indi-
viduals is not sufficient to maximize the accuracy, as maximizing
genetic relationships between CS and PS individuals is also
important.

3 Methods to Optimize the Composition of the Calibration Set

3.1 Model-Free
Optimization Criteria
Based on Genetic
Distances Between
Individuals

3.1.1  Optimization Based
on Genetic Diversity Within
the CS

Considering all the factors affecting predictive ability mentioned
above, optimizing the composition of CS is not a simple task. We
can, however, suppose that when CS and PS cover the same genetic
space, they will have similar LD patterns, same segregating QTLs
and a high genetic relationship, which are the main drivers of
predictability. Numerous criteria have been proposed in the litera-
ture to optimize the composition of the CS. They can be grouped
into two classes. The first class of approaches consists in identifying
optimized CS based on model-free relatedness criteria. The second
class of approaches is directly based on the genomic selection (GS)
statistical model. They mostly rely on GBLUP, which is one of the
reference GS models. They consist in defining CS by optimizing
some criteria derived from the linear mixed model: the
(generalized) Prediction Error Variance (PEV) and Coefficient of
Determination (CD), or the expected Pearson correlation between
predicted and observed values (7). Each criterion has advantages
and drawbacks related to their efficiency to maximize predictive
ability, their computational demand, and their ability to optimize
the CS prior to phenotyping. A brief description of the methods/
criteria (including references and, if available, scripts or tools to
implement them) is presented in Table 1. In this part, we will review
the two classes of criteria. The specific questions of predicting
biparental families, optimizing or updating the CS when pheno-
types are available, optimizing CS for hybrids, and optimizing
experimental designs will be reviewed in Subheading 4.

As mentioned above, one of the main objectives when designing a
CS is to ensure that the genetic space covered by the PS is well
captured by the CS. Relatedness being a key contributor to predic-
tion accuracy, different relatedness-based criteria were proposed to
optimize the composition of the CS.

A first way of optimizing the composition of the CS using related-
ness is to minimize genetic similarity within the CS. The underlying
idea is that genetic similarity within the CS can be seen as partial
redundancy, and so CS including related individuals would be less
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informative than more diverse CS (see Subheading 1). This can be
for instance done by minimizing the average or the maximum of
the relationship coefficients within the CS [83]. A similar approach
was proposed by Bustos-Korts et al. [84] to design a CS leading to a
uniform coverage of the target genetic space. This is based on a
geometric approach that ensures that no close relatives are included
in the CS. Guo et al. [85] proposed a method called Partitioning
around Medoids (PAM), in which individuals are grouped into
clusters and representatives of each group are identified. They also
proposed Fast and Unique Representative Subset Selection
(FURS), which is a sampling method based on graphical networks.
The principle of FURS is to identify nodes (individuals) with high-
est degree of centrality. These criteria are best adapted to identify a
CS among a set of candidates that will be used to predict the
performance of the remaining candidates (like the scenario in
Fig. 2A). They cannot be used to optimize a CS for an independent
PS.

CS optimization based on these criteria has led to a higher
prediction accuracy than random sampling [84, 85], but they do
not directly consider the genetic relatedness between the CS and
the PS. If most of the PS individuals are present in a small part of
the genetic space, it is important to have many CS individuals in this
part, even if it leads to a low diversity in the CS. In other words, it is
important to weigh the different parts of the genetic space accord-
ing to the distribution of the PS individuals, the optimal CS being
not necessarily the one with the highest genetic diversity.

CS Candidates &
Predicted set
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Optimization
genotypes and heritability
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Fig. 2 Comparison of two standard scenarios that can be considered for the optimization of the calibration set
(CS) based on PEVmean and CDmean. In (A) a single population is split into a CS and a predicted set (PS) with
the objective of optimizing the CS for best predicting non phenotyped individuals (PS), while in (B) the set of CS
candidates and the PS (both genotyped) are distinct. In both scenarios, the PEVmean and the CDmean criteria
are computed directly for the PS individuals
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The genetic relatedness between the CS and the PS is taken into
account by criteria Gmean [23], Avg_GRM [86], and Crit_Kin
[87]. For Gmean and Avg_GRM, candidates to the CS are ranked
according to their average genetic relatedness to the PS. The indi-
viduals with the highest average are included in the CS. Roth et al.
[88] and Berro et al. [89] proposed similar approaches in which
individuals are ranked according to their maximum or median
genetic relatedness to the PS. For Crit_Kin the average of the
relationship coefficients between the CS and the PS is maximized.
These criteria generally resulted in higher predictive ability than
random sampling [23, 86-88, 90]. Contrary to the previous cri-
teria (Subheading 3.1.1 above), Gmean, Avg_ GRM and Crit_Kin
take into account genetic relatedness between CS and PS, but do
not consider redundancy within the CS. To design an optimal CS, it
seems important to balance the two aspects.

Another criterion that has, to our knowledge, not yet been
tested in the literature and that could help reaching this balance,
is Gmax, the maximum relatedness coefficient between a given PS
individual and the CS individuals. As prediction accuracy decreases
with the genetic distance between the CS and the PS (see above), it
seems interesting to ensure that each PS individual has a close
relative in the CS, as illustrated in Clark et al. [63] and Habier
et al. [59]. One criterion could be to identity a CS maximizing the
average of the Gmax of all PS individuals. This criterion seems
promising, as its maximization will result in similar genetic disper-
sion for CS and PS. We can indeed think that the optimal CS is the
PS itself, and Gmax will help identity a CS as close as possible to this
optimum.

In case of population structure, all the abovementioned criteria
derived from relatedness coefficients could also be useful as popu-
lation structure is partially captured by genetic relatedness. But in
the case of strong structure, it may be necessary to directly take it
into account. It was proposed in numerous studies to define the CS
by stratified sampling. These algorithms ensure that each group is
well represented in the CS, possibly taking the size of each group
into account [84, 87, 90-93]. The efficiency of these approaches to
increase predictive ability was disappointing, as they were often not
better (sometimes worse) than random sampling, and most of the
time not as good as relatedness-based criteria not taking structure
into account. This is probably due to the fact that they only rely on
population structure and do not consider relatedness within the
groups. Their efficiency, however, increases with the importance of
the structuration [91]. Optimizing CS by combining information
on population structure and relatedness seems an interesting alter-
native strategy to achieve higher accuracy. The specific and extreme
case of predicting a population stratified into biparental populations
will be discussed below.
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3.2 Optimization
Using “Model-Based”
Criteria Derived from
the Mixed Model
Theory (PEV, CD, r)

3.2.1 CS Optimization
Using the Prediction Error
Variance (PEV) or the
Coefficient of
Determination (CD)

The abovementioned criteria are model-free in the sense that they
do not rely on any genomic prediction model. We can, nevertheless,
think that if a GS model results in accurate predictions, working
with theoretical criteria derived from the same model could be
valuable. One of the reference and most efficient GS model is the
GBLUP mixed model. It is particularly adapted to polygenic traits
because it relies on the infinitesimal model. Analytical develop-
ments were made within the mixed model theory to derive criteria
related to the expected predictive ability of the model before any
phenotyping. In this section we introduce these criteria and how
they were used to optimize CS.

Rincent et al. [83] proposed to use the generalized Prediction
Error Variance (PEV(c)) or the generalized expected reliability
(generalized Coeflicient of Determination, CD(c)) of contrast
¢ to optimize the composition of CS in genomic prediction.

In animal breeding, PEV(c) or CD(c) were first proposed to
track disconnectedness in experimental designs [94, 95]. The con-
trast ¢ indicates in which comparison we are interested in. If one
wants to consider the comparison between the prediction of indi-
vidual 1 and the prediction of individual 2 in a set of four indivi-
duals, then¢ =[1 —1 0 0]. If one wants to compare a group
of'individuals (1 and 2) with another group of individuals (3 and 4),
thene¢ =[1 1 —1 — 1]. The sum of the contrast elements always
has to be null. Contrary to plants, animals cannot be replicated in
different environments, and so the comparison of animals of difter-
ent years or different herds can be a problem. The genetic related-
ness between individuals obtained from the pedigree can be used to
connect the different management units. Taking into account this
connectivity is important to ensure that the comparison between
animals is reliable. PEV(c¢) and CD(c) were initially used to opti-
mize experimental designs (repartition of animals in different
herds) to make the comparisons reliable [94, 95]. More recently,
it was applied to models relying on realized relationship matrices
based on marker information [96, 97], possibly in the presence of
nonadditive effects [98].

The generalized PEV and CD are derived from the GBLUP
model, with: y= X + Zu + e, where yis a vector of phenotypes, f is
a vector of fixed effects, # is a vector of random genetic values
(polygenic effect) and e is the vector of errors. X and Z are design
matrices. The variance of the random effect # is: var(#) = Aaﬁ,
where A is the relationship matrix (realized relationship matrix in
the context of genomic prediction) and 62 is the additive genetic
variance in the population. The variance of the errors e is:
var(e) = Io2, where Iis the identity matrix.

The PEV of any contrast ¢ of predicted genetic values can be
equivalently calculated as:
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where ¢ is a contrast, # is the BLUP of #, M is an orthogonal
projector on the subspace spanned by the columns of X: M=1— X
(XX)" X and (XX)™ is a generalized inverse of X X [94], M, =

£ o5 'x(xE'x) X'E, £=2ZA4Z + I is the pheno-
typic covariance matrix scaled to some variance ratio and 1=
o2/ oj. The last expression of PEV(c) has the advantage of being
computationally much more efficient when the size of the CS is
small in comparison to the total number of individuals considered.
PEV(c) is influenced by the genetic distance between the compared
individuals and by the expected amount of information brought by
the experiment on the compared individuals. A low PEV of a
contrast between two individuals can be due to their close genetic
similarity, or to the important amount of information brought by
the experiment on the given comparison (e.g., the two individuals
are related to many CS individuals meaning that their predictions
will be precise).

The generalized CD [94] is defined as the squared correlation
between the true and the predicted contrast of genetic values, and is
computed as:

CD(c) = cor(c'n,c'u)’,

¢(a-Azmz+24a7) e
CD(C) = ; >
cAc
d(AZ'M,ZA)c
cAc '

As for PEV(c) the last expression of CD(c) is computationally
more efficient, because of the reduced size of the matrix to be
inverted when the number of observations is smaller than the
total number of individuals. The CD(c) is equivalent to the
expected reliability of the contrast. It takes values between 0 and
1,2 CD(c) close to 0 means that the prediction of the contrast is not
reliable, whereas a CD(c) close to 1 means that the prediction is
highly reliable. The generalized CD(c) is equal to CD(¢) =

1 — ZEV(9) A a result, the CD(c) increases with diminishing PEV

o Aco? *

I
(c) and with increasing genetic distance between individuals
involved in the targeted contrast. An increase of the genetic dis-
tance will indeed increase the genetic variance of the contrast. Note

CD(c) =
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that if ¢ is replaced by a vector of 0 and a single 1, the resulting CD
is no longer the generalized CD of a contrast but the individual CD
of the corresponding individual.

Rincent et al. [83] first proposed to use PEV(c) and CD(c) to
optimize the composition of the CS in genomic prediction. As CD
(c) is the expected reliability of a given contrast ¢, it is a criterion of
choice to maximize prediction accuracy by optimizing the compo-
sition of the CS. The main aim of genomic selection is indeed to
discriminate between individuals based on their predicted breeding
values. As shown above, the computation of these criteria only
requires the kinship matrix and the ratio of the error and genetic
variances (1) that can be chosen based on prior knowledge. No
phenotypic information is required, so the optimization of the CS
can be done prior to any phenotyping. The optimization was only
marginally affected by 4 in Rincent et al. [83] and Akdemir et al.
[99], which means that the CS optimizing PEV(c) or CD(c) is
supposed to be efficient for any polygenic trait.

