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Abstract

Additive, dominance and epistasis genetic variances were esti-
mated from analysis of a clonally replicated full-sib progeny 
test grown in the Republic of Congo. Phenotypic variance com-
ponents were estimated for ages 4 through 25 months for 
growth and at ages 8 and 18 months for ecophysiological 
traits. The estimation of genetics effects was derived from the 
individual mixed model. Genetic structure was incorporated 
into variances and covariance’s effects based on markers infor-
mation. The detected genetic effects of epistasis are significant 
in some traits. This study shows that epistasis variance can be 
non-zero and contribute significantly to the genetic variability 
of growth and ecophysiological traits. We conclude that the 
epistatic effect for quantitative traits may exist, but estimates 
may not be obtained, either because the models used are inap-
propriate or because the epistasis variance is too small relative 
to other components of the genetic variance to be estimated. 

Keywords: Eucalyptus, Genetic variance partitioning, Epistasis, 
SNP marker, Relationship matrix.

Introduction

Study in quantitative genetics has been formulated in terms of 
trait variation (Falconer and Mackay 1996). The basic idea being 
the partition of this variation into components, each attributa-
ble to a different cause (Fisher 1918). The Genetic variance is 
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partitioning into additive (A), dominance (D) and epistasis (I) 
components. These effects successively designate the intrinsic 
effects of the alleles, the intra-locus interactions, and the inter-
loci interactions. The relative importance of the expected 
genetic gain by selecting population, family or clone varieties 
depends on the genetic variance components. In plant bree-
ding, plant breeding, non-additive effects are generally neg-
lected and in particular, the effects of interaction of the alleles 
between loci (Lynch and Walsh, 1998). The reason for this is due 
to the cumbersome and complex experimental designs nee-
ded for the decomposition of the genetic variance to the three 
components: additive, dominance and epistasis (Fisher, 1918). 
Ignoring non-additive genetic effects distorts the prediction of 
crossover values, as well as genetic variance components and 
the genetic merit of genotypes (Van der Werf and Boer, 1989; 
Shelbourne, 1991; Rosvall et al., 1998; Lu et al., 1999; Carlborg 
and Haley, 2004). Epistasis effects can also inflate additive and/
or dominance variances (Goodnight, 1988; Cheverud and 
Routman, 1995; Lynch and Walsh, 1998). Epistatic interactions 
can occur between additive (A×A…), dominance (D×D…) and 
between additive and dominance effects (A×D…). The order of 
the interactions is higher as the number of loci involved incre-
ase. Some epistatic components are more important than 
others and especially the A×A component is of importance 
(Cheverud and Routman, 1996; Wade, 2002) and has been 
shown to be heritable (Goodnight, 1988) and thus much atten-
tion has been paid to studying A×A effects in response to 
selection and evolution (Goodnight, 2000; Jannink, 2003; Xu 
and Jia, 2007).
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Expression of additive and dominance (including epistatic 
effects without the possibility to distinguishing the two com-
ponents separately) effects for Eucalyptus urophylla × E. grandis 
growth traits has previously been studied (Bouvet et al., 2009). 
However, those results were based on the classical quantitative 
genetics model (Gallais, 1990). Although this model allows for 
the evaluation of assessment genetic gain potential of many 
plants of interest. Thus, for a long time, genetic selection of 
quantitative traits in animals and plants focused solely on phe-
notypic performances of an individual and its relatives. 

Quantitative genetic analyses based on the partition vari-
ances was initially proposed by Fisher (1918) and further deve-
loped by Cockerham (1954) and Kempthorne (1954) who deri-
ved methods that are used today.

