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ABSTRACT
Functional–structural plant modelling approaches (FSPM) explore the relationships between the 3D structure and 

the physiological functioning of plants in relation to environmental conditions. In this study, we present a methodo-
logical approach that integrated architectural responses to planting design in an oil palm FSPM, and test the impact of 
planting design and architectural plasticity on physiological responses such as light interception and carbon assimilation. 
LiDAR-derived and direct measurements were performed on five planting designs to assess the phenotypic plastic-
ity of architectural traits, and allowed evaluating the variations of the main parameters of an existing 3D plant model. 
Accordingly, we proposed a neighbourhood index (NI) as a simple explanatory variable of architectural plasticity, and 
used NI-based allometries to simulate architectural variations in 3D virtual plants. Light interception and carbon assimi-
lation were then simulated on virtual plots reproducing the five studied designs. We found that the main traits affected 
by plant proximity were leaf dimensions, leaf weight and leaf erectness, whereas other structural traits like the frequency 
of leaflets along the rachis or biomechanical properties of leaves remained unchanged. Our simulation study highlighted 
model compliance to reproduce architectural plasticity and illustrated how architectural plasticity improved light inter-
ception via leaf area expansion, but how the competition for light imposed by the design can counterbalance this benefit 
in terms of carbon assimilation at stand scale. We conclude on the importance of planting patterns for plants with low 
architectural plasticity such as oil palm, and how in silico experiments can help in designing innovative planting patterns.

K E Y W O R D S :  Elaeis guineensis; FSPM; LiDAR; phenotypic plasticity; plant architecture; planting design
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1 .  I N T R O D U C T I O N
The way plants are spatially organized in a field constitute one of the 
major factors of agronomic performance. For food crops, the increase 
in yield during the green revolution has mainly come from the increase 
in planting densities together with the selection of genetic material 
adapted to these densities (Kush 2001; Assefa et al. 2018). The ability 
to increase agronomic performance by increasing density is species-
specific and depends on the capacity of plant to tolerate high density, 
due to the antagonistic effect between per-plant yield and density tol-
erance (Assefa et al. 2018). Oil palm (Elaeis guineensis) and coconuts 
are not an exception to the rule, the spacing between oil palm being 
considered as a major contributor to oil yield (Bonneau et al. 2014). 
However, experimentation on perennial crops such as oil palm requires 
long and expensive agronomic trials, making the testing of innovative 
practices rather economically risky. Investigation on optimal densities 
for oil palm has focused so far on the distance between plants, main-
taining the conventional equilateral triangle pattern (quincunx design; 
Rafii et al. 2013; Bonneau et al. 2018).

Incident light is the primary resource affected by planting density, 
but the evaluation of the effect of density and design on light parti-
tioning is not straightforward. Indeed, the effect of planting densities 
on agronomic performances is often estimated through yield, which 
integrates the impact of various factors such as water availability, fer-
tilization and climate conditions. As a result, the confounding factors 
prevent dissecting the contribution of each factor on plant perfor-
mance. Modelling approaches are relevant to address such questions 
since models can quantify the impact of separated processes, notably 
biophysical processes such as light interception.

Functional–structural plant models (FSPMs) offer the possibil-
ity to finely estimate the quantity of light intercepted by virtual 3D 
representations of plants (Vos et al. 2010). The coupling between 3D 
structure of plants and radiative models has multiple applications: 
estimating light availability for intercropping (Lamanda et  al. 2008), 
assessing the influence of planting patterns in crop–weed competition 
for light (Evers and Bastiaans 2016), evaluating the impact of architec-
ture manipulation on plants (Willaume et al. 2004; Buck-Sorlin et al. 
2011) or designing architectural ideotypes (Sarlikioti et al. 2011; Da 
Silva et al. 2014). More recently, studies have used FSPM to investi-
gate the role of phenotypic plasticity in light capture and partitioning 
in plant mixtures (Barillot et  al. 2014; Zhu et  al. 2015) and empha-
sized the importance of phenotypic plasticity in enhancing resource 
acquisition.

Phenotypic plasticity is defined as morphological, architectural 
and physiological responses triggered by resource limitation to cope 
with environmentally induced stress (Valladares et  al. 2007; Pierik 
and Testerink 2014). For crops growing in open habitats, limitation in 
light due to competition triggers shade-avoidance syndrome (SAS), a 
growth response to escape shade (Aphalo et al. 1999; Franklin 2008; 
Ballaré and Pierik 2017). Architectural responses associated with SAS 
vary among species, but generally result in stem and leaf elongation, 
hyponasty and reduced branching (Gommers et al. 2013; Pierik and 
De Wit 2014). Light conditions determined by neighbouring plants, 
more precisely the decrease in the ratio of red (R) and far red (FR) light 
intensity (R:FR), have been characterized as the signal-triggering SAS 

(Ballaré et al. 1990). The consequence of SAS on plant performance 
can be assessed through FSPM by simulating light quality within the 
canopy and calibrating response curves between R:FR and trait value 
(Chelle et al. 2007). This modelling approach revealed to be efficient 
to accurately simulate photo-morphogenesis responses such as inter-
node elongation on cucumber (Kahlen and Stützel 2011) or wheat 
tillering (Evers et al. 2007). However, such approach can be intense in 
computational time and raises some methodological questions such as 
where on the plant and over what period of time the R:FR signal has to 
be perceived to trigger plant response (Demotes-Mainard et al. 2016; 
Lecarpentier et al. 2019). Lecarpentier et al. (2019) alternatively pro-
posed a simple proxy of R:FR based on a neighbourhood green area 
index (GAI) that virtually mimicked the cessation of tillering in wheat.