Rincent et al. [83] have proposed the criteria PEVmean =

NLMZZTPEV(Q) and CDmean = Nimzlz\ipf CD(c;), where ¢; is
the contrast between PS individual i and the mean of the popula-
tion, and Npg is the size of the PS. CDmean (PEVmean) is the
average of the CD(c) (PEV(c)) of the individuals in the PS consid-
ering a given CS. CDmean is expected to be better than PEVmean
for improving GS accuracy, as illustrated in Rincent et al. [83] and
Isidro et al. [91], since the CD(c) is related to the ability to
discriminate individuals. By maximizing CDmean of the PS, we
define a CS able to discriminate each predicted individual from
the average population, so that we are able to reliably identify the
best (or the worst) individuals. Using two maize diversity panels,
Rincent et al. [83] considered a case when only part of a population
could be phenotyped so the CS was optimized in order to predict
the non phenotyped individuals (PS), and a case when the CS was
optimized in order to predict a predetermined PS (Fig. 2). They
showed that a considerable increase of prediction accuracy could be
reached by optimizing the CS with PEVmean and even more with
CDmean in comparison to randomly sampled CS. From another
perspective, PEVmean and CDmean based CS enabled the same
prediction accuracy as random CS with twice as less phenotyped
individuals. One key point with these criteria is that they take into
account kinship between all individuals (CS and PS), and therefore
result in the sampling of an optimized CS specific to a given PS. Asa
result, it is highly recommended to optimize the PEVmean or
CDmean of the predicted individuals [83, 87, 99, 100] rather
than those of the individuals composing the CS [91, 101]. These
criteria have been tested and validated in different species such as
maize [83, 86, 87, 93], palm tree [68], wheat [102-104], barley
[90], oat [15], cassava [105, 106], miscanthus [27], Arabidopsis
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[99], apple tree [88], and peas [107] in populations of various
levels of relatedness. CDmean led to prediction accuracies at least
as good as those obtained with model-free criteria [83, 86, 87,91,
93] with some exceptions [88-90, 108]. Note that the contrasts are
flexible and can be adapted to address specific prediction objectives.
For instance, in the context of biparental families, different con-
trasts have to be defined if one is interested in comparing families or
individuals within families (see criterion CDpop below). In case of
strong population structure, it can be necessary to adapt these
criteria [87,91, 101]. Isidro et al. [91] have proposed the stratified
CDmean maximizing the CDmean within each group. This crite-
rion did not improve prediction accuracy in comparison to
CDmean. This may be explained by the fact that CDmean takes
population structure into account as long as it is captured by the
kinship matrix. One of the strengths of PEV(c) and CD(c) is that
they can be adapted to address specific prediction objectives (e.g.,
scenarios a and b in Fig. 2) by adapting the contrasts. It can be used
to optimize CS for a given PS (Fig. 2A), or to select the best CS
within a population that can only be partially phenotyped, the
remaining individuals being predicted (Fig. 2B). Rincent et al.
[87] proposed to adapt the contrasts to take population structure
into account. In this study based on connected biparental popula-
tions, new criteria were proposed to maximize prediction accuracy
within each population (CDpop), or the global accuracy not taking
population structure into account (CDmean). They showed that
the definition of the contrasts could be adapted to specifically
address each prediction objective (see below). Examples of CS
optimized with CDmean or CDpop are presented in Fig. 3.

Genomic prediction models can be adapted to take into account
multitraits and multienvironments in a same statistical model. This
was shown to increase prediction accuracy in particular when a
low-cost secondary trait is measured on the PS, i.e. trait-assisted
prediction [109-111], or when all PS individuals are phenotyped in
at least one environment in a multienvironment trial, i.e., sparse
testing [112-116]. In these situations, the partition between CS
and PS is not as clear as in the previous paragraphs, as some of the
PS individuals are partially observed (phenotyped for a secondary
trait, and /or in some of the environments). The optimization is
more complex, as the experimental design involves more than one
trait or environment. The underlying model is y = XB + Zu + ¢, in
which yis a vector of phenotypes concatenating the different traits,
nis the corresponding vector of multitrait polygenic effects, and eis
the vector of errors, var(u) =X, ® Aand var(e) =X, ® I, with X,
the matrix of genetic variance /covariance between traits, and X, the
matrix of error variance/covariance between traits. Generalized
CD can be derived from this model [117] to compute the expected
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Fig. 3 Networks representing examples of calibration set (CS) optimized with generalized CD criteria (A:
CDmean and B: CDpop). The green dots indicate the individuals to be predicted (PS), the red squares indicate
the 30 individuals composing the CS optimized with CD criteria. Individuals are connected with an edge when
their genetic relationship is above a given threshold. In (A) we considered a highly diverse panel in which the
objective was to sample a CS optimal for the prediction of the remaining individuals. In (B), we considered
different biparental populations of a Nested Association Mapping (NAM) design, with the objective of
predicting one given biparental family by sampling an optimal CS from the other biparental families. The
contrasts were adapted to answer these two prediction objectives and correspond to the criteria CDmean (A)
and CDpop (B), see Rincent et al. [83, 87]. In (A), the network indicates that CDmean selects key individuals
related to many others. In (A) the network illustrates that CDpop samples individuals the most representative
of the PS, mostly belonging to biparental populations strongly related to the PS

reliability for each individual-trait combination. This is a generali-
zation of the single trait CD, in which the genetic and error
covariances are adapted to the multitrait context. The computation
of this criterion (CDmulti) is as follows.

/ 4 — —1\y~!
1CDmu(liti(c:) = C((E”Q@A)*(Zc%fﬂéfg: A% ) ) with ® the Kro-
necker product,

Mi=(Z oD - (5 e DX(X'(E e DX) X(Z'eI).

Computing CDmulti requires prior knowledge on genetic
covariances between traits (genetic and error covariance matrices
between traits), and so the optimized multitrait design is specific to
a set of traits or environments. In CDmulti, each individual—trait
combination is characterized by a CD value (using the
corresponding contrast). Ben-Sadoun et al. [117] considered a
trait-assisted prediction scenario with a target trait and a secondary
trait easy and inexpensive to phenotype and correlated to the target
trait. The goal was to identify which individuals should be pheno-
typed for the target trait, for the secondary trait or for both, to
maximize prediction accuracy of the PS for the target trait with
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budget constraints. They showed that phenotyping strategies opti-
mized with CDmulti resulted in a slight but systematic increase of
prediction accuracy in comparison to random sampling. In a multi-
environment context, one can expect some levels of GxE and
different phenotyping costs associated to each environment. In
this situation, CDmulti could help determine which individuals
should be phenotyped in each environment.

More recently, Ou and Liao [101 ] proposed to derive the expected
Pearson correlation between phenotypes and predicted breeding
values (7) in the PS, often referred to as predictive ability. This
optimization criterion is also derived from the GBLUP model and
can be computed without any phenotypic data. This criterion is
interesting as it directly targets the predictive ability, which is
related to genetic progress. The authors showed that it resulted in
higher predictive ability than other criteria derived from the
GBLUP model (PEV, CD) and stratified sampling. This conclusion
could, however, partly be due to the fact that the CD criteria were
computed within the CS (the genotypes of the PS individuals were
not considered).

The main limitation common to all aforementioned criteria is
that they rely on genome-wide relatedness through the use of a
GBLUP model, which means that they are only adapted to poly-
genic traits. This is not a problem for most productivity traits, but
they are not adapted to traits influenced by major genes such as
some disease resistances or phenology. Theoretical developments
could be proposed in the future to adapt these criteria to trait
specific genetic architecture, in particular to the presence of major
genes. A new criterion (EthAcc) targeting the expected prediction
accuracy (7(u, u)) was proposed to better take genetic architecture
into account using the results of genome wide association studies
obtained with historic data and genotypic information of the PS
[118, 119]. The objective here is to determine an optimal CS from
existing phenotyped and genotyped individuals. This is a common
situation in plant breeding, as breeders accumulate such data year
after year. This criterion was efficient to determine the optimal size
and composition of the CS, but the search algorithms were unable
to identify the optimal CS without using phenotypic information
from the PS. This approach implies that the CS is specific to a given
trait and requires the identification of QTLs prior to CS
optimization.

For most of the abovementioned criteria, it is not possible to
directly determine the CS with the optimal value for the chosen
criterion. For instance, there is no analytical way to determine the
CS with the best CD, PEV or r value. Different iterative optimiza-
tion algorithms were proposed based on exchanges of individuals
between the CS and the remaining individuals to improve step by
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step the criterion computed for a combination CS/PS. These algo-
rithms can be simple exchange algorithms [83, 87, 117], genetic
algorithms [99, 101, 120, 121] or differential exchange algorithms
[121] (see Table 1 for the list of scripts available implementing
different algorithms). Such iterative algorithms do not guarantee
convergence toward the global optimum, and have to be run with
different starting values and with sufficient iterations to reach a
better CS than the initial one. One of the main limits of these
criteria is that the search algorithm is computationally demanding
for large datasets composed of thousands of individuals or beyond
[99]. Approaches based on approximation of the PEV [123-125],
including principal component analysis on the genotypic data [99],
can reduce computational time. It would be interesting to include
contrasts in this approach to optimize more specific prediction
objectives.

4 Focus on Some Specific Applications of CS Optimization

4.1 CS Optimization
for Predicting
Biparental Populations

Plant breeders mainly work with full-sib families, which is a specific
case of population structure. Optimizing a CS is particularly chal-
lenging in this case because of the different LD phases and QTLs
segregating between families. Considering a single family, the opti-
mization of the CS can be done with the criteria based on genetic
relatedness presented above. However, in Marulanda et al. [126]
where CS optimization was applied within each family, all the tested
criteria failed to optimize the CS. In this scenario, due to strong
relatedness between full sibs, the improvement associated with CS
optimization is expected to be limited in comparison to what can be
observed with more diverse material. Apart from these simple
within-family scenarios or the situations in which the parents
involved in the different crosses are genetically close, the identifica-
tion of families highly predictive of a target family is challenging
[87, 127] even when the phenotypic variance and heritability of
each family is known [128]. It is common that unrelated families
result in negative prediction accuracy [19, 127], and so it is impor-
tant to remove such families from the calibration set.

To identify the best predictive families Schopp et al. [50]
proposed criteria such as the proportion of shared segregating
SNP in the CS and the PS families (8), the linkage phase similarity
[40], or the simple matching coefficient [129]. 6 was efficient to
predict the accuracy when averaged over many traits, but was much
less efficient when considering a given trait because of trait specific
genetic architecture. Brauner et al. [127] concluded that it was too
risky to add unrelated families to the CS with regard to the potential
gain in predictive ability, and so recommended to include only full
and half sibs.
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Rincent et al. [87] proposed a criterion (CDpop) derived from
the generalized CD to predict the prediction accuracy within a
given family when using as CS individuals sampled from one or
several other families. This criterion was able to predict the
observed prediction accuracy quite accurately, and was efficient to
optimize CS specifically designed to predict a given family. The
prediction accuracies were on average much higher with CDpop
than with random sampling. However, this study was based on
families of half-sibs (NAM, [39]) and CDpop has not been tested
yet on unrelated families.

The criteria introduced in the previous parts were mostly proposed
to optimize the composition of the CS prior to any phenotyping.
Breeders are, however, facing situations in which some individuals
have already been phenotyped, for instance when the CS has to be
selected from previous breeding cycles. In these situations, the
information provided by the phenotypes may be used to improve
the composition of the CS. This would be valuable in two situa-
tions: the regular update of the CS along breeding cycles, or the
selection of phenotypes from historical data.

Prediction accuracy decreases over time in successive breeding
cycles because of the lower genetic similarity and increased discrep-
ancy of segregating QTLs between the CS and the PS [28-
35]. This makes it necessary to regularly update the CS by pheno-
typing additional individuals. The selection of the new individuals
to include in the CS, can be done with the abovementioned criteria,
but we can think that the phenotyping data collected in the previ-
ous cycles could help updating the CS. Neyhart et al. [130] and
Brandariz and Bernardo [131] have proposed to update the CS
with the individuals with the best and worst GEBV in the previous
generation(s). Simulations showed that it resulted in higher predic-
tion accuracy than random sampling, PEVmean or CDmean. The
efficiency of this approach was illustrated in various experimental
studies [132-135]. We can suppose that the efficiency of this
strategy is due to the maximization of the number of segregating
QTLs in the CS.