Nevertheless, this variance partition does not dependent 
on the number of genes or the way they interact; the model is 
only tractable when the effects are orthogonal, which requires 
many assumptions. Thus, quantitative genetic analysis is 
something of a ‘black box’ (Hill, 2010).  Today, the study of bio-
logical complexity and its applications is a new frontier that 
requires high-speed molecular technologies, high-perfor-
mance computers with sufficient memory (Palucci et al., 2007), 
new approaches to analyze data (de los Campos et al., 2013), in 
short it requires the integration of interdisciplinary skills. With 
the availability of dense genome-wide molecular markers, 
genomic selection (GS) has now become practical in forestry 
breeding. One of the justifications for molecular genetic 
research in forestry species is the hope that DNA-level informa-
tion will allow for more rapid genetic gain than what has been 
obtained from phenotypic data alone. The availability of mar-
ker genotypes for several thousand loci across the genome 
allows GS to predict genetic values more accurately than tradi-
tional breeding methods (Meuwissen et al., 2001; Bernardo 
and Yu, 2007; Jannink et al., 2010; Guo et al., 2012). Dense 
genome-wide markers allow to the incorporation of most vari-
ants using historical linkage disequilibrium in the population 
(Hill, 2010). Genomic selection is achieved by capitalizing on 
linkage disequilibrium between markers and QTLs but also on 
genetic relationships among individuals in the study populati-
on (Luan et al., 2012). In forest tree breeding, estimation of 
genetic variance components and prediction of breeding valu-
es are performed by applying the restricted maximum likeli-
hood (REML) (Patterson and Thompson, 1971) and best linear 
unbiased prediction (BLUP) methods (Henderson, 1974). Today, 
more information is associated with the execution of these 
methodologies, such as the matrix of relationships related to 
additive, dominance and epistatic effects. 

The use of this information increases the accuracy and 
precision of genetic selection by eliminating some of the inhe-
rent biases in collected data (Kerr et al., 2012). Relationship 
matrices can be constructed from pedigree information or 
genome-wide marker information (Habier et al., 2007; Heffner 
et al., 2009; Luan et al., 2012; Su et al., 2012). Pedigree informa-
tion provides expected exact relationships whereas marker 
data provide realized estimated relationships. Relationship 
estimates based on markers are more accurate than pedigree-
based estimates (Bouvet et al., 2016). Some mechanisms lead 

realized relationships to diverge from their expectations, such 
as random Mendelian segregation, segregation distortion, 
selection, and pedigree recording errors (Heffner et al., 2009). 
The matrix of realized relationship between individuals has as 
its elements the realized proportion of the genome that is 
identical by descent (IBD) between pairs of individuals (Lynch 
and Walsh, 1998; Luan et al., 2012; Garcia-Cortes et al., 2013). 
Revisiting additive and non-additive effects in E. urophylla × E. 
grandis are done by also considering epistatic variance, explo-
ring variances in ecophysiological traits, and using information 
from genetic markers. Knowing that, when non-additive gene-
tic effects have a substantial contribution to genetic variation, 
models including both additive and non-additive effects lead 
to predicting genetic merit with higher accuracies and with 
less bias (An et al., 2009; Su et al., 2012).

The aim of this paper was to determine the importance of 
the epistatic variation in the total genetic variation in hybrid E. 
urophylla × E. grandis from Congo regarding growth and some 
ecophysiological traits.

Materials and Methods

Location 
The trial site is located at Kissoko north of Pointe-Noire (11°59’ 
21 “ E 4°45’ 51 “ S). The average rainfall is 1200 mm/year. The 
soils are characterized by low water retention, very low organic 
matter (Epron et al., 2004; d’Annunzio et al., 2008) and low 
cation exchange capacity (Nzila et al., 2002).

Plant material and experimental design
An incomplete factorial mating design of 13 (female) x 11 
(male) E. urophylla × E. grandis (Table 1) was used and genera-
ted 69 full-sib families by controlled pollination. A clonally 
replicated progeny test was planted with 1415 clones at a plan-
ting density of 833 trees ha-1. A clonally replicated progeny test 
was planted with 1415 clones set up as a randomized block 
design at a planting density of 833 trees ha-1. This progeny test 
was set up as a randomized block design. The experimental 
unit was 25 plants, composed of one representative of each of 
the 25 full-sib clones. Thus, each plot corresponds to a full-sib 
family. Thus, each plot corresponds to a full-sib family. Thus, 
each plot corresponds to a full-sib family. The total number of 
clones used in this study was reduced to 1415 because of natu-
ral mortality. 

Phenotypic and marker data
Tree height (H) and Circumference at breast height (C) was 
measured between 4 and 25 months. In addition to these 
growth traits, three ecophysiological traits (leaf nitrogen con-
tent, specific leaf area and photosynthic activity of leaves) were 
considered at two ages, 8 and 18 months. Ten (10) leaves (5 
from the upper crown and another 5 leaves from the lower 
crown) were harvested from all the individuals in the trial. Har-
vesting was done in all azimuths of the tree to account possib-
le differences of sunlight. The leaves selected were mature 
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leaves, neither juvenile nor senescent, with completed limb 
expansion, free of any pathogen attack. Leaves were brought 
back to the laboratory where they were scanned, then oven 
dried at 65°C for at least 48h, after which the dry matter mass 
was determined. Leaf area and dry matter were used to calcu-
late specific leaf area (SLA). Next, the leaves were powdered 
after grinding (< 0.1 mm). and the spectra were taken from 
each sample for the determination of predicted leaf nitrogen 
content (N) by near-infrared reflectance spectroscopy (NIRS). 
The N/SLA ratio was calculated to determine the leaf photo-
synthetic activity (LPA). LPA is the leaf nitrogen concentration 
per unit leaf area, which is a good indicator of photosynthetic 
potential.