In the present study, we wanted to address the question of how 
planting design modulates oil palm individual and stand performances 
in term of light interception and carbon assimilation, and what is the 
contribution of architectural plasticity to these performances. Using 
comprehensive and destructive data of plant architecture and vegeta-
tive biomass measured on five planting designs, we assessed oil palm 
phenotypic plasticity. The integration of the observed architectural 
plasticity into an existing FSPM of oil palm (Perez et al. 2016) allowed 
us conducting a simulation study to test the impact of planting design 
and architectural plasticity on physiological processes such as light 
interception and carbon assimilation.

2 .  M AT E R I A L S  A N D   M ET H O D S
2.1 Experimental site

Field measurements were performed in experimental plots at the 
SMART Research Institute (SMARTRI, Smart Tbk.) located near 
Pekanbaru (Riau Province, Sumatra, Indonesia). This study focused 
on five plots with different planting density, varying from 136 (conven-
tional) to 272 plants per hectare. Besides variations in planting density, 
the designs also varied from the conventional quincunx design with 
anisotropic patterns, i.e. involving non-equivalent distances between 
plants. Table 1 shows the characteristics of the five designs: isotropic 
when plants present equivalent distance to all their neighbours and 
homogeneous when all plants share a unique neighbourhood pattern 
[see Supporting Information—Fig. S1]. A  heterogeneous design 
means that replicating a single neighbourhood pattern is not sufficient 
to represent the entire design. As the result, the heterogeneous design 
C is defined by two groups of plants (p1 and p2). The trial was set up 
in 2013 and each plot was planted with oil palm plants (E. guineensis) 
with a genetically uniform material (one progeny) grown in nursery for 
18 months after seedling germination.

2.2 Phenotyping architectural plasticity
Destructive measurements were conducted in July 2019 (i.e. 
~72 months after planting) to estimate plant dimensions and biomass. 
Six plants per plot, selected in the middle of each plot to avoid any bor-
der effects, were entirely dissected to collect structural, geometrical 
and biomass data for all leaves. Structural data included the number 
of leaves and the number of leaflets per leaf. Rachis and petiole length, 
fresh and dry weight were also measured along with the length, maxi-
mal width and fresh and dry biomass of a subsample of four leaflets 
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per leaf. For each design, measurements were performed on two repli-
cated plots and data of the two plots were pooled together after check-
ing that plot effect was negligible in comparison to design effect [see 
Supporting Information—Table S1 and Fig. S2]. As a result, 12 
plants per design (even though being pseudoreplicates) were pooled 
together and considered for the analyses performed on structural data.

Dedicated measurements for estimating the biomechanical proper-
ties of the leaves were collected on December 2019 on one of the two 
plots. Three plants per plot were selected on which three leaves located 
at the top, middle and bottom of the crown were sampled. For each 
leaf, the length and declination, i.e. the angle from the vertical plane 
at leaf insertion on the stem, were measured, and remarkable points 
on the leaf nerve were identified (see Supporting Information—Fig. 
S3; Perez 2017). The 3D coordinates of these points along the rachis 
were manually reported for describing leaf bending and deviation 
(Perez 2017 Appendix A for the methodology). Each leaf was then cut 
into four segments between each remarkable point, and provided the 
following information at each section/segment: cross-sectional shape 
(width and thickness), length and fresh weight of the rachis segment, 
fresh weight of the leaflets on segment. These geometrical and biomass 
attributes were subsequently used to calibrate the biomechanical mod-
ulus of the leaves (cf. next section).

Field measurements of leaf architecture, mainly leaf angles and 
3D coordinates, were hardly feasible on a high number of plants and 
may be very sensitive to manipulators. Here we tested how LiDAR-
based measurements could overcome those phenotyping constraints. 
Terrestrial LiDAR (TLS) scans were thus collected on five palm trees 
to derive phenotypic traits of leaf geometry that were compared to 
labour-intensive measurements. Reflective balls and stripes were 
placed on rachis base (point C) and tip (point A) to easily identify 
these points on the TLS scans. On average, four scan positions were 
needed around each plant to isolate and clean co-registered 3D points 
of leaves. The PlantScan3D software (Boudon et  al. 2014) was used 
to manually retrieve the 3D coordinates on the collected point clouds 
along the rachis and determined rachis length, bending and deviation 
(Fig. 1). Comparison of TLS-derived data and handmade direct meas-
urement were assessed through root mean square error (RMSE), nor-
malized root mean square error (NRMSE) and bias defined as:

RMSE =

 ∑n
i=1 (ti − mi)

2

n

NRMSE =

√∑n
i=1

(ti−mi)
2

n∑n
i=1

mi�n

bias =
∑n

i=1(ti − mi)

n

where ti and mi are TLS observations and handmade observations, 
respectively, and n represents the number of observations.