Breeders have access to important phenotypic data collected year
after year that can be used to calibrate the GS model. It was,
however, shown that subsampling part of the available phenotypic
data can improve the predictive ability in comparison to using the
full dataset. The presence of genetically distant individuals can
indeed decrease predictive ability [23]. This subsampling can be
done with classical criteria such as PEVmean, CDmean, or r derived
from the GBLUP, but they cannot be used to determine the
optimal CS size as they always improve when adding additional
individuals. They can, however, be used to determine the
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4.2.3 Optimizing the
Choice of Individuals to Be
Genotyped

4.3 Optimization of
the Calibration Set in
the Context of Hybrid
Breeding

composition and size of the CS after which the criterion only
marginally improves [101]. Criterion such as EthAcc [119] does
not present the same limitation, but its use in practice is hindered
by the poor ability of the search algorithm to identity the optimal
CS without including the PS phenotypes. Another option is to
determine a CS specific to each predicted individual by selecting
its most related individuals [23] or by optimizing criteria based on
PEV(c) or CD(c) (PEVmeanl, [103]). With PEVmeanl, a CS is
specifically designed for each PS individual by minimizing its indi-
vidual PEV. Predictive abilities obtained with PEVmeanl were
generally similar to those obtained with PEVmean, but higher for
small CS. De los Campos and Lopez-Cruz [136] have formalized
an approach in which a penalty is used to set to zero the contribu-
tion of some individuals to the prediction. They showed that it
could significantly increase predictive ability when the penalty coef-
ficient is well determined.

In all the optimization approaches presented above, it was supposed
that genotypic information was available for all CS individuals. It
can, however, happen that only part of the individuals with histori-
cal phenotypic data have been genotyped, and in this case it could
be valuable to genotype some additional key individuals to improve
the predictions. This selection can be guided by the phenotypic
data or the pedigree. Boligon et al. [133] and Michel et al. [134]
have proposed to apply the “best and worst individuals” sampling
strategy to identify the individuals that should be preferentially
genotyped. Maenhout et al. [137] have used the generalized CD
(computed with pedigree) to improve the subsampling of historical
data by taking into account the balance (number of replicates of
each variety) and the connectedness between individuals (discon-
nectedness can be present when unrelated individual are evaluated
in distinct trials). Bartholomé et al. [138] proposed a two-step
strategy involving pedigree information and simulations.

For many plant and animal species, commercial products are
hybrids between individuals from different genetic groups (differ-
ent breeds or heterotic groups). In animal species such as pigs or
poultry, even if the commercial products are hybrids, the conven-
tional selection is often done at the purebred level and hybrid
performances are seldom considered. With the advent of GS, sev-
eral studies investigated the interest of accounting for crossbred
performances in CS in addition or instead of purebred perfor-
mances. Recently, Wientjes et al. [139] explored how to optimize
CS in this context using simulations but focused mainly on the
crossing design used to generate the crossbred individuals from the
purebred and not on the composition of the crossbred CS itself.
For allogamous plant species such as maize or sunflower, the breed-
ing objective is to produce single-cross hybrid varieties from two
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inbred lines, each selected in complementary groups. In this con-
text, the total number of potential single-cross hybrids is very large
(N1 X N, if Nj and N, are the numbers of inbred lines in group
1 and 2 respectively) and all of them cannot be evaluated. Classi-
cally, the genetic value of a hybrid is decomposed as the sum of the
general combining abilities (GCAs) of each of'its parental lines (i.e.,
the average performances of the hybrids progeny generated by
crossing one parental line to the lines of the other group) and the
Specific Combining Ability (SCA) of the cross (i.e., the comple-
mentarity between the two parental lines). In 1994, Bernardo
[140] proposed to use molecular markers to compute covariances
between the GCAs of parental lines in each group and between
SCAs of intergroup hybrids to predict performances of nonpheno-
typed hybrids from phenotyped ones. It was the first application of
GS in plants. Genomic selection is particularly interesting in this
context since the genotypes of all potential hybrids can be derived
from the genotypes of inbred lines. This offers the possibility to use
genotypes of inbred lines to (1) predict GCA of each candidate line
evaluated or not as hybrid and (2) to directly predict all potential
single-cross hybrid values (GCAs+SCA) to identify the most
promising varieties.

First optimization approaches of the CS based on empirical
data highlighted that the qualities of prediction of new hybrids
were higher when the CS and PS hybrids shared common parental
lines, that is when the new hybrids derived from parental lines that
contributed to the CS hybrids [141-143]. However, there is a
trade-off between the number of hybrid contributions per candi-
date line and the total number of lines that can contribute to the CS
[142]. This trade-off depends on the proportion of SCA relative to
the GCA, the total number of hybrids that can be evaluated and on
the prediction objective: the prediction of new hybrid combina-
tions between new lines (TO hybrids) or the prediction of new
hybrids between lines that contributed to the CS (T1 or T2 hybrids
when respectively one or two of the parental lines are parents of
some CS hybrids) [144]. Studies based on real [142], and
simulated data [144] showed that increasing the number of lines
contributing to the CS at the expense of the number of hybrids
evaluated per line is beneficial for better predicting TO hybrids.
However, doing so decreases the total number of TO hybrids
among the whole set of potential hybrids, so the optimal solution
over all categories of hybrids depends on the percentage of hybrids
that can be phenotyped. This advantage is also reduced when the
percentage of SCA is high since the accuracy of SCA prediction
decreases when inbred lines are only evaluated in one single CS
hybrid. When the objective is to predict the hybrid values in the
next generations, increasing the number of lines in the CS at the
expense of their contribution is generally the best solution (unless a
large percentage of the variance is due to SCA). Recently, Guo et al.
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[85] proposed a strategy called MaxCD (Maximization of Con-
nectedness and Diversity). In this strategy, a representative subset
of parental lines is first selected from patterns detected in the inbred
line genomic relationship matrix. From these lines, a set of hybrids
with nonoverlapping parental lines is defined and combined with a
set of hybrids issued from pairs of inbred lines most distant from
each other. The idea is to represent in the CS the expected diversity
of the whole set of hybrids.

Besides these empirical optimizations, other criteria such as
those based on PEV and CD were proposed recently. Momen and
Morota [98] extended the CD and PEV to include nonadditive
effects. In a model including additive and dominance effects they
proposed to use a multikernel approach for the predictions and to
use as K matrix in the CD and PEV, a linear combination of the
additive and dominance relationship matrices (G and D) each
weighted by the proportion of variance associated with these vari-
ance components, that is,

2 2
(o2 (o2
K= 4 2 2 DzD
optop  outop

They evaluated the link between the CD and the genomic
prediction accuracies in an animal breeding context using simula-
tions and real pig data. Based on their results they proposed to use
the CD for optimizing the CS. Note, however, that they did not
consider a hybrid design between unrelated populations and there-
fore assumed in their prediction model that there was only a single
additive variance component and a dominance variance compo-
nent, which does not correspond to the decomposition of hybrid
value in terms of GCA and SCA commonly used for factorial
designs. Fritsche Neto et al. [145] used the same formalism to
evaluate the interest of genomic selection in different maize hybrid
designs and optimized the CS using PEV. They used historical data
of variance component estimation to weigh the proportion of
additive and dominance variance in PEV computation and also
considered, as a benchmark, PEV based on additivity only. Their
results showed the interest in using PEV to optimize the hybrid CS,
but not the interest of considering dominance for its computation.
In agreement with empirical optimization, they found that an
optimal hybrid CS should involve as many parental lines as possible.
More recently, Heslot and Feoktistov [122] also confirmed on
sunflower data the interest of optimizing the hybrid CS using
PEV based on a single additive variance. Kadam et al. [93] used
an individual CD to identify among all potential hybrids that could
be produced from segregation families those to be phenotyped to
be included in the CS. They confirm the interest in using these
criteria (individual CD or PEV) for optimizing the CS compared to
the use of stratified sampling. Akdemir et al. [121] proposed to
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choose wheat hybrids to be included in the CS to best predict the
remaining hybrids by maximizing the worst individual CD of the
PS (CDmin) and showed its interest relative to random sampling.
To our knowledge, no optimization study has been based so far on
CD or PEV of contrasts (CDmean and PEVmean) and questions
remain on the extension of these criteria using a GCA / SCA
formalism.

In terms of optimization of the CS, beyond its composition, a key
question is the optimization of the experimental design for its
evaluation in next to come experiments or, if the CS is based on
historical data, the choice of the phenotypic data that should be
included in the model calibration process.

Optimization of the phenotyping design is a classical question
in plant breeding as a compromise must be found between the
number of individuals to phenotype, which has a direct impact on
the selection intensity, and the phenotyping effort: number of traits
measured, number of replicates within each field trial, and the
number of field trials [146]. Marker-assisted selection (MAS),
allowing selecting nonphenotyped individuals using marker-based
predictions, leads to a different optimal resource allocation com-
pared to phenotypic selection. In MAS, phenotypes are mostly used
to estimate marker effects and detect QTLs. As population size
plays a major role in determining the power of QTL detection,
optimal resources allocation strategies for QTL-based MAS are to
phenotype a larger number of individuals but with a lower number
of replications per individual compared to phenotypic
selection [147].

The first attempts to optimize the experimental design for
phenotyping the CS, focused on selection within a given biparental
population. Those approaches were based on simulations [81]
and/or deterministic formula of the expected accuracy of GS
adapted from Daetwyler et al. [48]:

N

rg,5) =\ ———
2.9) N+ M,

where N is the size of CS, /7 is the trait heritability at the design
level (which depends on the individual plot heritability, the number
of plots and the GxE variance component) and M, corresponds to
the number of independent loci segregating in the population. This
formula assumes that the accuracy of prediction does not depend
on CS composition. When considering a segregating population
where the LD is only due to cosegregation, M. can be approxi-
mated from the number of chromosomes and the expected number
of recombination events along chromosomes. Both Lorenz [81]
and Riedelsheimer and Melchinger [148] therefore considered an
M, value around 30 for a single biparental segregating family of
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maize. Endelman et al. [149] estimated M, on two real data sets of
barley and maize and used this estimate to derive expected accura-
cies for the optimization process. In GS, phenotypic data are used
to calibrate prediction equations with little concern on the accuracy
of each marker effect estimation compared to MAS. So even if the
prediction accuracy of untested individuals increases with the CS
size, it plateaus more quickly than for MAS giving more flexibility in
terms of design in the trade-oft between the number of individuals
evaluated and the number of replicates. Riedelsheimer and Mel-
chinger [148] extended the approach by (1) considering the pre-
diction accuracy of untested individuals but also of the tested
individuals included in the CS to predict the genetic gain and
(2) by taking into account GxE when optimizing the number of
environments in which the CS is evaluated. Endelman et al. [149]
showed that an efficient strategy is to combine GS and sparse
designs in which different subsets of CS individuals are phenotyped
in each trial, reducing the total number of plots needed without
reducing the number of phenotyped individuals nor the number of
locations. Other optimization approaches [150, 151] also studied
optimal resource allocation for the phenotyping of the CS using
deterministic simulations but instead of studying the impact of the
resource allocation on the GS accuracy, they considered it as an
entry parameter. Jarquin et al. [115] using maize experimental data
confirmed the interest in using genomic prediction models includ-
ing GxE effects with sparse designs in which most genotypes are
evaluated in only one trial. They, nevertheless, recommended hav-
ing a small percentage of individuals common to the different trials.

All the abovementioned approaches aim at optimizing the
phenotyping for a next to come population of candidates consider-
ing that part of them will be phenotyped to predict the remaining
ones. They did not consider the genotypic information of the
candidates when choosing among them which individuals should
be included in the CS at a fixed CS size. More recently, Atanda et al.
[86] extended the use of the CDmean proposed by Rincent et al.
[83] to this purpose in a maize data set composed of segregating
families. They considered two different phenotypic designs: sparse
testing (ST) design where all candidates of the targeted family are
evaluated but each in only one trial and another strategy where only
half of the candidates of the targeted family (HES) are evaluated in
all field trials. In both cases, they showed that CDmean efficiently
selects the subset of individuals to be evaluated in each trial in ST
designs and which individuals should be evaluated in the targeted
family to predict the remaining ones in the HES design. Extensions
of this approach, considering phenotypes in different trials as cor-
related traits, showed the interest of using multitrait CD to opti-
mize the allocation of CS individuals to different field trials [116,
121]. This opens the way to combine optimization of CS with
optimal resource allocation.
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A step forward into the optimization would be to fully inte-
grate the optimization of the CS with the optimization of the
experimental design up to the plot allocation of individuals in
each field trial. Recently, Cullis et al. [152] showed by simulation
that partially repeated field trial designs, optimized using “model-
based design” and considering genetic relatedness between geno-
types based on pedigree, increased the prediction accuracy of their
genetic values. The optimization was based on a sum of the PEV of
all pairwise contrasts between the genetic values of the individuals
which ensured an efficient comparison between all of them. Ideally,
it would be interesting to extend this approach for optimizing
experimental design and CS composition for the prediction of
individuals in the PS. This would require efficient optimization
processes to jointly address these two issues.

