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Chapter 1

Introduction

1.1 About grapevine

1.1.1 Economic importance of viticulture in the world and in France

Among horticultural crops, grapevine is one of the most economically valuable worldwide.
With a total production of 14.3 million tons (Mt) out of the 77 Mt produced overall, spanned
over 7.4 million hectares worldwide (https://www.oiv.int/en/statistiques/recherche, 2021).
China was the first producing country in 2019, and France the fifth one with 5.5 Mt (http:
//www.fao.org/faostat/, 2019). However, a distinction needs to be made between table and
wine grape productions. In 2018, Europe accounted for 37.8% of total world grape produc-
tion, but for 62.9% of wine production (http://www.fao.org/faostat/, 2019). This reflects
the fast growing of China’s table grape production, while wine production remained stable
across the last years in this country. France is the first country for grape production in terms
of value, with $14.3 billion (Cantu & Walker, 2019; FranceAgriMer, 2019). In France in 2019,
wine represented 31.2% of food industry exportation value (FranceAgriMer, 2019). In terms
of surface area in 2019, 789,000 hectares were dedicated to grapevine in France, i.e., 3% of cul-
tivated surface, and among this, 6,200 hectares were for table grape (FranceAgriMer, 2019).

1.1.2 Genetics and biology of cultivated grapevine

Phylogeny

The vast majority of cultivated grapevine belongs to Vitis vinifera L. species, from the Vitaceae
botanical family and the Vitis genus, which encompasses around 70 species mainly in Asia
and North America. In Eurasia, two V. vinifera sub-species still coexist: the cultivated one V.
vinifera subsp. vinifera and the wild one V. vinifera subps. sylvestris. All the species from the
Vitis genus, such as V. rupestris, V. riparia or V. berlandieri (in Figure 1.1), are inter-fertile with
V. vinifera and are currently used in both scion and rootstock breeding programs for their
genetic resistance to diseases.

https://www.oiv.int/en/statistiques/recherche
http://www.fao.org/faostat/
http://www.fao.org/faostat/
http://www.fao.org/faostat/
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FIGURE 1.1 – Worldwide distribution of Vitis species (from Töpfer et al., 2010).

Domestication

Grapevine was first domesticated 8,000 to 10,000 years ago in the South Caucasus (Bacilieri
et al., 2013; Péros et al., 2011) from V. vinifera subsp. sylvestris, with subsequent secondary
domestication events around the Mediterranean Sea. Traits affected by domestication were
sex, fertility, shoot architecture, leaf morphology, berry size and berry composition (This et
al., 2006). Indeed, domestication led hermaphroditism to be the dominant form, compared to
dioecious form in wild grapevine. Grapevine underwent differential secondary domestica-
tion events depending on local adaptation to environments and use of the grape. For direct
fresh consumption (i.e., table grapes), a large bunch with big berries were preferentially se-
lected, while for wine-making (i.e., wine grapes), higher sugar and anthocyanin content and
higher skin / pulp ratio thus smaller berries was preferable (Liang et al., 2011; This et al.,
2021).

Genetic diversity and structure

V. vinifera has a diploid genome with 2n=38 chromosomes, first sequenced in 2007, with a
relatively small size of 487 Mbp, compared to other cultivated species (Jaillon et al., 2007;
Laucou et al., 2011; Velasco et al., 2007). V. vinifera worldwide genetic diversity has been
characterized notably in the French Vassal germplasm collection (Laucou et al., 2011; Laucou
et al., 2018; Nicolas et al., 2016) and the American USDA germplasm collection (Myles, 2013;
Myles et al., 2011). These studies underlined that V. vinifera is a highly heterozygous species
with mean level of heterozygosity of 0.76, with strong inbreeding depression (Laucou et al.,
2011; Reynolds, 2015).