2.3 Leaf biomechanical model
The biomechanical model of leaf aimed at simulating leaf deformation 
(due to bending and torsion) according to leaf geometry, biomass and its 
biomechanical properties. Leaf geometry inputs (rachis length and cross-
section width and thickness) were modelled using the existing VPalm 
allometries (Perez et al. 2016, 2018) and updated to take into account 
the architectural plasticity with planting density. New allometries were 
defined to link leaf length and leaf biomass, and allowed the estimation of 
rachis biomass properties required in the biomechanical model.

Due to the slenderness of the rachis (ratio length to cross-section 
dimensions), the biomechanical model considered the rachis as a beam 
subjected to two combined stresses: a bending stress and a torsion stress. 
The transverse shear deformation in the cross-section was neglected 
(slender beam). The constitutive equations of the beam theory (Euler–
Bernoulli beam theory) in mechanics of solids can be applied in their 
integral forms, which allow varying the modulus of elasticity within the 
cross-section and along the length, as the inertia along the length of the 
beam. Furthermore, considering the integral forms, the initial shape of 
the beam can be curved. Theses equations are valid only for small dis-
placements, but can be used to obtain large displacements via a decom-
position of the total loading in successive elementary loadings.

To simplify the model (and to allow a determination of the modu-
lus of elasticity), the shear modulus (G) and the modulus of elastic-
ity (E) were considered constant along the rachis and were used to 
model the torsion and the bending of the rachis, respectively. Besides, 
we assumed that biomechanical properties were independent of leaf 
age. The material was assumed to be homogeneous and isotropic in 
the cross-section. Bending and torsion inertia were estimated for each 
of the five remarkable points using simple geometrical cross-sectional 
shapes (C: down triangle, CB: rectangle, B: up triangle, BA: ellipse, 
A: circle).

Table 1. Characteristics of the five studied planting patterns. Distance min, mean and max indicate the minimal, the average and 
the maximal distance between plants, respectively. Design C presents two groups of plants due to the irregular spacing between 
plants in the plot.

Design Density (plants 
per hectare) 

Pattern Distance min (m) Distance mean (m) Distance max (m) Polygon area 
(m2) 

A 136 Isotropic homogeneous 9.21 9.21 9.21 220
B 272 Anisotropic homogeneous 4.61 7.07 8.31 110
C 272 Anisotropic heterogeneous 3.07 (p1)  

8.12 (p2)
5.60 (p1)  
8.49 (p2)

8.13 (p1)  
9.21 (p2)

49 (p1)  
171 (p2)

D 200 Anisotropic homogeneous 5.00 8.54 10.31 117
E 200 Anisotropic homogeneous 6.01 7.07 10.00 150
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The rachis was discretized in 100 segments to solve numerically the 
integral forms of the constitutive equations (the cross-sections were 
discretized in 100  ×  100 pixels and the inertia values were interpo-
lated between the five remarkable points). The total loading (due to 
the segment weights and leaflet weights) was decomposed in a sum of 
‘elementary loadings’, so that each elementary loading induced small 
displacements (the assumption of small displacement is checked at 
each computation step all along the beam). A computation step cor-
responded to the application of an elementary loading on the previous 
deformed shape of the beam (deformed shape obtained at the previ-
ous step). This iterative method on the loading allowed obtaining large 
displacements of the rachis. The final deformation was thus the result 
of a successive number of combined bending and torsional elementary 
deformations resulting from the segment mass and inertia.

The shear modulus (G) was experimentally estimated with a dedi-
cated device [see Supporting Information—Appendix S1; Fig. S4] 
and an average value was calculated for each density. The modulus 
of elasticity (E) was estimated from an optimization process on the 
3D coordinates derived from field measurements. The optimization 
processes to estimate the value of E for each leaf used the value of G 
obtained experimentally, and the measurements of rachis segment 
biomass, length and cross-sectional shapes. Using the Nelder–Mead 
simplex algorithm (Nelder and Mead 1965; Lagarias et al. 1998), the 
optimization consisted in finding the value of E that minimized the 
quadratic error (EQ) between simulated coordinates and the experi-
ment [see Supporting Information—Fig. S5].

EQ =

√∑Npts
k=1 (XExp − XSim)

2

Npts
+

√∑Npts
k=1 (YExp − YSim)

2

Npts
+

√∑Npts
k=1 (ZExp − ZSim)

2

Npts

where:

Npts: the number of experimental points (five points)
X, Y ,ZExp: the observed coordinates in field
X, Y ,ZSim: the simulated coordinate for given E and G values

The initial solution to start the simplex was set to a value of 1000 MPa 
(this value was chosen after static tests performed on some rachis sam-
ples to determine the modulus of elasticity).The optimization was per-
formed on each of the 15 leaves studied per density and the average 
value of E was calculated for each density.

2.4 Defining a neighbourhood index to model archi-
tectural plasticity

Changes in architectural attributes in response to planting design were 
considered at a given developmental stage (6 years after planting). The 
integration of plasticity in the VPalm 3D model required the develop-
ment of allometries based on a variable as generic as possible able to 
decipher each of the designs considered in our study. In this study, 
some designs presented similar density with varying pattern (Table 
1). As a result, planting density was not alone informative enough to 
decipher the designs.