5 Conclusion and Prospects

The practical implementation of a new tool in breeding mainly
depends on the balance between costs and benefits. In this regard,
the optimization of the experimental designs and in particular the
optimization of the calibration set in genomic prediction is essential
because it can reduce costs and increase benefits [153]. CS compo-
sition optimized with the criteria presented here most of the time
resulted in higher prediction accuracy than random CS. The choice
of the appropriate criterion depends on many factors including the
prediction objectives, the population structure, the genetic archi-
tecture of the trait and the type of data available (e.g., PS individuals
genotyped or not). In any case, there is no universal CS that would
be optimal for any genetic material and any trait. We emphasize that
it is fundamental to take the genotypic information of the PS into
account when available to optimize the CS.

Ciriteria such as CD, PEV, or r should be further investigated to
address other questions such as the optimization of the CS for
predicting hybrids or crosses that have not been produced yet
[93, 122]. Another application in a plant breeding context would
be to optimize jointly the CS size, its composition as well as the
phenotypic design for each individual (we can suppose that it might
be beneficial to phenotype more deeply key individuals).

Another issue that should be taken care of] is the effect of the
composition of the CS on the loss of diversity in the breeding
population. Eynard et al. [154] have indeed shown that the way
of updating the CS affected the genetic diversity of the breeding
population along cycles, maybe because reducing the diversity
within the CS can result in fixing some of the QTLs. The effect of
CS optimized with the abovementioned criteria on this potential
loss of diversity has not been studied yet. A CS constrained optimi-
zation procedure that combines both objectives by maximizing
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predictive ability while controlling the loss of diversity would be
valuable, this was not addressed yet in literature.

References

1

. Erbe

. Henderson CR (1975) Best linear unbiased

estimation and prediction under a selection
model. Biometrics 31:423-447. https://doi.
org/10.2307 /2529430

. Tsairidou S, Woolliams JA, Allen AR, Skuce

RA, McBride SH, Wright DM, Bermingham
ML, Pong-Wong R, Matika O, McDowell
SWJ, Glass EJ, Bishop SC (2014) Genomic
prediction for tuberculosis resistance in dairy
cattle. PLoS One 9:¢96728. https: //doi.org/
10.1371 /journal.pone.0096728

. Daetwyler HD, Villanueva B, Bijma P, Wool-

liams JA (2007) Inbreeding in genome-wide
selection. J Anim Breed Genet 124:369-376.
https://doi.org,/10.1111/j.1439-0388.
2007.00693.x

. Meuwissen THE, Hayes BJ, Goddard ME

(2001) Prediction of Total genetic value
using genome-wide dense marker maps.
Genetics 157:1819-1829. https://doi.org/
10.1093 /genetics /157.4.1819

. Gianola D, des los Campos G, Hill WG,

Manfredi E, Fernando R (2009) Additive
genetic variability and the Bayesian alphabet.
Genetics 183:347-363. https://doi.org/10.
1534 /genetics.109.103952

. Gianola D (2013) Priors in whole-genome

regression: the Bayesian alphabet returns.
Genetics 194:573-596. https://doi.org/10.
1534 /genetics.113.151753

. Hayes BJ, Bowman PJ, Chamberlain AC,

Verbyla K, Goddard ME (2009) Accuracy of
genomic breeding values in multi-breed dairy
cattle populations. Genet Sel Evol 41:51.
https://doi.org/10.1186,/1297-9686-
41-51

. Pryce JE, Gredler B, Bolormaa S, Bowman PJ,

Egger-Danner C, Fuerst C, Emmerling R,
Solkner J, Goddard ME, Hayes BJ (2011)
Short communication: genomic selection
using a multi-breed, across-country reference
population. ] Dairy Sci 94:2625-2630.
https://doi.org,/10.3168 /jds.2010-3719
M, Hayes BJ, Matukumalli LK,
Goswami S, Bowman PJ, Reich CM, Mason
BA, Goddard ME (2012) Improving accuracy
of genomic predictions within and between
dairy cattle breeds with imputed high-density
single nucleotide polymorphism panels. J
Dairy Sci 95:4114-4129. https://doi.org/
10.3168/jds.2011-5019

10.

11.

12.

13.

14.

15.

16.

17.

Dactwyler HD, Kemper KE, van der Werf
JHJ, Hayes BJ (2012) Components of the
accuracy of genomic prediction in a multi-
breed sheep population. J Anim Sci 90:
3375-3384. https://doi.org,/10.2527 /jas.
2011-4557

Windhausen VS, Atlin GN, Hickey JM,
Crossa J, Jannink J-L, Sorrells ME,
Raman B, Cairns JE, Tarekegne A,
Semagn K, Beyene Y, Grudloyma D,
Technow F, Riedelsheimer C, Melchinger
AE (2012) Effectiveness of genomic predic-
tion of maize hybrid performance in different
breeding populations and environments. G3
(Bethesda) 2:1427-1436. https://doi.org/
10.1534,/¢3.112.003699

Rio S, Mary-Huard T, Moreau L, Charcosset
A (2019) Genomic selection efficiency and a
priori estimation of accuracy in a structured
dent maize panel. Theor Appl Genet 132:
81-96. https://doi.org,/10.1007 /s00122-
018-3196-1

Duhnen A, Gras A, Teyssedre S,
Romestant M, Claustres B, Daydé J, Mangin
B (2017) Genomic selection for yield and
seed protein content in soybean: a study of
breeding program data and assessment of pre-
diction accuracy. Crop Sci 57:1325-1337.
https: //doi.org,/10.2135 /cropsci2016.06.
0496

Lorenz AJ, Smith KP, Jannink J-L (2012)
Potential and optimization of genomic selec-
tion for fusarium head blight resistance in
six-row barley. Crop Sci 52:1609-1621.
https: //doi.org,/10.2135 /cropsci2011.09.
0503

Rio S, Gallego-Sanchez L, Montilla-
Bascon G, Canales FJ, Isidro y Sanchez J,
Prats E (2021) Genomic prediction and train-
ing set optimization in a structured Mediter-
ranean oat population. Theor Appl Genet
134:3595-3609. https://doi.org,/10.1007 /
s00122-021-03916-w

Guo Z, Tucker DM, Basten CJ, Gandhi H,
Ersoz E, Guo B, Xu Z, Wang D, Gay G
(2014) The impact of population structure
on genomic prediction in stratified popula-
tions. Theor Appl Genet 127:749-762.
https://doi.org,/10.1007/s00122-013-
2255-x

Legarra A, Robert-Granié C, Manfredi E,
Elsen J-M (2008) Performance of genomic


https://doi.org/10.2307/2529430
https://doi.org/10.2307/2529430
https://doi.org/10.1371/journal.pone.0096728
https://doi.org/10.1371/journal.pone.0096728
https://doi.org/10.1111/j.1439-0388.2007.00693.x
https://doi.org/10.1111/j.1439-0388.2007.00693.x
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1534/genetics.109.103952
https://doi.org/10.1534/genetics.109.103952
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1186/1297-9686-41-51
https://doi.org/10.1186/1297-9686-41-51
https://doi.org/10.3168/jds.2010-3719
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.2527/jas.2011-4557
https://doi.org/10.2527/jas.2011-4557
https://doi.org/10.1534/g3.112.003699
https://doi.org/10.1534/g3.112.003699
https://doi.org/10.1007/s00122-018-3196-1
https://doi.org/10.1007/s00122-018-3196-1
https://doi.org/10.2135/cropsci2016.06.0496
https://doi.org/10.2135/cropsci2016.06.0496
https://doi.org/10.2135/cropsci2011.09.0503
https://doi.org/10.2135/cropsci2011.09.0503
https://doi.org/10.1007/s00122-021-03916-w
https://doi.org/10.1007/s00122-021-03916-w
https://doi.org/10.1007/s00122-013-2255-x
https://doi.org/10.1007/s00122-013-2255-x

18.

19.

20.

21.

22.

23.

24.

25.

26.

Optimization of Genomic Prediction Calibration Set

selection in mice. Genetics 180:611-618.
https: //doi.org/10.1534 /genetics.108.
088575

Albrecht T, Wimmer V, Auinger H-J, Erbe M,
Knaak C, Ouzunova M, Simianer H, Schon
C-C (2011) Genome-based prediction of
testcross values in maize. Theor Appl Genet
123:339. https://doi.org,/10.1007 /s00122-
011-1587-7

Lehermeier C, Krimer N, Bauer E,
Bauland C, Camisan C, Campo L,
Flament P, Melchinger AE, Menz M,
Meyer N, Moreau L, Moreno-Gonzalez J,
Ouzunova M, Pausch H, Ranc N,
Schipprack W, Schonleben M, Walter H,
Charcosset A, Schon C-C (2014) Usefulness
of multiparental populations of maize (Zea
mays L.) for genome-based prediction.
Genetics 198:3-16. https://doi.org/10.
1534 /genetics.114.161943

Herter CP, Ebmeyer E, Kollers S, Korzun V,
Wiirschum T, Miedaner T (2019) Accuracy of
within- and among-family genomic predic-
tion for fusarium head blight and Septoria
tritici blotch in winter wheat. Theor Appl
Genet 132:1121-1135. https://doi.org/10.
1007/500122-018-3264-6

Nielsen NH, Jahoor A, Jensen JD, Orabi J,
Cericola F, Edriss V, Jensen J (2016) Geno-
mic prediction of seed quality traits using
advanced barley breeding lines. PLoS One
11:¢0164494. https://doi.org/10.1371/
journal.pone.0164494

Wiirschum T, Maurer HP, Weissmann S,
Hahn V, Leiser WL (2017) Accuracy of
within- and among-family genomic predic-
tion in triticale. Plant Breed 136:230-236.
https: //doi.org/10.1111 /pbr.12465

Lorenz AJ, Smith KP (2015) Adding geneti-
cally distant individuals to training popula-
tions reduces genomic prediction accuracy in
barley. Crop Sci 55:2657-2667. https: //doi.
org/10.2135/cropsci2014.12.0827
Riedelsheimer C, Endelman JB, Stange M,
Sorrells ME, Jannink J-L, Melchinger AE
(2013) Genomic predictability of
interconnected Biparental maize populations.
Genetics 194:493-503. https://doi.org/10.
1534 /genetics.113.150227

Hidalgo AM, Bastiaansen JWM, Lopes MS,
Harlizius B, Groenen MAM, de Koning D-J
(2015) Accuracy of predicted genomic breed-
ing values in purebred and crossbred pigs. G3
(Bethesda) 5:1575-1583. https://doi.org/
10.1534/¢3.115.018119

Rio S, Moreau L, Charcosset A, Mary-Huard
T (2020) Accounting for group-specific allele
effects and admixture in genomic predictions:

27.

28.

29.

30.

31.

32.

33.

34.