SNP marker data were obtained from 3596 18-month-old 
trees that were genotyped using GBS technology implemen-
ted by Diversity Arrays Technology (DART). Of the 20,000 SNPs 
identified, 3,303 were selected based on repeatability (Bouvet 
et al., 2016).

SNP marker data were obtained from 3596 18-month-old 
trees that were genotyped using GBS technology implemen-
ted by Diversity Arrays Technology (DART). Among the 20,000 
SNPs identified, 3,303 were selected based on repeatability 
(Bouvet et al., 2016), a minor allele frequency > 2.5 % and a rate 
of missing data per marker > 5 %. Haplotype phasing and mis-
sing-data inference were done with the localized haplotype 
clustering method developed in Beagle version 4.0 (Browning 
and Browning, 2007). 

Data analysis
Three individual linear mixed model including all genetic 
effects were considered. In the individual model, the phenoty-
pe of each everyone is defined in terms of effects, and the 
genetic structure is incorporated into the variances and 

covariances of these effects (Hill, 2010). The model used is writ-
ten as follow:

y = µ1n + Xcol + Zr(b)
r(b) + Zplot

plot + Za
a + Zd

d + Zi
i + e

where y is the vector of observations, X and Z are the 
design matrices of fixed and random effects, respectively, col is 
the vector of columns effects col ~ N(0; σ²col Id), r(b) is the vec-
tor of rows in block effects r(b) ~ N(0; σ²r(b) Id), plot is the vector 
of plot effects plot ~ N(0; σ²plot Id), a is the vector of additive 
genetic effects a ~ N(0; Gσ²a), d is the vector of dominance 
effects d ~ N(0; Dσ²d), i is the vector of epistatic effects i ~N(0; 
Gaaσ²aa), e is the vector  of residual effects e ~ N(0, σ²eId), σ²a is 
the additive variance, σ²d is the dominance variance, Gaa is the  
epistatic variance, σ²e is the  residual variance, Id is an identity 
matrix, σ²a, σ²d and Gaa are the additive, dominance and epista-
tic genetic relationship matrices, respectively.

The additive genomic relationship matrix was constructed 
using SNP marker information, the matrix G is equal to this 
ratio:

:


=
pq

MMG
2

' , 

where M is a n×m matrix (n = number of individuals an, m 
= number of marker), M’ is the inverse of M, p and q are the fre-
quencies of allele 1 and 2 at a locus respectively.

The epistatic genomic relationship matrix was derived 
from additive genomic relationship matrix while performing 
the Hadamard product operation: Gaa ≈ G#G. The genomic 
dominance relationship matrix was calculated as follows
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, where H is 

Table 1 
Pedigree and number of clones per family for each cross

Mâle (Eucalyptus grandis)

9-101 9-111 9-113 9-115 9-118 9-131 9-15 9-159 9-21 9-29 9-66 Total
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14-109 25 25 25 25 25 24 25 174

14-142 25 25 24 13 25 112

14-144 25 24 13 10 10 25 25 14 146

14-230 23 25 18 9 25 20 25 145

14-233 9 14 23

14-242 20 4 22 10 25 81

14-289 25 24 5 25 25 104

14-33 23 24 8 55

14-63 24 4 25 10 25 15 26 129

14-73 4 23 23 25 75

14-74 25 25 24 28 102

14-76 25 25 24 10 25 25 25 159

14-82 25 10 25 25 25 110

Total 4 240 4 196 72 10 122 54 271 166 276 1415
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 the n×m matrix of heterozygosity coefficients (
u
dH =

u
dH = , d = n-dimensional vector of dominance effects and u 

= dominance value at single locus). The genomic dominance 
relationship matrix was calculated as follows, 
 

 −
=

)21(2
'

pqpq
HHD  

where H is the n×m matrix of heterozygosity coefficients  
(

u
dH = , d = n-dimensional vector of dominance effects and u = 

dominance value at single locus). H’ is the inverse of H.
The proportions of the following variances were calculat-

ed: proportions of additive (A² = σ²A/σ²G), dominance (D² = 
σ²D/σ²G) and epistasis (I² = σ²I/σ²G) components in genetic var-
iance.