Within V. vinifera subsp. vinifera, there is a low structuration according to both geographical
origin (East / West) and grape use (wine / table), leading to three main genetic groups: WW
(wine West), WE (wine East) and TE (table East) (Bacilieri et al., 2013; Nicolas et al., 2016
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FIGURE 1.2 – Structuration of grapevine genetic diversity into three clusters,
using STRUCTURE software (from Bacilieri et al., 2013).

and Figure 1.2). Further subdivision can be found within these groups (Bacilieri et al., 2013;
Laucou et al., 2018).

V. vinifera is characterized by a large genetic diversity with 26.2 alleles on average, measured
on 4,370 accessions with 20 SSRs (Laucou et al., 2011). V. vinifera shows rapid decay of link-
age disequilibrium (LD, correlation between loci), with a distance between 9 to 458 Kb for
a corrected r2 between pairwise markers at 0.2 (approximatively half of the maximum r2),
however, large differences in this distance were observed between linkage groups, grapevine
subpopulations and grapevine species (Barnaud et al., 2010; Barnaud et al., 2006; Flutre et al.,
2020; Nicolas et al., 2016). Grapevine underwent a small genetic bottleneck due to domes-
tication, nevertheless, genetic diversity is still probably weaker than before the phylloxera
crisis, which destroyed most European vineyards and especially genotypes from the wild
subspecies sylvestris. (Myles et al., 2011; This et al., 2006).

As cultivated grapevine could be multiplied through vegetative propagation, most of its ge-
netic diversity has been conserved across centuries. However, due to market and consumer
preferences, this genetic diversity remained underexploited, with only a few varieties being
widely cultivated worldwide (Myles, 2013).

Grapevine biology and viticultural aspects

V. vinifera is a liana with woody shoots and fleshy fruits. However, domestication changed
the shoot attitude of the vine to adapt to its culture. The scion is pruned every year, in order
to counteract the continual shoot growth. Grapevine takes normally five to six years from
fecundation to an offspring producing clusters, using grafting. This length can be reduced to
three to four years by using a special pruning. However, wine-growers buy directly grafted
plants that need around two to three years before the first harvest. Grapevine is a perennial
species, but after 15 to 20 years the yield gradually decreases over the years, due to diseases
or dieback. Thus, depending on the variety and the region, vine replacement normally occurs
every 15 to 40 years. For example, in Occitanie (France), replacement occurs at 22 years on
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average, from 17 years on average for Syrah to 42 years for Carignan (Tripiana & Mayoux,
2018).

1.1.3 Grapevine varieties and breeding

Grapevine historically cultivated varieties

History of grapevine breeding
— Ancestral grape cultivars

Most of the today’s cultivated varieties arise from an original seedling from sponta-
neous crosses between grapevine cultivars (This et al., 2021). Then, vegetative prop-
agation has been the main mean of diffusion of grapevine varieties since Roman ages
(Mudge et al., 2009), essentially through cutting and layering. Indeed, using cuttings
ensure the growers that grapes will have the same desirable traits with preserving
the same genotype, whereas sowing seeds from sexual reproduction lead to highly
diverse progenies. However, this did not exclude several crosses within cultivated
grapes and/or rarely with wild grapes, followed by the occasional selection of some
new improved varieties. In point of fact, many of the main cultivated varieties have
existed for centuries, for example, Gamay and Chardonnay are from the Middle Age,
Pinot Noir from Roman ages (Bowers et al., 1999; Lacombe et al., 2013), and Cabernet-
Sauvignon is cultivated since the 17th century in France (Bowers & Meredith, 1997).