Various neighbourhood indices, derived from distances between 
plants, were tested to establish the existence of simple allometries 
with VPalm parameters. The indices tested were the minimal, aver-
age and maximal distance between plants and the polygonal area 
around the central plant defined by the closest surrounding plants 
(see Supporting Information—Fig. S1; Table 1). As for planting 
density, the average and the maximal distances between plants did 
not allow to properly decipher the studied designs. Contrarily, the 
minimal distance between plants proved to be unique for each pat-
tern and was thus considered as the explanatory variable of plastic 

Figure 1. Processing terrestrial LiDAR scans on PlantScan3D software to retrieve 3D coordinates along the rachis.
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responses. Polygonal area and the minimal distance between plants 
were highly correlated [see Supporting Information—Fig. S6], 
therefore involving comparable allometries. We investigated the 
existence of simple relationships between the minimal distance 
(hereafter called neighbourhood index [NI]) and the variations 
of VPalm parameters with designs. VPalm allometries (Perez et al. 
2016) were fitted on the observed data for each plant (Fig. 2A and 
B) and regression analyses were performed to evaluate if NI was 
a significant factor in the adjustment of allometric parameters. 
When significant differences were found, i.e. when the coefficient 
associated to NI was significantly different from zero (P-value of 
the t-test < 0.05; Table 2), NI was selected as the explanatory vari-
able for rendering architectural plasticity and NI-based allometries 
were defined to simulate VPalm parameter values (Fig. 2C and D). 
Architectural plasticity was estimated for each parameter as the 

relative variation of the parameter from its value on the reference 
design (NI = 9.21 m).

2.5 Evaluating the effect of planting design and 
architectural plasticity on light interception and 

carbon assimilation
Three-dimensional mock-ups were generated from a set of VPalm 
parameters derived from the NI-based allometries. Replicates of the 
same mock-up were placed in virtual scenes with periodic boundary 
conditions to reproduce the planting designs with endless canopies 
(Perez et  al. 2018). Inter-individual variability was generated thanks 
to the dedicated variance parameters in VPalm rendering variations in 
the allometric relationships (Perez et al. 2016). Subsequently, for each 
design, variations in leaves geometrical attributes (length, declination 
and number of leaflets) and leaflets dimensions (length and width) 

Figure 2. Allometries derived from neighbourhood index to model architectural plasticity. Observations and VPalm allometries 
fitting for rachis length (A) and rachis base declination (B) used for estimating the variation in model parameters with NI (points 
indicate average value per rank and design, vertical lines standard deviations between individuals). Allometries were fitted for 
each design with one of the two parameters constant (here the slope), the other parameter being used to define the NI-based 
allometric relationships (C and D). Rachis length plasticity (C) and declination plasticity (D) represent the percent of variation of 
rachis length intercept and the declination intercept (relatively to the control design NI = 9.21 m), respectively.
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were simulated to obtain seven individual mock-ups, each randomly 
deriving from an average individual. Seven plots were simulated per 
design to reproduce inter-individual variability and its impact on phys-
iological processes. The number of simulations (seven) was chosen 
to allow the estimation of the mean and standard deviation of physi-
ological outputs, with the concern of limiting the computational time 
to one night. The low coefficient of variation on simulation outputs 
[see Supporting Information—Table S2] also supported the choice 
to conduct only few simulation repeats. Simulation of physiological 
processes were computed in Archimed-φ (https://archimed-platform.
github.io/) using meteorological and light conditions (sun position 
and day length) with a 30-min time step on a sunny day in the experi-
mental site (Pekanbaru, Sumatra). Light interception of each object 
(leaflet, rachis, petiole, snags and soil) was estimated on the 3D explicit 
stands considering 16 hemispherical directions. Direct incident light 
was computed for each triangle in the scene and scattered light assum-
ing that each leaf intercepts scattered radiation proportionally to its 
apparent surface area in the direction of the incoming radiative flux 
(Dauzat et al. 2001).

Carbon assimilation was simulated using the model of Farquhar 
et  al. (1980) coupled to the stomatal conductance model from 
Medlyn et al. (2011), and the leaf temperature by closing the energy 
balance (Monteith and Unsworth 2008). The long-wave radiation 
exchanges between the leaves and the environment were computed 
using a sky view angle, considering the system as isotropic except for 
the sky considered at air temperature (Dauzat et al. 2001) with con-
stant parameters estimated on oil palm (Table 3). The model was run 
at a 30-min time step considering changing climate conditions over 
the day. The last variable was water-use efficiency (WUE), defined as 
the ratio between carbon assimilation and water transpiration. See 
Perez et al. (2022) for an example of the input files used for simulat-
ing design A.

The total light interception, carbon assimilation and mutual shad-
ing were compared for each design at plant and plot scale. Mutual 
shading was evaluated as the difference between the amounts of light 
intercepted by a single plant in a stand and the amounts intercepted by 
the same plant in isolated conditions, under similar incident radiation 
(Perez et al. 2018).