105

theory and experimental evaluation in maize.
Genetics 216:27-41. https://doi.org/10.
1534 /genetics.120.303278

Olatoye MO, Clark LV, Labonte NR,
Dong H, Dwiyanti MS, Anzoua KG, Brum-
mer JE, Ghimire BK, Dzyubenko E,
Dzyubenko N, Bagmet L, Sabitov A,
Chebukin P, Glowacka K, Heo K, Jin X,
Nagano H, Peng J, Yu CY, Yoo JH, Zhao H,
Long SP, Yamada T, Sacks EJ, Lipka AE
(2020) Training population optimization for
genomic  selection in  Miscanthus. G3
(Bethesda) 10:2465-2476. https://doi.org/
10.1534/¢3.120.401402

Pszczola M, Calus MPL (2016) Updating the
reference population to achieve constant
genomic prediction reliability across genera-
tions. Animal 10:1018-1024. https://doi.
org/10.1017,/81751731115002785

Castro Dias Cuyabano B, Wackel H, Shin D,
Gondro C (2019) A study of genomic predic-
tion across generations of two Korean pig
populations. Animals 9:672. https://doi.
org,/10.3390,/ani9090672

Hotheinz N, Borchardt D, Weissleder K,
Frisch M (2012) Genome-based prediction
of test cross performance in two subsequent
breeding cycles. Theor Appl Genet 125:
1639-1645. https://doi.org/10.1007/
s00122-012-1940-5

Li X, Wei Y, Acharya A, Hansen JL, Crawford
JL, Viands DR, Michaud R, Claessens A,
Brummer EC (2015) Genomic prediction of
biomass yield in two selection cycles of a tet-
raploid alfalfa breeding population. Plant
Genome 8:plantgenome2014.12.0090.
https://doi.org/10.3835/plan
tgenome2014.12.0090

Wang N, Wang H, Zhang A, Liu Y, Yu D,
Hao Z, Ilut D, Glaubitz JC, Gao Y, Jones E,
Olsen M, Li X, San Vicente F, Prasanna BM,
Crossa J, Pérez-Rodriguez P, Zhang X (2020)
Genomic prediction across years in a maize
doubled haploid breeding program to accel-
erate carly-stage testcross testing. Theor Appl
Genet 133:2869-2879. https://doi.org/10.
1007 /500122-020-03638-5

Michel S, Ametz C, Gungor H, Epure D,
Grausgruber H, Loschenberger F, Buerst-
mayr H (2016) Genomic selection across
multiple breeding cycles in applied bread
wheat breeding. Theor Appl Genet 129:
1179-1189. https://doi.org/10.1007/
s00122-016-2694-2

Sallam AH, Endelman JB, Jannink J-L, Smith
KP (2015) Assessing genomic selection pre-
diction accuracy in a dynamic barley breeding
population. Plant Genome 8:


https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1007/s00122-011-1587-7
https://doi.org/10.1007/s00122-011-1587-7
https://doi.org/10.1534/genetics.114.161943
https://doi.org/10.1534/genetics.114.161943
https://doi.org/10.1007/s00122-018-3264-6
https://doi.org/10.1007/s00122-018-3264-6
https://doi.org/10.1371/journal.pone.0164494
https://doi.org/10.1371/journal.pone.0164494
https://doi.org/10.1111/pbr.12465
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.1534/genetics.113.150227
https://doi.org/10.1534/genetics.113.150227
https://doi.org/10.1534/g3.115.018119
https://doi.org/10.1534/g3.115.018119
https://doi.org/10.1534/genetics.120.303278
https://doi.org/10.1534/genetics.120.303278
https://doi.org/10.1534/g3.120.401402
https://doi.org/10.1534/g3.120.401402
https://doi.org/10.1017/S1751731115002785
https://doi.org/10.1017/S1751731115002785
https://doi.org/10.3390/ani9090672
https://doi.org/10.3390/ani9090672
https://doi.org/10.1007/s00122-012-1940-5
https://doi.org/10.1007/s00122-012-1940-5
https://doi.org/10.3835/plantgenome2014.12.0090
https://doi.org/10.3835/plantgenome2014.12.0090
https://doi.org/10.1007/s00122-020-03638-5
https://doi.org/10.1007/s00122-020-03638-5
https://doi.org/10.1007/s00122-016-2694-2
https://doi.org/10.1007/s00122-016-2694-2

106

35.

36.

37.

38.

39.

40.

41.

42.

43.

Simon Rio et al.

plantgenome2014.05.0020. https://doi.
org/10.3835 /plantgenome2014.05.0020

Auinger H-J, Schonleben M, Lehermeier C,
Schmidt M, Korzun V, Geiger HH, Piepho
H-P, Gordillo A, Wilde P, Bauer E, Schon
C-C (2016) Model training across multiple
breeding cycles significantly improves geno-
mic prediction accuracy in rye (Secale cereale
L.). Theor Appl Genet 129:2043-2053.
https://doi.org,/10.1007/s00122-016-
2756-5

de Roos APW, Hayes BJ, Goddard ME
(2009) Reliability of genomic predictions
across multiple populations. Genetics 183:
1545-1553. https://doi.org/10.1534/
genetics.109.104935

Hill WG, Robertson A (1968) Linkage dis-
equilibrium in finite populations. Theor Appl
Genet 38:226-231. https://doi.org/10.
1007 /BF01245622

Wright S (1949) The Genetical structure of
populations. Ann Eugenics 15:323-354.
https://doi.org/10.1111/j.1469-1809.
1949.tb02451 .x

Bauer E, Falque M, Walter H, Bauland C,
Camisan C, Campo L, Meyer N, Ranc N,
Rincent R, Schipprack W, Altmann T,
Flament P, Melchinger AE, Menz M, Mor-
eno-Gonzalez J, Ouzunova M, Revilla D,
Charcosset A, Martin OC, Schoén C-C
(2013) Intraspecific variation of recombina-
tion rate in maize. Genome Biol 14:R103.
https://doi.org,/10.1186,/gb-2013-14-9-
rl03

de Roos APW, Hayes BJ, Spelman RJ, God-
dard ME (2008) Linkage disequilibrium and
persistence of phase in Holstein-Friesian, Jer-
sey and Angus cattle. Genetics 179:
1503-1512. https://doi.org/10.1534/
genetics.107.084301

Porto-Neto LR, Kijas JW, Reverter A (2014)
The extent of linkage disequilibrium in beef
cattle breeds using high-density SNP geno-
types. Genet Sel Evol 46:22. https://doi.
org/10.1186,/1297-9686-46-22

Badke YM, Bates RO, Ernst CW, Schwab C,
Steibel JP (2012) Estimation of linkage dis-
equilibrium in four US pig breeds. BMC
Genomics 13:24. https://doi.org/10.1186/
1471-2164-13-24

Heifetz EM, Fulton JE, O’Sullivan N,
Zhao H, Dekkers JCM, Soller M (2005)
Extent and consistency across generations of
linkage disequilibrium in commercial layer
chicken breeding populations. Genetics 171:
1173-1181. https://doi.org/10.1534/
genetics.105.040782

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Van Inghelandt D, Reif JC, Dhillon BS,
Flament P, Melchinger AE (2011) Extent
and genome-wide distribution of linkage dis-
equilibrium in commercial maize germplasm.
Theor Appl Genet 123:11-20. https://doi.
org,/10.1007 /s00122-011-1562-3
Technow F, Riedelsheimer C, Schrag TA,
Melchinger AE (2012) Genomic prediction
of hybrid performance in maize with models
incorporating dominance and population spe-
cific marker effects. Theor Appl Genet 125:
1181-1194. https://doi.org/10.1007/
s00122-012-1905-8

Hao C, Wang L, Ge H, Dong Y, Zhang X
(2011) Genetic diversity and linkage disequi-
librium in Chinese bread wheat (Triticum aes-
tivum L.) revealed by SSR markers. PLoS One
6:¢17279. https://doi.org/10.1371 /jour
nal.pone.0017279

Ibané&z-Escriche N, Fernando RL, Toosi A,
Dekkers JC (2009) Genomic selection of
purebreds for crossbred performance. Genet
Sel Evol 41:12. https://doi.org/10.1186/
1297-9686-41-12

Daetwyler HD, Villanueva B, Woolliams JA
(2008) Accuracy of predicting the genetic
risk of disease using a genome-wide approach.
PLoS One 3:¢3395. https://doi.org/10.
1371 /journal.pone.0003395

Wientjes YC, Calus MP, Goddard ME, Hayes
BJ (2015) Impact of QTL properties on the
accuracy of multi-breed genomic prediction.
Genet Sel Evol 47:42. https://doi.org/10.
1186,/512711-015-0124-6

Schopp P, Miiller D, Wientjes YCJ, Melchin-
ger AE (2017) Genomic prediction within
and across Biparental families: means and var-
iances of prediction accuracy and usefulness of
deterministic equations. G3 (Bethesda) 7:
3571-3586. https://doi.org/10.1534/¢3.
117.300076

Scutari M, Mackay I, Balding D (2016) Using
genetic distance to infer the accuracy of geno-
mic prediction. PLoS Genet 12:¢1006288.
https://doi.org,/10.1371 /journal.pgen.
1006288

Varona L, Legarra A, Toro MA, Vitezica ZG
(2018) Non-additive effects in genomic selec-
tion. Front Genet 9:78. https://doi.org/10.
3389 /fgene.2018.00078

Hill WG, Goddard ME, Visscher PM (2008)
Data and theory point to mainly additive
genetic variance for complex traits. PLoS
Genet 4:¢1000008. https://doi.org/10.
1371 /journal.pgen.1000008

Vitezica ZG, Varona L, Legarra A (2013) On
the additive and dominant variance and


https://doi.org/10.3835/plantgenome2014.05.0020
https://doi.org/10.3835/plantgenome2014.05.0020
https://doi.org/10.1007/s00122-016-2756-5
https://doi.org/10.1007/s00122-016-2756-5
https://doi.org/10.1534/genetics.109.104935
https://doi.org/10.1534/genetics.109.104935
https://doi.org/10.1007/BF01245622
https://doi.org/10.1007/BF01245622
https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
https://doi.org/10.1186/gb-2013-14-9-r103
https://doi.org/10.1186/gb-2013-14-9-r103
https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.1186/1297-9686-46-22
https://doi.org/10.1186/1297-9686-46-22
https://doi.org/10.1186/1471-2164-13-24
https://doi.org/10.1186/1471-2164-13-24
https://doi.org/10.1534/genetics.105.040782
https://doi.org/10.1534/genetics.105.040782
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1007/s00122-012-1905-8
https://doi.org/10.1007/s00122-012-1905-8
https://doi.org/10.1371/journal.pone.0017279
https://doi.org/10.1371/journal.pone.0017279
https://doi.org/10.1186/1297-9686-41-12
https://doi.org/10.1186/1297-9686-41-12
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1186/s12711-015-0124-6
https://doi.org/10.1186/s12711-015-0124-6
https://doi.org/10.1534/g3.117.300076
https://doi.org/10.1534/g3.117.300076
https://doi.org/10.1371/journal.pgen.1006288
https://doi.org/10.1371/journal.pgen.1006288
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.1371/journal.pgen.1000008
https://doi.org/10.1371/journal.pgen.1000008

55

56.

57.

58.

59.

60.

61.

62.

63.

64.

Optimization of Genomic Prediction Calibration Set

covariance of individuals within the genomic
selection scope. Genetics 195:1223-1230.
https://doi.org/10.1534 /genetics.113.
155176

. Wientjes YCJ, Bijma P, Vandenplas ], Calus

MPL (2017) Multi-population genomic rela-
tionships for estimating current genetic var-
iances within and genetic correlations
between  populations.  Genetics  207:
503-515. https://doi.org,/10.1534/genect
ics.117.300152

Wientjes YCJ, Calus MPL, Duenk P, Bijma P
(2018) Required properties for markers used
to calculate unbiased estimates of the genetic
correlation between populations. Genet Sel
Evol 50:65. https://doi.org/10.1186/
s12711-018-0434-6

Thompson EA (2013) Identity by descent:
variation in meiosis, across genomes, and in
populations. Genetics 194:301-326. https://
doi.org/10.1534 /genetics.112.148825

Speed D, Balding DJ (2015) Relatedness in
the post-genomic era: is it still useful? Nat Rev
Genet 16:33—44. https://doi.org/10.1038/
nrg3821

Habier D, Fernando RL, Dekkers JCM
(2007) The impact of genetic relationship
information on genome-assisted breeding
values. Genetics 177:2389-2397. https://
doi.org,/10.1534 /genetics.107.081190

Habier D, Tetens J, Seefried F-R, Lichtner D,
Thaller G (2010) The impact of genetic rela-
tionship information on genomic breeding
values in German Holstein cattle. Genet Sel
Evol 42:5. https://doi.org,/10.1186,/1297-
9686-42-5

Habier D, Fernando RL, Garrick DJ (2013)
Genomic BLUP decoded: a look into the
black box of genomic prediction. Genetics
194:597-607. https://doi.org/10.1534/
genetics.113.152207

Zhong S, Dekkers JCM, Fernando RL, Jan-
nink J-L (2009) Factors affecting accuracy
from genomic selection in populations
derived from multiple inbred lines: a barley
case study. Genetics 182:355-364. https://
doi.org,/10.1534 /genetics.108.098277
Jannink J-L, Lorenz AJ, Iwata H (2010)
Genomic selection in plant breeding: from
theory to practice. Brief Funct Genomics 9:
166-177. https://doi.org,/10.1093 /bfgp/
elq001

Clark SA, Hickey JM, Daetwyler HD, van der
Werf JH (2012) The importance of informa-
tion on relatives for the prediction of genomic
breeding values and the implications for the
makeup of reference data sets in livestock

66.

67.

68.

69.

70.

71.

72.

73.