— Phylloxera and mildew crises and inter-specific hybrids
At the end of the 19th century, phylloxera, downy (DM) and powdery (PM) mildews
were introduced in Europe from North America. The large majority of V. vinifera vari-
eties were susceptible to these diseases. Accession of Vitis species were used as root-
stock such as "Rupestris du Lot" or "Riparia Gloire de Montpellier" but crosses were also
made between Vitis vinifera accessions and American Vitis species (such as V. riparia,
V. labrusca, V. rupestris), which were resistant against phylloxera, and adapted to Euro-
pean soils. Latter, similar hybrids were developed in order to produce wines on their
own roots (they were resistant against phylloxera, PM and DM) and were therefore
called direct producer hybrids. They were grown until the middle of the 20th century
(This et al., 2006, Figure 1.3). However, for some of them, wine quality was poor (with
a foxed flavor), with too high methanol concentration. Most direct producer hybrids
were finally forbidden in France from 1934 on. This period saw the emergence of ded-
icated grapevine breeders and the creation of many hybrid grapevine varieties. Hy-
bridization continued even after, with further backcrossing of F1 inter-specific hybrids
with V. vinifera during several cycles, to achieve a proportion of V. vinifera genome
close to 1 (the proportion of V. vinifera genome is theoretically doubled at each cycle).
The other solution against phylloxera was to graft onto resistant rootstocks coming
from American Vitis species, with traditional V. vinifera scions. This solution is still
predominant today in the world.
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Scion varieties
The Vitis international variety catalog registers 21,045 names of V. vinifera scion varieties,
among which around 6,000 are distinct (OIV, 2017), yet 20 varieties represent 37% of culti-
vated area worldwide (Galet, 2000).

Variety Colour Destination Area (in thousand ha) Proportion
Kyoho Black Table 365 4.9
Cabernet-Sauvignon Black Wine 341 4.6
Sultanina White Table, drying and wine 273 3.7
Merlot Black Wine 266 3.6
Tempranillo Black Wine 231 3.1
Airen White Wine, Brandy 218 2.9
Chardonnay White Wine 210 2.8
Syrah Black Wine 190 2.5
Red Globe Black Table 159 2.1
Grenache Noir Black Wine 163 2.2
Sauvignon Blanc White Wine 123 1.7
Pinot Noir Black Wine 112 1.5
Ugni Blanc White Wine, Brandy 111 1.5

TABLE 1.1 – Distribution of the most cultivated grapevine varieties in the
world. Source: OIV (2017).

Variety Colour Area (in thousand ha) Proportion
Merlot Black 112 13.9
Ugni Blanc White 82 10.2
Grenache Noir Black 81 10.0
Syrah Black 64 7.9
Chardonnay White 51 6.3
Cabernet Sauvignon Black 48 6.0
Cabernet Franc Black 33 4.1
Carignan Noir Black 33 4.1
Pinot Noir Black 32 4.0
Sauvignon Blanc White 30 3.7
Other varieties 240 29.8
Total 806 100

TABLE 1.2 – Distribution of the most cultivated grapevine varieties in France.
Source: OIV (2017).

— At the world level
At the world scale, the most widely cultivated grapevine variety (in terms of total
grape growing area) is Kyoho, a tetraploid table grape, mostly grown in Asia; it rep-
resents 44% of the total growing area surface in China. Then come in order Cabernet-
Sauvignon (wine grape), Sultanina (table grape and raisin) and Merlot (wine grape)
(OIV, 2017 and Table 1.1).
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— In France
In France, most surfaces (>99%) dedicated to grapevine are for wine production. The
most widely cultivated varieties are Merlot, Ugni Blanc, Grenache Noir, Syrah and
Chardonnay (OIV, 2017 and Table 1.2). In France, the Protected Designation of Ori-
gin (PDO) imposes a restricted set of varieties that can be grown in a given wine-
growing area. More than half of the surface area in France is under a PDO (62%)
(FranceAgriMer, 2019). The Occitanie region, with 263,000 hectares, is the biggest
grape-growing area of France and the first vineyard in the world in terms of produc-
tion under PDO (https://www.vignevin-occitanie.com).