The effect of architectural plasticity on physiological processes 
was estimated for each design by comparing the simulation outputs 
obtained from the mock-up integrating changes in architecture with 
the simulation outputs obtained without considering these changes, 
i.e. using a mock-up from the control design (Fig. 3).

3 .  R E S U LT S
3.1 LiDAR-based measurements are promis-

ing for fast and accurate phenotyping of oil palm 
architecture

The TLS scans were processed to extract leaf 3D coordinates and 
derived rachis length (Fig. 1). Rachis length estimated from LiDAR 
data showed high accuracy in comparison with the length recorded 
manually, with an average error around 5 cm (NRMSE = 1 %; Fig. 4A). 
Terrestrial LiDAR data were also used to compare the quality of man-
ual measurements relative to the 3D coordinates along rachis required 
for estimating the biomechanical modulus of elasticity (E). On aver-
age results highlighted a close match between the coordinates recorded 
manually and the one extracted from TLS data, but some discrepan-
cies were revealed for some leaves [see Supporting Information—
Fig. S7]. These differences could be explained by the impact of wind 
during measurements, but most probably because of leaf manipulation 
during manual measurements that could deform the leaves. To better 
estimate the effect of these differences on model calibration, both set 
of coordinates were used to optimize the value of elastic modulus (E), 
input data related to biomass remaining unchanged. Results empha-
sized the consistency of E between the two methodologies with an 
NRMSE of 8 % (Fig. 4B), and clearly showed that manual measure-
ments have an acceptable accuracy compared to TLS.

3.2 Plant proximity increased rachis length and 
erectness while structural components remained 

unchanged
Change in architectural traits with NI was mainly observed on the 
rachis (rachis length, rachis fresh weight and declination at point C) 
while the other architectural traits remained unchanged in compari-
son with the conventional planting density (design A). Rachis length 
significantly decreased with increasing NI until a plasticity threshold 
estimated at NI = 6.14 m (Fig. 2C; Table 2). At the minimal NI (3.07 
m; design C-p1), rachis length increased by 18  % comparatively to 
the reference design. With increasing plant proximity, rachis were also 
lighter than rachis at the conventional density (up to 27 % of decrease 
in rachis fresh weight), suggesting that the increase in rachis growth 
was at the expense of rachis fresh weight. Response to plant proximity 
was also revealed by an increase in plant erectness (up to 20 % reduc-
tion in declination at point C for the top crown leaves), which could be 
explained by lower rachis fresh weight for comparable biomechanical 
properties. Indeed, no significant change in elastic and shear modulus 
was observed among designs, revealing that change in architecture was 
driven by change in biomass allocation rather than in biomechanical 
properties.

The number of leaflets per leaf increased with increasing rachis 
length, but no significant effect of NI was found, suggesting that rela-
tionships between leaf dimension and leaf structural characteristics 

Table 3. Parameter values of Farquhar model and Medlyn 
model used for oil palm.

Model Parameter Value 

Farquhar Jmax
250 μmolelectron·m−2·s−1

Vcmax
200 μmolCO2·m−2·s−1

Rd
0.6 μmolCO2·m−2·s−1

ϴ 0.853

TempC ref 25 °C

Medlyn g0
−0.03 molCO2·m−2·s−1

g1
12
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Figure 4. Comparison of manual and LiDAR-based measurement of rachis length (A) and elastic modulus E (B). Values of E are 
estimated using the optimization processed from 3D coordinates recorded manually or extract from LiDAR point clouds (n = 14 
observations). Grey line represents the 1:1 line.

Figure 3. Simulation strategy to estimate the impact of architectural plasticity and planting design on physiological processes. 
Mock-up of the reference design (design A) corresponds to the model without plasticity, and is thus taken as point of comparison 
for estimating the impact of plasticity on physiological processes. Colours on 3D mock-up on left represent light irradiance at 
noon.
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remained unchanged. Regarding leaflets dimensions, allometries 
depending on rachis length were also conserved highlighting negligi-
ble effect of NI on leaf structure.

3.3 NI-based allometries correctly render architec-
tural plasticity among planting designs

Statistical analyses allowed the evaluation of the architectural parame-
ters significantly affected by NI, and NI-based allometries were derived 
to predicted parameter values depending on design (Table 2). No sig-
nificant effect of NI was found on leaflet attributes (number, length 
and width). Given that leaflets were modelled thanks to allometries 
based on rachis length, it was likely that the effect of NI on leaflets was 
already integrated through the differences in rachis length. In other 
words, the relation between rachis length and leaflets attributes was not 
modified depending on design. The potential errors resulting from the 
successive assembly of NI-based allometric relationships with VPalm 
allometries were then assessed through the comparison of trait values 
simulated and measured in field. Simulations were performed using 
the average parameters estimated for each design, setting to zero all 
the variances parameters used to generate inter-individual variability 
in VPalm (Perez et  al. 2016). Results highlighted model compliance 

to reproduce architectural plasticity through NI-based allometric rela-
tionships (Fig. 5). The model allowed the simulation of the increase in 
rachis length and the decrease in rachis fresh weight with plant prox-
imity (Fig. 5A and B). The comparison of the VPalm model with and 
without NI-based allometries showed the benefits of the integration of 
plasticity on the model. For instance, prediction errors (NRMSE) for 
rachis length decreased from 10 to 3 %, from 21 to 9 % for rachis fresh 
weight and from 16 to 6 % for declination at C point. For the other traits 
that did not show significant change with NI, for instance the number 
of leaflets per leaf, simulations revealed less compliance to observations 
(Fig. 5D). Results on leaflets dimensions (Fig. 5E and F) exhibited 
higher variations in observations than in simulation, revealing the limits 
of the model to simulate the observed variations at the leaflet scale. It is 
however worth noting that observed coefficient of variation in leaflets 
dimensions was very low (below 5 %), which could explain the incapac-
ity of the model to render such precision in predictions.