107

breeding schemes. Genet Sel Evol 44:4.
https://doi.org/10.1186,/1297-9686-44-4

. Wientjes YCJ, Veerkamp RF, Calus MPL

(2013) The effect of linkage disequilibrium
and family relationships on the reliability of
genomic prediction. Genetics 193:621-631.
https: //doi.org/10.1534 /genetics.112.
146290

Pszczola M, Strabel T, Mulder HA, Calus
MPL (2012) Reliability of direct genomic
values for animals with different relationships
within and to the reference population. J
Dairy Sci 95:389-400. https://doi.org/10.
3168/jds.2011-4338

Albrecht T, Auinger H-J, Wimmer V, Ogutu
JO, Knaak C, Ouzunova M, Piepho H-P,
Schon C-C (2014) Genome-based prediction
of maize hybrid performance across genetic
groups, testers, locations, and years. Theor
Appl Genet 127:1375-1386. https://doi.
org/10.1007/500122-014-2305-z

Cros D, Denis M, Sanchez L, Cochard B,
Flori A, Durand-Gasselin T, Nouy B,
Omor¢ A, Pomies V, Riou V, Suryana E, Bou-
vet J-M (2015) Genomic selection prediction
accuracy in a perennial crop: case study of oil
palm (Elaeis guineensis Jacq.). Theor Appl
Genet 128:397-410. https://doi.org/10.
1007 /s00122-014-2439-z

Vitezica ZG, Legarra A, Toro MA, Varona L
(2017) Orthogonal estimates of variances for
additive, dominance, and epistatic effects in
populations.  Genetics  206:1297-1307.
https://doi.org/10.1534 /genetics.116.
1994006

Hayes B]J, Visscher PM, Goddard ME (2009)
Increased accuracy of artificial selection by
using the realized relationship matrix. Genet
Res 91:47-60. https://doi.org/10.1017 /
S0016672308009981

Goddard M (2009) Genomic selection: pre-
diction of accuracy and maximisation of long
term response. Genetica 136:245-257.
https://doi.org,/10.1007/s10709-008-
9308-0

Goddard ME, Hayes BJ, Meuwissen THE
(2011) Using the genomic relationship matrix
to predict the accuracy of genomic selection. J
Anim Breed Genet 128:409—421. https://
doi.org/10.1111/j.1439-0388.2011.
00964 .x

Elsen J-M (2016) Approximated prediction of
genomic selection accuracy when reference
and candidate populations are related. Genet
Sel Evol 48:18. https://doi.org/10.1186/
s12711-016-0183-3


https://doi.org/10.1534/genetics.113.155176
https://doi.org/10.1534/genetics.113.155176
https://doi.org/10.1534/genetics.117.300152
https://doi.org/10.1534/genetics.117.300152
https://doi.org/10.1186/s12711-018-0434-6
https://doi.org/10.1186/s12711-018-0434-6
https://doi.org/10.1534/genetics.112.148825
https://doi.org/10.1534/genetics.112.148825
https://doi.org/10.1038/nrg3821
https://doi.org/10.1038/nrg3821
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1186/1297-9686-42-5
https://doi.org/10.1186/1297-9686-42-5
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.1534/genetics.108.098277
https://doi.org/10.1534/genetics.108.098277
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1186/1297-9686-44-4
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.3168/jds.2011-4338
https://doi.org/10.3168/jds.2011-4338
https://doi.org/10.1007/s00122-014-2305-z
https://doi.org/10.1007/s00122-014-2305-z
https://doi.org/10.1007/s00122-014-2439-z
https://doi.org/10.1007/s00122-014-2439-z
https://doi.org/10.1534/genetics.116.199406
https://doi.org/10.1534/genetics.116.199406
https://doi.org/10.1017/S0016672308009981
https://doi.org/10.1017/S0016672308009981
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1111/j.1439-0388.2011.00964.x
https://doi.org/10.1111/j.1439-0388.2011.00964.x
https://doi.org/10.1111/j.1439-0388.2011.00964.x
https://doi.org/10.1186/s12711-016-0183-3
https://doi.org/10.1186/s12711-016-0183-3

108

74

75.

76.

77.

78.

79.

80.

81.

82.

83.

Simon Rio et al.

. Elsen J-M (2017) An analytical framework to
derive the expected precision of genomic
selection. Genet Sel Evol 49:95. https: //doi.
org/10.1186,/512711-017-0366-6

Heffer EL, Jannink J-L, Iwata H, Souza E,
Sorrells ME (2011) Genomic selection accu-
racy for grain quality traits in Biparental wheat
populations. Crop Sci  51:2597-2606.
https: //doi.org,/10.2135 /cropsci2011.05.
0253

Crossa J, Pérez P, Hickey ], Burgueio J,
Ornella L, Cer6n-Rojas J, Zhang X,
Dreisigacker S, Babu R, Li Y, Bonnett D,
Mathews K (2014) Genomic prediction in
CIMMYT maize and wheat breeding pro-
grams. Heredity 112:48-60. https://doi.
org/10.1038 /hdy.2013.16

Norman A, Taylor J, Edwards J, Kuchel H
(2018) Optimising genomic selection in
wheat: effect of marker density, population
size and population structure on prediction
accuracy. G3 (Bethesda) 8:2889-2899.
https://doi.org,/10.1534/g3.118.200311

Habier D, Fernando RL, Kizilkaya K, Garrick
DJ (2011) Extension of the bayesian alphabet
for genomic selection. BMC Bioinformatics
12:186. https://doi.org/10.1186,/1471-
2105-12-186

Dehnavi E, Mahyari SA, Schenkel ES, Sargol-
zaei M (2018) The effect of using cow geno-
mic information on accuracy and bias of
genomic breeding values in a simulated Hol-
stein dairy cattle population. J Dairy Sci 101:
5166-5176. https://doi.org,/10.3168 /jds.
2017-12999

Lello L, Raben TG, Yong SY, Tellier LCAM,
Hsu SDH (2019) Genomic prediction of
16 complex disease risks including heart
attack, diabetes, breast and prostate cancer.
Sci Rep 9:15286. https: //doi.org,/10.1038 /
s41598-019-51258-x

Lorenz AJ (2013) Resource allocation for
maximizing prediction accuracy and genetic
gain of genomic selection in plant breeding:
a simulation experiment. G3 Bethesda 3:
481-491. https://doi.org/10.1534 /g3.112.
004911

Wu X, Lund MS, Sun D, Zhang Q, Su G
(2015) Impact of relationships between test
and training animals and among training ani-
mals on reliability of genomic prediction. J
Anim Breed Genet 132:366-375. https://
doi.org/10.1111/jbg.12165

Rincent R, Laloe D, Nicolas S, Altmann T,
Brunel D, Revilla P, Rodriguez VM, Moreno-
Gonzalez ], Melchinger A, Bauer E, Schoen
C-C, Meyer N, Giauffret C, Bauland C,
Jamin P, Laborde J, Monod H, Flament D,

84.

85.

86.

87.

88

89.

90.

91.

.Roth M, Muranty H, Di

Charcosset A, Moreau L (2012) Maximizing
the reliability of genomic selection by opti-
mizing the calibration set of reference indivi-
duals: comparison of methods in two diverse
groups of maize Inbreds (Zea mays L.).
Genetics 192:715-728. https://doi.org/10.
1534 /genetics.112.141473

Bustos-Korts D, Malosetti M, Chapman §,
Biddulph B, van Eeuwijk F (2016) Improve-
ment of predictive ability by uniform coverage
of the target genetic space. G3 (Bethesda)
6(11):3733-3747. https://doi.org/10.
1534,/g3.116.035410

Guo T, Yu X, Li X, Zhang H, Zhu C, Flint-
Garcia S, McMullen MD, Holland JB, Szalma
SJ, Wisser RJ, Yu J (2019) Optimal designs
for genomic selection in hybrid crops. Mol
Plant 12:390-401. https://doi.org/10.
1016/j.molp.2018.12.022

Atanda SA, Olsen M, Burguerio J, Crossa J,
Dzidzienyo D, Beyene Y, Gowda M,
Dreher K, Zhang X, Prasanna BM,
Tongoona P, Danquah EY, Olaoye G, Rob-
bins KR (2021) Maximizing efficiency of
genomic selection in CIMMYT’s tropical
maize breeding program. Theor Appl Genet
134:279-294. https://doi.org,/10.1007/
$00122-020-03696-9

Rincent R, Charcosset A, Moreau L (2017)
Predicting genomic selection efficiency to
optimize calibration set and to assess predic-
tion accuracy in highly structured popula-
tions. Theor Appl Genet 130:2231-2247.
https://doi.org,/10.1007 /s00122-017-
2956-7

Guardo M,
Guerra W, Patocchi A, Costa F (2020) Geno-
mic prediction of fruit texture and training
population optimization towards the applica-
tion of genomic selection in apple. Hortic Res
7:1-14. https://doi.org,/10.1038 /s41438-
020-00370-5

Berro I, Lado B, Nalin RS, Quincke M,
Gutiérrez L (2019) Training population opti-
mization for genomic selection. Plant
Genome 12:190028. https://doi.org/10.
3835 /plantgenome2019.04.0028

Tiede T, Smith KP (2018) Evaluation and
retrospective optimization of genomic selec-
tion for yield and disease resistance in spring
barley. Mol Breed 38:55. https: //doi.org,/10.
1007 /s11032-018-0820-3

Isidro J, Jannink J-L, Akdemir D, Poland J,
Heslot N, Sorrells ME (2015) Training set
optimization under population structure in
genomic selection. Theor Appl Genet 128:
145-158. https://doi.org/10.1007/
s00122-014-2418-4


https://doi.org/10.1186/s12711-017-0366-6
https://doi.org/10.1186/s12711-017-0366-6
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.1038/hdy.2013.16
https://doi.org/10.1038/hdy.2013.16
https://doi.org/10.1534/g3.118.200311
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.3168/jds.2017-12999
https://doi.org/10.3168/jds.2017-12999
https://doi.org/10.1038/s41598-019-51258-x
https://doi.org/10.1038/s41598-019-51258-x
https://doi.org/10.1534/g3.112.004911
https://doi.org/10.1534/g3.112.004911
https://doi.org/10.1111/jbg.12165
https://doi.org/10.1111/jbg.12165
https://doi.org/10.1534/genetics.112.141473
https://doi.org/10.1534/genetics.112.141473
https://doi.org/10.1534/g3.116.035410
https://doi.org/10.1534/g3.116.035410
https://doi.org/10.1016/j.molp.2018.12.022
https://doi.org/10.1016/j.molp.2018.12.022
https://doi.org/10.1007/s00122-020-03696-9
https://doi.org/10.1007/s00122-020-03696-9
https://doi.org/10.1007/s00122-017-2956-7
https://doi.org/10.1007/s00122-017-2956-7
https://doi.org/10.1038/s41438-020-00370-5
https://doi.org/10.1038/s41438-020-00370-5
https://doi.org/10.3835/plantgenome2019.04.0028
https://doi.org/10.3835/plantgenome2019.04.0028
https://doi.org/10.1007/s11032-018-0820-3
https://doi.org/10.1007/s11032-018-0820-3
https://doi.org/10.1007/s00122-014-2418-4
https://doi.org/10.1007/s00122-014-2418-4

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Optimization of Genomic Prediction Calibration Set

Adeyemo E, Bajgain P, Conley E, Sallam AH,
Anderson JA (2020) Optimizing training
population size and content to improve pre-
diction accuracy of FHB-related traits in
wheat. Agronomy 10:543. https://doi.org/
10.3390/agronomy10040543

Kadam DC, Rodriguez OR, Lorenz AJ
(2021) Optimization of training sets for
genomic prediction of early-stage single
crosses in maize. Theor Appl Genet 134(2):
687-699. https://doi.org/10.1007/
s00122-020-03722-w

Laloé D (1993) Precision and information in
linear models of genetic evaluation. Genet Sel
Evol 25:557. https://doi.org/10.1186/
1297-9686-25-6-557

Laloé D, Phocas F, Ménissier F (1996) Con-
siderations on measures of precision and con-
nectedness in mixed linear models of genetic
evaluation. Genet Sel Evol 28:359. https://
doi.org,/10.1186,/1297-9686-28-4-359

Yu H, Spangler ML, Lewis RM, Morota G
(2018) Do stronger measures of genomic
connectedness enhance prediction accuracies
across management units?l. J Anim Sci 96:
4490-4500. https://doi.org,/10.1093 /jas/
sky316

Zhang S-Y, Olasege BS, Liu D-Y, Wang Q-S,
Pan Y-C, Ma P-P (2018) The genetic con-
nectedness calculated from genomic informa-
tion and its effect on the accuracy of genomic
prediction. PLoS One 13:¢0201400. https: //
doi.org,/10.1371 /journal.pone.0201400

Momen M, Morota G (2018) Quantifying
genomic connectedness and prediction accu-
racy from additive and non-additive gene
actions. Genet Sel Evol 50:45. https://doi.
org/10.1186,/s12711-018-0415-9

Akdemir D, Sanchez JI, Jannink J-L (2015)
Optimization of genomic selection training
populations with a genetic algorithm. Genet
Sel Evol 47:38. https://doi.org/10.1186/
s12711-015-0116-6

Akdemir D, Isidro-Sanchez ] (2019) Design
of training populations for selective pheno-
typing in genomic prediction. Sci Rep 9:
1446. https://doi.org,/10.1038/s41598-
018-38081-6

Ou J-H, Liao C-T (2019) Training set deter-
mination for genomic selection. Theor Appl
Genet 132:2781-2792. https://doi.org/10.
1007 ,/500122-019-03387-0

Rutkoski J, Singh RP, Huerta-Espino ],
Bhavani S, Poland ], Jannink JL, Sorrells ME
(2015) Efficient use of historical data for
genomic selection: a case study of stem rust
resistance in wheat. Plant Genome 8:

103.