Results

Variance components and ratios in growth traits
The variances components of the spatial effects (σ²col and σ²x(b)) 
were close to zero, except the column into blocks variance for 
circumference. The plot variance (σ²plot) increases with age. The 
residual component of the phenotypic variance was largest 
compared to the other sources of variation in the model (Table 
2). Figure 1 shows the increase in genetic variance components 
observed for tree height and circumference. At 25 months we 
observe that the dominance genetic variance is larger than the 
additive and epistatic variances. The general trend is an increa-
se in the ratio σ²D/σ²G with age, while a sawtooth evolution is 
observed in the ratio σ²A/σ²G and σ²I/σ²G for height. Concerning 
the circumference, the ratio σ²A/σ²G increases from 0.28 to 0.34 
while the ratio σ²I/σ²G ratio decreases from 0.404 to 0.25, this 
according to the ages from 18 months to 25 months (Table 2), 
respectively. All ratios are close until 18 months; they are mar-
kedly different at 25 months. At this age, the σ²D/σ²G ratio (0.41-
0.42) is higher than the σ²A/σ²G ratio (0.33-0.34) and epistasis 
(0.25-0.40), respectively.

Variance components and ratios in ecophysiologi-
cal 
The row and column into blocks variances are close to zero for 
all traits, except the column into blocks variance for SLA and 
LPA. For these two traits, the plot variance is higher than zero. 
As with the growth traits, residual variance explains most of the 
observed phenotypic variation.

Residual variance decreases with age (Table 2). All causal 
components of genetic variance decrease with age. A prepon-
derance of additive variance is observed for SLA while the 
three components are nearly equivalent for N and LPA. Table 3 
also shows that the ratio σ²A/σ²G is higher compared to the 
other two ratios (σ²D/σ²G and σ²I/σ²G) for SLA. We observed that 
σ²A/σ²G and σ²I/σ²G were equal for N and LPA. The general trend 
observed for all traits was an increase in the ratio σ²A/σ²G ratio 
then a decrease in σ²D/σ²G with age. However, the ratio σ²I/σ²G 
remained constant with age.

Discussion

Additive and non-additive components of genetic 
variance
For growth traits, the results showed a preponderance of domi-
nance variance over additive and epistatic variances. Bouvet et 
al. (2009) explain this superiority by the effect of overdomi-
nance observed in hybrid population, especially when they are 
planted in marginal zones.

The epistatic effect of the genes was significant for some 
traits. This result brings us back to the heart of the problem of 
detecting epistasis. Paul et al. (1997) found similar results in 
two clonally replicated Pinus teada progeny tests, where they 
detected epistatic variance in only one of them at 1 and 3 
years, while the study was conducted up to 5 years. On the 
other hand, Stonecypher and McCullough (1986) on Pseu-
dotsuga menziesii found that dominance and epistatic varian-
ces are twice as large as additive variance in tree height. The 
preponderance of dominance variance was also reported by 
Tan et al. (2018) for growth in hybrid eucalyptus. The additive 
variance is in most cases larger than the dominance and epis-
tasis variances for ecophysiological traits. Additive gene effects 
are therefore the main source of variability for these traits.

In general, pleiotropy is an important prerequisite for the 
existence of epistasis (de Visser et al., 2011). Functional redun-
dancy can also cause epistasis in the sense that two or more 
genes perform a common molecular function (Lehner, 2011). 
Jasnos and Korona (2007) suggest that epistasis results from 
the buffering effects related to physiological homeostasis. 

The consensus in quantitative genetics is that the epistatic 
action of genes is weak and transient in response to selection 
(Crow, 2008; Crow, 2010; Hill et al., 2008; Hansen, 2013). Inter-
loci interactions are weak and difficult to estimate (Phillips, 
2008) while Templeton (2000) suggests that epistasis is com-
monly determined when investigations are properly conduc-
ted. Considering these claims, what is the most appropriate 
method for estimating epistasis? The answer to this question is 
generally complex, but the research requirements are well 
known. First, an adequate experimental design is needed, and 
then one or more adequate statistical methods should be 
employed. In terms of experimental design, the clonally repli-
cated progeny test used in this study allows for the partitio-
ning of genetic variance into the three causal components (Isik 
et al., 2003; Costa e Silva et al., 2004). However, a clonally repli-
cated progeny test is not enough, a good balance between the 
number of parents, progeny per family and clones within fami-
lies is also needed. Pichot and du Cros (1989) find that the 
number of offspring per family can be reduced to 15 without 
affecting the parameter estimates.