3.4 Improvement of resources acquisition through 
architectural plasticity is outdone by planting design

The estimation of total plant leaf area is not straightforward for oil 
palm since it integrates the area of thousands of leaflets. VPalm 

Figure 5. Comparison of trait values observed in field and simulated in the VPalm model taking into account influence of the NI 
factor. Points indicate average value per leaf rank for each design (colours = NI value). Grey line represents the 1:1 line.
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simulations allowed the estimation of total plant leaf area and can 
be used to compare leaf area between designs. Increase in rachis size 
resulted in a global expansion in plant leaf area, but was only stressed 
for the design B, C-p1 and D, with a gain varying from 4 to 10 % in 
comparison to the conventional design A (Fig. 6). Combined to the 
radiative balance model, 3D mock-ups enabled comparison of the 
impact of architecture and design on light interception and the related 
biophysical processes [see Supporting Information—Fig. S8]. 
The design A proved to be the most efficient to maximize resources 
acquisition at the plant scale: the amount of light intercepted, car-
bon assimilated and water transpired being markedly higher for this 
design than the four other designs. For instance, in high density rows 
of design C (p1), plants presented 43  % less intercepted light and 
54 % less carbon acquisition in comparison with design A. Only the 
design D presented an equivalent level of transpiration, and reduc-
tion in light capture, carbon assimilation and WUE below 5 %. The 
better resource acquisition in design A was mainly explained by the 
lower mutual shading conferred by its lower planting density com-
pare to the four other design but also because the quincunx design 
which allowed a homogeneous repartition and a better penetration 
of light within the crown (Fig. 7). The design D also highlighted 
a good penetration of light, with a global mutual shading of 23  %. 
Design A presented the best penetration of light within the canopy 
due to the lower total leaf area, but it is worthy to note that, at the 
leaf area index (LAI) of design A (around 2.7 m2·m−2), design D pre-
sented inferior value of mutual shading than design A. As a result, it is 
likely that competition for light in design D became lower that design 
A when plants reach maturity.

Outputs at the stand scale highlighted the importance of planting 
design on physiological processes (Fig. 8). Interestingly, we found a 
trade-off between resource loss at the plant scale (Fig. 6) and perfor-
mance gain at stand scale due to higher planting density. Increased den-
sity globally improved light interception (from 9 to 44 %), but gain in 
carbon assimilation was not correlated to the gain in light interception. 
For instance, the gain in light interception due to the high density in 
design E did not counterbalance the negative impact on photosynthe-
sis at the plant scale. Indeed, the total carbon assimilated per hectare in 
design E remained close to design A. Only designs B and D highlighted 
the benefits of higher density on carbon gain at the stand scale, with 
13 % and 42 % more carbon assimilated than the conventional design, 
respectively. Regarding WUE (Fig. 8D), design A  demonstrated the 
highest value but design D confirmed to be an interesting design with 
only 3 % lower WUE compared to the design A.

When comparing simulations with and without architectural plas-
ticity, the increase in total leaf area only demonstrated little gain in light 
capture and carbon assimilation (Fig. 8A and B). Even if the plasticity 
effect resulted in more erected leaves, the spatial arrangement of leaves 
did not prevent extra leaf area to increase mutual shading, except for 
design E (Fig. 8C). Gain in carbon assimilation due to plasticity was 
eventually negligible, with a maximum of 2 % for design C and D. As a 
result, the potential gain at the plant scale in light capture and carbon 
assimilation due to plastic response (leaf area expansion and leaf erect-
ness) under higher density did not overcome the biophysical draw-
backs of competition for light.