104.

105.

106.

107.

108.

109.

110.

109

eplantgenome2014.09.0046. https://doi.
org,/10.3835 /plantgenome2014.09.0046
Sarinelli JM, Murphy JP, Tyagi P, Holland JB,
Johnson JW, Mergoum M, Mason RE,
Babar A, Harrison S, Sutton R, Griffey CA,
Brown-Guedira G (2019) Training popula-
tion selection and use of fixed effects to opti-
mize genomic predictions in a historical USA
winter wheat panel. Theor Appl Genet 132:
1247-1261. https://doi.org/10.1007 /
s00122-019-03276-6

Charmet G, Tran L-G, Auzanneau ],
Rincent R, Bouchet S (2020) BWGS: a R
package for genomic selection and its applica-
tion to a wheat breeding programme. PLoS
One 15:¢0222733. https://doi.org/10.
1371 /journal.pone.0222733

Wolfe MD, Del Carpio DP, Alabi O, Ezen-
waka LC, Ikeogu UN, Kayondo IS,
Lozano R, Okeke UG, Ozimati AA,
Williams E, Egesi C, Kawuki RS, Kulakow P,
Rabbi IY, Jannink J-L (2017) Prospects for
genomic selection in cassava breeding. Plant
Genome 10. https: //doi.org,/10.3835 /plan
tgenome2017.03.0015

Ozimati A, Kawuki R, Esuma W, Kayondo IS,
Wolfe M, Lozano R, Rabbi I, Kulakow P, Jan-
nink J-L (2018) Training population optimi-
zation for prediction of cassava Brown streak
disease resistance in west African clones. G3
(Bethesda) 8:3903-3913. https://doi.org/
10.1534,/¢3.118.200710

Tayeh N, Klein A, Le Paslier M-C, Jacquin F,
Houtin H, Rond C, Chabert-Martinello M,
Magnin-Robert J-B, Marget P, Aubert G,
Burstin J (2015) Genomic prediction in pea:
effect of marker density and training popula-
tion size and composition on prediction accu-
racy. Front Plant Sci 6:941. https://doi.org/
10.3389 /1pls.2015.00941

Keep T, Sampoux J-P, Blanco-Pastor JL, Deh-
mer KJ, Hegarty MJ, Ledauphin T, Litrico I,
Muylle H, Roldan-Ruiz I, Roschanski AM,
Ruttink T, Surault F, Willner E, Barre P
(2020) High-throughput genome-wide gen-
otyping to optimize the use of natural genetic
resources in the grassland species perennial
ryegrass (Lolium perenne L.). G3 (Bethesda)
10:3347-3364. https://doi.org/10.1534/
g3.120.401491

Calus MP, Veerkamp RF (2011) Accuracy of
multi-trait genomic selection using different
methods. Genet Sel Evol 43:26. https: //doi.
org/10.1186,/1297-9686-43-26

Jia Y, Jannink J-L (2012) Multiple-trait geno-
mic selection methods increase genetic value
prediction accuracy. Genetics 192:


https://doi.org/10.3390/agronomy10040543
https://doi.org/10.3390/agronomy10040543
https://doi.org/10.1007/s00122-020-03722-w
https://doi.org/10.1007/s00122-020-03722-w
https://doi.org/10.1186/1297-9686-25-6-557
https://doi.org/10.1186/1297-9686-25-6-557
https://doi.org/10.1186/1297-9686-28-4-359
https://doi.org/10.1186/1297-9686-28-4-359
https://doi.org/10.1093/jas/sky316
https://doi.org/10.1093/jas/sky316
https://doi.org/10.1371/journal.pone.0201400
https://doi.org/10.1371/journal.pone.0201400
https://doi.org/10.1186/s12711-018-0415-9
https://doi.org/10.1186/s12711-018-0415-9
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1038/s41598-018-38081-6
https://doi.org/10.1038/s41598-018-38081-6
https://doi.org/10.1007/s00122-019-03387-0
https://doi.org/10.1007/s00122-019-03387-0
https://doi.org/10.3835/plantgenome2014.09.0046
https://doi.org/10.3835/plantgenome2014.09.0046
https://doi.org/10.1007/s00122-019-03276-6
https://doi.org/10.1007/s00122-019-03276-6
https://doi.org/10.1371/journal.pone.0222733
https://doi.org/10.1371/journal.pone.0222733
https://doi.org/10.3835/plantgenome2017.03.0015
https://doi.org/10.3835/plantgenome2017.03.0015
https://doi.org/10.1534/g3.118.200710
https://doi.org/10.1534/g3.118.200710
https://doi.org/10.3389/fpls.2015.00941
https://doi.org/10.3389/fpls.2015.00941
https://doi.org/10.1534/g3.120.401491
https://doi.org/10.1534/g3.120.401491
https://doi.org/10.1186/1297-9686-43-26
https://doi.org/10.1186/1297-9686-43-26

110

111.

112.

113.

114.

115.

116.

117.

118.

Simon Rio et al.

1513-1522. https://doi.org/10.1534/
genetics.112.144246

Robert P, Le Gouis J, Consortium TB, Rin-
cent R (2020) Combining crop growth mod-
eling with trait-assisted prediction improved
the prediction of genotype by environment
interactions. Front Plant Sci 11:827.
https://doi.org,/10.3389 /pls.2020.00827

Saint Pierre C, Burgueiio J, Crossa J, Fuentes
Davila G, Figueroa Lopez P, Solis Moya E,
Ireta Moreno ], Hernindez Muela VM,
Zamora Villa VM, Vikram P, Mathews K,
Sansaloni C, Sehgal D, Jarquin D, Wenzl P,
Singh S (2016) Genomic prediction models
for grain yield of spring bread wheat in diverse
agro-ecological zones. Sci Rep 6:27312.
https: //doi.org,/10.1038 /srep27312

Ly D, Chenu K, Gauffreteau A, Rincent R,
Huet S, Gouache D, Martre P, Bordes J,
Charmet G (2017) Nitrogen nutrition index
predicted by a crop model improves the geno-
mic prediction of grain number for a bread
wheat core collection. Field Crops Res 214:
331-340. https://doi.org/10.1016/j.fcr.
2017.09.024

Rincent R, Malosetti M, Ababacei B, Touzy G,
Mini A, Bogard M, Martre P, Le Gouis J, van
Eeuwijk F (2019) Using crop growth model
stress covariates and AMMI decomposition to
better predict genotype-by-environment
interactions. Theor Appl Genet 132:
3399-3411. https://doi.org/10.1007/
s00122-019-03432-y

Jarquin D, Howard R, Crossa J, Beyene Y,
Gowda M, Martini JWR, Covarrubias
Pazaran G, Burgueno J, Pacheco A,
Grondona M, Wimmer V, Prasanna BM
(2020) Genomic prediction enhanced sparse
testing for multi-environment trials. G3
(Bethesda) 10:2725-2739. https://doi.org/
10.1534,/g3.120.401349

Rio S, Akdemir D, Carvalho T, Isidro y San-
chez J (2021) Assessment of genomic predic-
tion reliability and optimization of
experimental designs in multi-environment
trials. Theor Appl Genet. https://doi.org/
10.1007/500122-021-03972-2

Ben-Sadoun S, Rincent R, Auzanneau J, Oury
FX, Rolland B, Heumez E, Ravel C,
Charmet G, Bouchet S (2020) Economical
optimization of a breeding scheme by selec-
tive phenotyping of the calibration set in a
multi-trait context: application to bread
making quality. Theor Appl Genet 133:
2197-2212. https://doi.org/10.1007/
s00122-020-03590-4

Rabier C-E, Barre P, Asp T, Charmet G, Man-
gin B (2016) On the accuracy of genomic

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

selection. PLoS One 11:¢0156086. https://
doi.org,/10.1371 /journal.pone.0156086
Mangin B, Rincent R, Rabier C-E, Moreau L,
Goudemand-Dugue E (2019) Training set
optimization of genomic prediction by
means of EthAcc. PLoS One 14:¢0205629.
https://doi.org,/10.1371 /journal.pone.
0205629

Akdemir D (2017) Selection of training
populations (and other subset selection pro-
blems) with an accelerated genetic algorithm
(STPGA: an R-package for selection of train-
ing populations with a genetic algorithm).
ArXiv170208088 Cs Q-bio stat

Akdemir D, Rio S, Isidro y Sanchez J (2021)
TrainSel: an R package for selection of train-
ing populations. Front Genet 12:655287.
https://doi.org/10.3389 /fgene.2021.
655287

Heslot N, Feoktistov V (2020) Optimization
of selective phenotyping and population
Design for Genomic Prediction. J Agric Biol
Environ Stat 25:579-600. https://doi.org/
10.1007,/5s13253-020-00415-1

Misztal I, Wiggans GR (1988) Approxima-
tion of prediction error variance in large-
scale animal models. J Dairy Sci 71:27-32.
https://doi.org,/10.1016,/50022-0302(88)
79976-2

VanRaden PM (2008) Efficient methods to
compute genomic predictions. ] Dairy Sci
91:4414-4423. https://doi.org/10.3168/
jds.2007-0980

Hickey JM, Veerkamp RF, Calus MP, Mulder
HA, Thompson R (2009) Estimation of pre-
diction error variances via Monte Carlo sam-
pling methods using different formulations of
the prediction error variance. Genet Sel Evol
41:23. https://doi.org/10.1186/1297-
9686-41-23

Marulanda JJ, Melchinger AE, Wiirschum T
(2015) Genomic selection in biparental popu-
lations: assessment of parameters for opti-
mum estimation set design. Plant Breed 134:
623-630. https://doi.org/10.1111 /pbr.
12317

Brauner PC, Miiller D, Molenaar WS, Mel-
chinger AE (2020) Genomic prediction with
multiple biparental families. Theor Appl
Genet 133:133-147. https://doi.org/10.
1007 /s00122-019-03445-7

Edwards SM, Buntjer JB, Jackson R, Bentley
AR, Lage J, Byrne E, Burt C, Jack P, Berry S,
Flatman E, Poupard B, Smith S, Hayes C,
Gaynor RC, Gorjanc G, Howell P, Ober E,
Mackay IJ, Hickey JM (2019) The effects of
training population design on genomic


https://doi.org/10.1534/genetics.112.144246
https://doi.org/10.1534/genetics.112.144246
https://doi.org/10.3389/fpls.2020.00827
https://doi.org/10.1038/srep27312
https://doi.org/10.1016/j.fcr.2017.09.024
https://doi.org/10.1016/j.fcr.2017.09.024
https://doi.org/10.1007/s00122-019-03432-y
https://doi.org/10.1007/s00122-019-03432-y
https://doi.org/10.1534/g3.120.401349
https://doi.org/10.1534/g3.120.401349
https://doi.org/10.1007/s00122-021-03972-2
https://doi.org/10.1007/s00122-021-03972-2
https://doi.org/10.1007/s00122-020-03590-4
https://doi.org/10.1007/s00122-020-03590-4
https://doi.org/10.1371/journal.pone.0156086
https://doi.org/10.1371/journal.pone.0156086
https://doi.org/10.1371/journal.pone.0205629
https://doi.org/10.1371/journal.pone.0205629
https://doi.org/10.3389/fgene.2021.655287
https://doi.org/10.3389/fgene.2021.655287
https://doi.org/10.1007/s13253-020-00415-1
https://doi.org/10.1007/s13253-020-00415-1
https://doi.org/10.1016/S0022-0302(88)79976-2
https://doi.org/10.1016/S0022-0302(88)79976-2
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1186/1297-9686-41-23
https://doi.org/10.1186/1297-9686-41-23
https://doi.org/10.1111/pbr.12317
https://doi.org/10.1111/pbr.12317
https://doi.org/10.1007/s00122-019-03445-7
https://doi.org/10.1007/s00122-019-03445-7