However, the genetic parameters are poorly estimated 
with the reduced number of parents and the low level of filling 
of the mating design.

Nevertheless, the number of offspring per family has a 
negligible or at least much smaller influence on the estimation 
of the genetic parameters. Our design has about ten parents, 
and for most families, the number of offspring is equal to 25 
and the filling rate is about 50 %. The experimental conditions 
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are therefore theoretically promising for obtaining reliable 
estimates of genetic parameters. The populations studied do 
not always satisfy the hypotheses of an absence of cytoplasmic 
effects, of normal diploid behavior, absence of C effect (physio-
logical or morphological characteristics unique to the ortet 
because of its specific environment), absence of linkage dise-
quilibrium between different genes controlling the same trait 
and interacting with each other. Failure to satisfy these assump-
tions can lead to inconsistent estimates of epistasis. Fisher‘s 
infinitesimal model separates variances from orthogonal com-
ponents (Falconer and Mackay, 1996; Lynch and Walsh, 1998), 
which is not true in most cases (Bernardo, 2020). 

With molecular markers, the effects of a gene on a specific 
chromosome are well estimated (Hill, 2010; Grattapaglia et al., 

2018). This provides a great improvement over other classical 
methods of quantitative genetics. This is because statistical 
epistasis is a population phenomenon that depends on the 
allele frequencies present in the population, whereas physiolo-
gical epistasis is a genotypic phenomenon that is independent 
of allele frequencies. Cordell (2002) and Moore and Williams 
(2005) agree that the absence of epistasis in the statistical sen-
se does not mean that there are no significant interactions bet-
ween genes in the narrower biological sense.

In summary, it can be concluded that the estimation of 
epistatic variance is an ambivalent issue, due to its generally 
small contribution to the variability of traits of interest (Barker, 
1979; Crow, 1987) despite its large importance in speciation 
and adaptation (Wright, 1980). The quantitative effect of 

Table 2 
Phenotypic variance components (VC) and genetic variance ratios of growth and ecophysiological traits