4 .  D I S C U S S I O N
4.1 Phenotyping oil palm architecture with LiDAR

Phenotyping plants in the field usually requires techniques that are 
laborious, time-consuming and destructive. This is particularly true for 
3D data, which can be very sensitive to manipulators or equipment, 
involving bias with consequences hardly predicable. LiDAR-based 
phenotyping is a promising technology to overcome these drawbacks 
(Lin 2015; Furbank et al. 2019). Here we found close match between 
LiDAR and manual measurements, for both dimensions and 3D coor-
dinates of oil palm leaves, suggesting that both methods can be used 
for accurately phenotyping these traits. The added value of LiDAR 
measurements remains in the possibility to screen 3D architecture 
without manipulating leaves, contrarily to handmade measurements 
that often requires deforming or even cutting the leaves. In addition, 
LiDAR offers the capacity to phenotype tall palms, which are difficult 
to access manually, and makes architectural measurements on old 
stands possible. Scanning plants with TLS can simultaneously and rap-
idly collect data on several organ or plants, but often requires multiple 
views to avoid occlusion problem (Thapa et al. 2018). When field con-
ditions are windy, the subsequent co-registration of scans introduces 
noise in the point clouds, decreasing data quality for post-processing. 
Nowadays, post-processing is the main bottleneck in LiDAR-based 
measurement, since manual work on point clouds is still needed to 
extract trait value. As a result, the time saved in collecting scan in field, 
in comparison to traditional measurements, can be lose afterwards in 
computational processes. In the present study, post-processing was 
supported by the software PlantScan3D (Boudon et al. 2014), which 
provided a semi-automatic methodology to rapidly extract 3D coordi-
nates along rachis nerve. Enhancement of the current method could 
be achieved to render the process fully automatic, for instance using 
deep learning method allowing automated segmentation of leaves and 
extraction of phenotypic properties (Ziamtsov and Navlakha 2019). 
It is worth to precise that such improvements could be achieved rap-
idly on few traits like rachis length, shape and angles. Nevertheless, 
regarding other traits like biomass components or leaflets counts for 
instance, further technical improvements and dedicated data set would 
be required.

4.2 Towards a model of oil palm that accounts for 
architectural plasticity over plant development

The present study indicated the main changes in oil palm architecture 
in response to plant proximity. The increase in rachis length confirmed 
the results obtained by Bonneau et al. (2014), which showed signifi-
cant frond length difference among planting density starting from 
72 months after planting (same stage than the present study). Bonneau 
et al. (2014) observed significant increase in frond length for densities 
below a distance of 8 m between plants, whereas in our study we found 
plastic response below 6.14 m (Table 2). The plant proximity thresh-
old was not fully in accordance between the two studies, which could 
be explained by the asymmetrical designs changing incoming light at 
equivalent density. The increase in rachis length in response to increas-
ing competition for light confirmed the role of leaf expansion to cap-
ture more light, as demonstrated in the sensitivity analysis previously 
performed on VPalm (Perez et al. 2018).
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Figure 6. Simulation outputs at the plant scale for each design using plastic responses in the model (blue boxes) or not (red 
boxes). Bars indicate mean values and error bars standard deviation of the seven virtual individuals. Values in blue labels on top of 
bars represent inter-design comparison, i.e. gain or loss relatively to the design control (design A). Values in white labels on bars 
represent the gain or loss when architectural plasticity is considered in simulations. Design C presents two groups of plants due to 
the irregular spacing between plants in the plot.
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In many crops, plants with more erected habit are less competi-
tive for light and thus can be planted at higher density (Reynolds et al. 
2000; Truong et al. 2015; Perez et al. 2019). Here we observed that to 
avoid competition for light, oil palm modulate leaf erectness and con-
firmed the SAS observed on other crops (Gommers et al. 2013). To our 
knowledge, this work is a first attempt to evaluate the plasticity of bio-
mechanical properties of leaves. We found that oil palm erectness was 
likely modulated through a decrease in rachis fresh weight rather than a 
significant change in biomechanical properties of leaves. However, fur-
ther dedicated studies are needed since the ratio between rachis length 
and biomass was not constant depending on design, pointing out the 
potential existence of differences in water content and/or structural 
composition. Moreover, the biomechanical model presented in this 
study considered a unique value of elasticity and shear modulus along 
the leaf and with leaf age, but it is likely that properties change with 
space and time.

NI-based allometries allowed to correctly render the architectural 
plasticity observed in field, and enabled generating 3D mock-ups repro-
ducing the main geometrical changes in response to planting design. 
The major limitation of the proposed approach is that the allometries 
are specific to the developmental stage of oil palm (72  months after 
planting), and therefore requires additional experiments and analysis to 
be generalize for younger or older stages. Indeed, it is clear that competi-
tion for light will depend on plant age: no competition in the early stages 

to high competition in the mature stage. One limitation of using only 
the nearest distance as an explanatory variable for architectural plastic-
ity is that it does not account for other distances in anisotropic patterns 
(e.g. inter-row distances). The limited subset of planting patterns stud-
ied prevented us for measuring the effect of inter-row distances beyond 
a certain threshold, and thus from inferring architectural plasticity to 
broader designs. The NI proposed is biased because it only accounts 
for distance between plants, without considering crowns proximity 
(distance between leaf tips) which affects light change over time and 
plant development. A way to account for the dynamic changes in com-
petition for light in relation with plasticity would be to simulate a signal 
which evolves with plant growth and that can trigger plastic responses 
beyond a given threshold. This could be achieved by directly simulating 
R:FR ratio (Evers et al. 2007; Kahlen and Stützel 2011; Bongers et al. 
2018) in virtual scenes, but would raise questions about how to inte-
grate the signal in time and space while adopting a parsimonious model 
and with reasonable computational time. As proposed by Lecarpentier 
et al. (2019), GAI can be used as a simple environmental cue of light 
competition. Another option could be to use directly the mutual shad-
ing as the triggering signal. It is likely to be the variable that represents 
the best the competition for light, but the computational cost to esti-
mate it is still a bottleneck. One could suggest to perform simulations 
with a simpler approach using voxel-based (Munier-Jolain et al. 2013) 
or envelope-based (Duursma et al. 2012; Louarn et al. 2012) models, 
enabling fast calculation of light interception and mutual shading. In 
any case, the development of a dynamic approach of architectural plas-
ticity would need phenotypic data over a period from early to mature 
stages. The data available for this study only concerned a relatively 
short period compared to oil palm development. Besides, the develop-
ment of the palms has most certainly not reached a stable level, which 
is often observed at a later age of the plants. The ongoing collection of 
data in this trial would enable the development of a more integrated and 
generic modelling approach.