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

Optimization of Genomic Prediction Calibration Set

prediction accuracy in wheat. Theor Appl
Genet 132:1943-1952. https://doi.org/10.
1007,/500122-019-03327-y

Sneath PHA, Sneath PHA, Sokal RR, Sokal
URR (1973) Numerical taxonomy: the prin-
cipless. and  practice  of  numerical
classification. W. H. Freeman, New York

Neyhart JL, Tiede T, Lorenz AJ, Smith KP
(2017) Evaluating methods of updating train-
ing data in Long-term Genomewide selec-
tion. G3 (Bethesda) 7:1499-1510. https://
doi.org,/10.1534/g3.117.040550

Brandariz SP, Bernardo R (2018) Maintain-
ing the accuracy of Genomewide predictions
when selection has occurred in the training
population. Crop Sci  58:1226-1231.
https://doi.org,/10.2135 /cropsci2017.11.
0682

Jimenez-Montero JA, Gonzalez-Recio O,
Alenda R (2012) Genotyping strategies for
genomic selection in small dairy cattle popu-
lations. Animal 6:1216-1224. https://doi.
org/10.1017,/81751731112000341
Boligon AA, Long N, Albuquerque LG, Wei-
gel KA, Gianola D, Rosa GJM (2012) Com-
parison of selective genotyping strategies for
prediction of breeding values in a population
undergoing selection. ] Anim Sci 90:
4716-4722. https://doi.org/10.2527 /jas.
2012-4857

Michel S, Ametz C, Gungor H, Akgol B,
Epure D, Grausgruber H, Loschenberger F,
Buerstmayr H (2017) Genomic assisted selec-
tion for enhancing line breeding: merging
genomic and phenotypic selection in winter
wheat breeding programs with preliminary
yield trials. Theor Appl Genet 130:363-376.
https://doi.org/10.1007 /s00122-016-
2818-8

Hu X, Carver BF, Powers C, Yan L, Zhu L,
Chen C (2019) Effectiveness of genomic
selection by response to selection for winter
wheat variety improvement. Plant Genome
12:180090. https://doi.org,/10.3835/plan
tgenome2018.11.0090

Lopez-Cruz M, de los Campos G (2021)
Optimal breeding-value prediction using a
sparse  selection index. Genetics 218:
iyab030. https://doi.org,/10.1093 /genet
ics/iyab030

Maenhout S, De Baets B, Haesaert G (2010)
Graph-based data selection for the construc-
tion of genomic prediction models. Genetics
185:1463-1475. https://doi.org/10.1534/
genetics.110.116426

Bartholomé J, Van Heerwaarden J, Isik F,
Boury C, Vidal M, Plomion C, Bouffier L

139.

140.

141.

142.

143.

144

145.

146.

147.

111

(2016) Performance of genomic prediction
within and across generations in maritime
pine. BMC Genomics 17:604. https://doi.
org/10.1186,/512864-016-2879-8

Wientjes YCJ, Bijma P, Calus MPL (2020)
Optimizing genomic reference populations
to improve crossbred performance. Genet
Sel Evol 52:65. https://doi.org/10.1186/
s12711-020-00573-3

Bernardo R (1994) DPrediction of maize
single-cross performance using RFLPs and
information from related hybrids. Crop Sci
34:cropscil9940011183X003400010003x.
https://doi.org,/10.2135/cropscil994.
0011183X003400010003x

Massman JM, Gordillo A, Lorenzana RE,
Bernardo R (2013) Genomewide predictions
from maize single-cross data. Theor Appl
Genet 126:13-22. https://doi.org/10.
1007,/500122-012-1955-y

Technow F, Schrag TA, Schipprack W,
Bauer E, Simianer H, Melchinger AE (2014)
Genome properties and prospects of genomic
prediction of hybrid performance in a breed-
ing program of maize. Genetics 197:
1343-1355. https://doi.org/10.1534/
genetics.114.165860

Kadam DC, Potts SM, Bohn MO, Lipka AE,
Lorenz AJ (2016) Genomic prediction of sin-
gle crosses in the early stages of a maize hybrid
breeding pipeline. G3 (Bethesda) 6:
3443-3453. https://doi.org/10.1534/g3.
116.031286

. Seye Al, Bauland C, Charcosset A, Moreau L

(2020) Revisiting hybrid breeding designs
using genomic predictions: simulations high-
light the superiority of incomplete factorials
between segregating families over topcross
designs. Theor Appl Genet 133:1995-2010.
https://doi.org,/10.1007/s00122-020-
03573-5

Fristche-Neto R, Akdemir D, Jannink J-L
(2018) Accuracy of genomic selection to pre-
dict maize single-crosses obtained through
different mating designs. Theor Appl Genet
131:1153-1162. https://doi.org/10.1007 /
s00122-018-3068-8

Gauch HG, Zobel RW (1996) Optimal repli-
cation in selection experiments. Crop Sci 36:
cropscil996.0011183X003600040002x.
https://doi.org,/10.2135/cropscil996.
0011183X003600040002x

Moreau L, Lemarié S, Charcosset A, Gallais A
(2000) Economic efficiency of one cycle of
marker-assisted  selection. Crop Sci 40:
329-337. https://doi.org/10.2135/
cropsci2000.402329x


https://doi.org/10.1007/s00122-019-03327-y
https://doi.org/10.1007/s00122-019-03327-y
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.2135/cropsci2017.11.0682
https://doi.org/10.2135/cropsci2017.11.0682
https://doi.org/10.1017/S1751731112000341
https://doi.org/10.1017/S1751731112000341
https://doi.org/10.2527/jas.2012-4857
https://doi.org/10.2527/jas.2012-4857
https://doi.org/10.1007/s00122-016-2818-8
https://doi.org/10.1007/s00122-016-2818-8
https://doi.org/10.3835/plantgenome2018.11.0090
https://doi.org/10.3835/plantgenome2018.11.0090
https://doi.org/10.1093/genetics/iyab030
https://doi.org/10.1093/genetics/iyab030
https://doi.org/10.1534/genetics.110.116426
https://doi.org/10.1534/genetics.110.116426
https://doi.org/10.1186/s12864-016-2879-8
https://doi.org/10.1186/s12864-016-2879-8
https://doi.org/10.1186/s12711-020-00573-3
https://doi.org/10.1186/s12711-020-00573-3
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.1007/s00122-012-1955-y
https://doi.org/10.1007/s00122-012-1955-y
https://doi.org/10.1534/genetics.114.165860
https://doi.org/10.1534/genetics.114.165860
https://doi.org/10.1534/g3.116.031286
https://doi.org/10.1534/g3.116.031286
https://doi.org/10.1007/s00122-020-03573-5
https://doi.org/10.1007/s00122-020-03573-5
https://doi.org/10.1007/s00122-018-3068-8
https://doi.org/10.1007/s00122-018-3068-8
https://doi.org/10.2135/cropsci1996.0011183X003600040002x
https://doi.org/10.2135/cropsci1996.0011183X003600040002x
https://doi.org/10.2135/cropsci2000.402329x
https://doi.org/10.2135/cropsci2000.402329x

112

148.

149.

150.

151.

Simon Rio et al.

Riedelsheimer C, Melchinger AE (2013)
Optimizing the allocation of resources for
genomic selection in one breeding cycle.
Theor Appl Genet 126:2835-2848. https://
doi.org,/10.1007,/s00122-013-2175-9

Endelman JB, Atlin GN, Beyene Y,
Semagn K, Zhang X, Sorrells ME, Jannink
J-L (2014) Optimal Design of Preliminary
Yield Trials with genome-wide markers.
Crop Sci 54:48-59. https://doi.org/10.
2135 /cropsci2013.03.0154

Longin CFH, Mi X, Melchinger AE, Reif JC,
Wiirschum T (2014) Optimum allocation of
test resources and comparison of breeding
strategies for hybrid wheat. Theor Appl
Genet 127:2117-2126. https://doi.org/10.
1007 ,/500122-014-2365-0

Longin CFH, Mi X, Wiirschum T (2015)
Genomic selection in wheat: optimum alloca-
tion of test resources and comparison of

breeding strategies for line and hybrid breed-
ing. Theor Appl Genet 128:1297-1306.

152.

153.

154.

https://doi.org,/10.1007 /s00122-015-
2505-1

Cullis BR, Smith AB, Cocks NA, Butler DG
(2020) The design of early-stage plant breed-
ing trials using genetic relatedness. J Agric
Biol Environ Stat 25:553-578. https://doi.
org/10.1007/5s13253-020-00403-5

Lorenz A, Nice L (2017) Training population
design and resource allocation for genomic
selection in plant breeding. In: Varshney RK,
Roorkiwal M, Sorrells ME (eds) Genomic
selection for crop improvement: new molecu-
lar breeding strategies for crop improvement.
Springer International Publishing, Cham, pp
7-22

Eynard SE, Croiseau P, Laloé¢ D, Fritz S,
Calus MPL, Restoux G (2018) Which indivi-
duals to choose to update the reference pop-
ulation? minimizing the loss of genetic
diversity in animal genomic selection pro-
grams. G3 (Bethesda) 8:113-121. https://
doi.org/10.1534/¢3.117.1117

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by,/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/s00122-013-2175-9
https://doi.org/10.1007/s00122-013-2175-9
https://doi.org/10.2135/cropsci2013.03.0154
https://doi.org/10.2135/cropsci2013.03.0154
https://doi.org/10.1007/s00122-014-2365-0
https://doi.org/10.1007/s00122-014-2365-0
https://doi.org/10.1007/s00122-015-2505-1
https://doi.org/10.1007/s00122-015-2505-1
https://doi.org/10.1007/s13253-020-00403-5
https://doi.org/10.1007/s13253-020-00403-5
https://doi.org/10.1534/g3.117.1117
https://doi.org/10.1534/g3.117.1117
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Building a Calibration Set for Genomic Prediction, Characteristics to Be Considered, and Optimization Approaches
	1 Introduction
	2 Impact of the Composition of the Calibration Set on the Accuracy of Genomic Prediction
	2.1 Calibration and Predicted Individuals Ideally Originate from the Same Population
	2.1.1 LD Between Markers and QTLs Can Be Different Between Populations
	2.1.2 QTL Allele Frequencies Can Be Different Between Populations
	2.1.3 QTL Allele Effects Can Be Different Between Populations

	2.2 Genetic Relationships Between Calibration and Predicted Individuals Are Needed
	2.3 Calibration Set Should Be As Large as Possible
	2.4 Genetic Relationships Between CS Individuals Should Be Limited

	3 Methods to Optimize the Composition of the Calibration Set
	3.1 Model-Free Optimization Criteria Based on Genetic Distances Between Individuals
	3.1.1 Optimization Based on Genetic Diversity Within the CS
	3.1.2 Optimization Based on Genetic Relatedness Between the CS and the PS
	3.1.3 Taking Population Structure into Account

	3.2 Optimization Using ``Model-Based´´ Criteria Derived from the Mixed Model Theory (PEV, CD, r)
	3.2.1 CS Optimization Using the Prediction Error Variance (PEV) or the Coefficient of Determination (CD)
	3.2.2 Multitrait CS Optimization with CDmulti
	3.2.3 CS Optimization Using the Expected Predictive Ability Or Accuracy (r)

	3.3 Search Algorithms for Optimal CS and Corresponding Packages

	4 Focus on Some Specific Applications of CS Optimization
	4.1 CS Optimization for Predicting Biparental Populations
	4.2 CS Optimization or Update When Phenotypes Are Already Available
	4.2.1 Updating the  CS
	4.2.2 Subsampling Historical Phenotypic Records
	4.2.3 Optimizing the Choice of Individuals to Be Genotyped

	4.3 Optimization of the Calibration Set in the Context of Hybrid Breeding
	4.4 Optimization of the Phenotypic Evaluation of the Calibration  Set

	5 Conclusion and Prospects
	References