VC Ht4 Ht8 Ht18 Ht25 C18 C25 SLA8 SLA18 N8 N18 LPA8 LPA18

σ²col 0.0 0.0 0.001 0.001 0.005 0.011 0.002 0.001 0.0 00 0.001 0.001

σ²r(b) 0.004 0.044 0.257 0.583 2.762 3.997 0.694 0.378 0.023 0.016 0.49 0.334

σ²plot 0.009 0.083 0.824 1.796 4.952 8.396 0.965 1.122 0.022 0.015 1.08 0.719

σ²A 0.002 0.014 0.200 0.437 1.587 3.425 0.543 0.468 0.01 0.006 0.334 0.185

σ²D 0.002 0.017 0.237 0.536 1.878 4.198 0.319 0.211 0.011 0.004 0.389 0.178

σ²I 0.003 0.017 0.247 0.332 2.269 2.484 0.361 0.289 0.009 0.005 0.349 0.183

σ²e 0.043 0.34 2.576 5.619 26.58 55.509 7.639 5.548 0.172 0.122 6.795 4.785

σ²G 0.007 0.048 0.684 1.305 5.734 10.11 1.22 0.97 0.03 0.015 1.07 0.55

σ²A/σ²G 0.29 0.29 0.29 0.33 0.28 0.34 0.44 0.48 0.34 0.40 0.31 0.34

σ²D/σ²G 0.33 0.35 0.35 0.41 0.33 0.42 0.26 0.22 0.37 0.27 0.36 0.33

σ²I/σ²G 0.37 0.35 0.36 0.25 0.4 0.25 0.3 0.3 0.29 0.33 0.33 0.34
Ht: height, C: circumference, σ²col: column variance, σ²r(b): rows into block variance, σ²plot: plot variance, σ²A: additive variance, σ²D: dominance variance, σ²I: epis-
tasis variance,  σ²e: residual variance,  σ²G: genetic variance, σ²A/σ²G (additive), σ²D/σ²G (dominance), and σ²I/σ²G (epistasis) proportion in genetic variance.
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Figure 1 
Trend with age of genetic variance components for tree growth
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epistasis is difficult to discern because of the complexities in 
estimating epistasis properly (Falconer and Mackay, 1996). The 
contribution of epistasis as a component of genetic variance 
therefore remains somewhat obscure. Nevertheless, statistical 
epistasis still does not account for the reality of physiological 
epistasis. Gene-gene interactions can be strong and yet gene-
rate little statistical epistasis and large epistatic variance com-
ponents (Mäki-Tanila and Hill, 2014). Hill et al. (2008) conclude 
that gene-level interactions do not necessarily generate vari-
ance-significant interaction. This means that we may find our-
selves in situations where the statistical approach to estima-
ting epistasis does not clearly elucidate the underlying 
biological causes of the interaction between genes (Cordell, 
2002). Thus, in terms of interpretating the phenomena, it is dif-
ficult to establish the exact correspondence between the bio-
logical and statistical models of epistasis (Witte, 1998; Cordell, 
2002).

Nowadays, biological complexity is studied using geno-
me-wide genotyping, combined with high computational 
capacity (Palucci et al., 2007; Paixão and Barton, 2016) and new 
approaches to data analysis (de los Campos et al., 2013).

The lack of epistasis may have several reasons (Okada et 
al., 2012; Mäki-Tanila and Hill, 2014; Paixão and Barton, 2016; 
Barton, 2017; Bernardo, 2020). For instance, markers are in 
imperfect linkage disequilibrium with causal variants, the cur-
se of dimensionality, small effect sizes (Paixão and Barton, 
2016; Barton, 2017), integration in higher dimensional gene-
gene interactions (epistasis appears as additive variance), 

integration in gene×environment interactions or population 
substructure (heterogeneous integration). Wan et al. (2013) 
demonstrated that detection of all epistasis is possible with 
genomic studies but generally requires hundreds or thousands 
of individuals that are genotyped with several million SNPs. 
Mackay (2014) suggests that a better determination of epista-
sis would involve determining the effects of gene pairs, the 
effects of the molecular interactions generated, and assessing 
their effect on the phenotype. In modeling genomic studies, 
incorporating epistasis allows for improved estimation of 
genetic parameters (Verhoeven et al., 2010; Su et al., 2012).

Variance’s ratios
The superiority of the ratio σ²D/σ²G over the ratios σ²A/σ²G and 
σ²I/σ²G reflects the preponderance of dominance variance in 
the total genetic variance for growth traits (Bouvet et al., 2009). 
Similarly, the superiority of the ratio σ²A/σ²G over the ratios σ²D/
σ²G ratios and σ²I/σ²G indicates the preponderance of additive 
variance in the total genetic variance for ecophysiological 
traits. These results highlight the importance of the dominance 
proportion for growth traits and the additivity proportion for 
the ecophysiological traits. The proportion of epistasis is low, 
reflecting a small but non-zero contribution of the epistatic 
effects in the variation of the studied traits. The decrease of the 
ratio σ²I/σ²A found in growth traits shows that epistatic effects 
decrease with age compared to additive effects, which increa-
se.
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Conclusion

In the eucalyptus-breeding program in Congo, the contributi-
on of epistatic effects in the variation of traits of interest has so 
far been considered to negligible or non-existent. The present 
study has showed that epistatic variance may be non-zero and 
contribute significantly to the genetic variability of growth 
traits (25-40 %) and ecophysiological traits (29-34 %). Additive 
gene effects represent only a part of total genetic effects for 
growth (28-34 %) and slightly more for ecophysiological traits 
(31-48 %). The contribution of dominance effects to the gene-
tic variance is predominant for growth traits (33-42 %) and 
much less for ecophysiological traits (22-37 %). When epistasis 
contributes significantly to the genetic variability of trait, failu-
re to distinguish the epistatic effect from the dominance effect 
leads to upwardly biased estimates of additive and dominance 
variances. Given the complexity of understanding the effects 
of the underlying genes, the unknown effects of some loci, and 
their interactions, quantitative analysis may not help us under-
stand quantitative traits. The level of understanding of quanti-
tative traits is still inadequate. In sum, epistasis for complex 
traits may exist but estimates may not be obtained either 
because the models used are inadequate, or because epistatic 
variance is too small relative to other components of the gene-
tic variance to be estimated.
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