4.3 A limited architectural plasticity compensated 
by plasticity in carbon allocation

Our study allowed estimating the contribution of architectural plas-
ticity in light interception, carbon allocation and WUE. Interestingly, 
we demonstrated that the expansion in leaf area in response to shade 
enabled to enhance light harvesting and increased assimilate supply 
at the plant scale, but also decreased WUE. Our results emphasized 
the trade-off between plant performance and stand performance, 
since higher plant density did not increase carbon assimilation at the 
plot scale (Fig. 8B). In this agronomic context, the similar and simul-
taneous plastic behaviour of plants has generated an environmen-
tal neighbourhood highly competitive for light. The monocaulous 
habit of oil palm architecture did not allow limiting mutual shading 
while expanding leaf, rendering the competition for light ineluctable. 
We conclude from this simulation study that, under the light stress 
imposed by planting design, oil palm presented a maladaptive plastic-
ity (futile elongation of leaves) which negatively impacted community 
performance (Valladares et al. 2007). One can suggest that the limited 
architectural plasticity of oil palm can be compensated by the high 
plasticity of oil palm in term of biomass allocation (Legros et al. 2009). 

Figure 7. Mutual shading with cumulated leaf area index with 
canopy deepness for the five studied designs (indicated by 
colours and labels). Mutual shading is calculated from the 
difference in light intercepted within the canopy of an isolated 
plant and the same plant in stand. Points represent average 
mutual shading depending on canopy deepness; vertical lines 
the standard deviation between individuals. Design C presents 
the two groups of plants due to the irregular spacing between 
plants in the plot.
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Pallas et al. (2013a) demonstrated how source–sink imbalance could 
modulate yield components. As a result, it is likely that the cost of allo-
cating additional biomass in leaf expansion will be at the expense of 
bunch production. Comparison of the designs in term of oil produc-
tion would be very interesting to investigate whether the estimated 
improvement in total carbon assimilation at the plot scale for some 
designs involved increasing yield or not.

Eventually, the coupling between the structural model VPalm and 
the carbon assimilation model XPalm developed by Pallas (Pallas et al. 

2013b) would enable to predict oil palm yield performance depending 
on planting designs. Such development would also enable to take into 
account the root system in the model and would consider competition 
for water, which was neglected in the present work.

5 .  C O N C LU S I O N
The present study supports the value of using FSPMs in an agro-
nomic context. In silico experiments estimated the importance of 
architectural plasticity in physiological processes, and drew attention 

Figure 8. Simulation outputs at the stand scale for each design using plastic responses in the model (blue boxes) or not (red 
boxes). Bars indicate the mean value and error bars the standard deviation of the seven simulations. Values in blue labels on top of 
bars represent inter-design comparison, i.e. gain or loss relatively to the design control (design A). Values in white labels on bars 
represent the gain or loss when architectural plasticity is considered in simulations.
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to the physiological consequences of the limited architectural plastic-
ity of oil palm when planting designs are inappropriate. Indeed, the 
leaf expansion in response to shade together with the inability of oil 
palm to modulate mutual shading decreased carbon assimilation at 
the stand scale. The modelling tool presented here paves the way to 
design innovative patterns of plantation based on in silico estimations 
of plant performance. Architectural screening of an enlarged diversity 
of oil palm architecture, involving E. oleifera × E. guineensis hybrids 
which present shorter leaves (Barcelos et  al. 2015), could extend 
the possibility of defining planting designs specific to genetic mate-
rial. Furthermore, in the context of rising interest for ‘ecologically 
intensified’ oil palm systems (Bhagwat and Willis 2008; Khasanah 
et al. 2020), the modelling approach proposed in this paper will help 
providing insights in the comprehension of the ecophysiological pro-
cesses driving performance of oil palm agroforestry and intercrop-
ping systems.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Figure S1. Description of planting patterns and neighbourhood.
Table S1. Analysis of covariance table of rachis length to assess the 
effect of plots.
Figure S2. Rachis length depending on leaf rank for the five studied 
designs and the two plots.
Figure S3. Description of the leaf and the remarkable points.
Appendix S1. Estimation of the shear modulus.
Figure S4. Mechanical device used to estimate the shear modulus (G) 
of the rachis.
Figure S5. Optimization process to adjust the modulus of elasticity 
(E).
Figure S6. Correlations between the selected NI (minimal distance 
between plants) and the others neighbourhood indices tested to 
design allometries.
Figure S7. Leaf bending depending on manual versus LiDAR-based 
measurements.
Figure S8. Mock-ups generated with the VPalm model for each design.
Table S2. Coefficient of variation of variable outputs estimated from 
the seven simulations on each design.
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