Rootstock varieties
During the phylloxera crisis, the introduction of other Vitis species as rootstocks rescued
the European vineyard. Main cultivated rootstocks are from other Vitis species or simple
inter-specific hybrids involving species such as V. rupestris, V. riparia, V. berlandieri and/or
V. vinifera. Rootstock varieties were mainly bred during the 19th and early 20th centuries
yielding from 70 to 80 varieties available nowadays (Ollat et al., 2016). However, root-
stock use does not only allow phylloxera resistance, but also confers resistance or tolerance
to other diseases or abiotic stresses, adaptation to soils characteristics and have an impact
on berry composition and yield (Migicovsky et al., 2021; Ollat et al., 2016). In France, the
most widely grown rootstock varieties are Selection Oppenheim 4 (SO4), a V. berlandieri x
V. riparia cross; 110 Richter, a V. berlandieri x V. rupestris cross; 3309 Couderc, a V. riparia x
V. rupestris cross and Fercal, a cross between two inter-specific hybrids (Ollat et al., 2016,
plantgrape.plantnet-project.org/en/).

Clonal selection
A special feature of grapevine is that plant selection is made also within the variety level,
by selecting somatic mutations affecting phenotypic traits. Historically, clonal selection has
been initiated in order to select clones without fanleaf virus, especially in the North-East of
France and in Germany (Reynolds, 2015). Traits selected may be qualitative, such as berry
color (e.g., Pinot Blanc and Pinot Gris are clones derived from Pinot Noir), or quantitative
(e.g., phenology, titratable acidity, Botrytis tolerance and berry size (Reynolds, 2015)). Some
well-known varieties such as Chardonnay display high phenotypic diversity among clones
(Roach et al., 2018). For PDO growing areas, clonal selection is sometimes the only way to
improve grapevine, because PDO, and more particularly the Appellation d’Origine Protégée
(AOP) in France and Europe, imposes a set of varieties that can be grown in each region.

Recent French grapevine breeding programs

Several countries worldwide have developed breeding programs, but we will focus our re-
view on French wine grape breeding programs for disease resistance over the past fifty years.

https://www.vignevin-occitanie.com
plantgrape.plantnet-project.org/en/
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Known resistance genes against grape diseases
Powdery and downy mildews are the main fungal diseases of grape, receiving most the at-
tention of grape breeders. To date, 14 resistance genes/QTLs against powdery mildew (PM)
have been identified in other species than V. vinifera (Cantu and Walker, 2019, www.vivc.de),
referred to as Run or Ren for Resistance to Uncinula or Erysiphe necator, respectively. Run1
was the first locus characterized for this resistance, in a progeny between Muscadinia rotun-
difolia and V. vinifera (Bouquet, 1986; Pauquet et al., 2001). Comparatively, the first locus for
resistance to downy mildew (DM), Rpv1 for resistance to Plasmopara viticola, was also charac-
terized in a progeny between Muscadinia rotundifolia and V. vinifera (Merdinoglu et al., 2003).
Other major loci presently exploited in grape breeding are Run1, Ren1, Ren3 and Ren9 resis-
tance genes. For DM, 32 resistance genes/QTLs are known (Bhattarai et al., 2020; Cantu &
Walker, 2019; Sargolzaei et al., 2020). Breeders mostly work with Rpv1, Rpv3, Rpv8, Rpv10 and
Rpv12 resistance genes. These PM and DM resistance genes confer major or minor / partial
resistance. Other resistance genes are known against Botrytis bunch rot, non-Botrytis bunch rot,
grapevine fan leaf virus, black rot, phylloxera, or Xylella fastidiosa (Krivanek et al., 2006; Rex et al.,
2014; Xu et al., 2008; Zhang et al., 2009).

FIGURE 1.3 – Chronology of French grapevine breeding programs, adapted
from Töpfer et al. (2010), MAS: marker-assisted selection.

Bouquet’s program
Alain Bouquet, researcher and grape breeder at INRA, started a breeding program around
1970 to introgress genetic resistance to PM, by crossing V. vinifera with a F1 cultivar from a
cross between V. vinifera and a resistant cultivar from M.rotundifolia (Bouquet et al., 2000).
This cultivar was also bearing a DM resistance gene and these loci (Run1 and Rpv1) were
genetically linked. Then, progeny resistance was assessed through phenotypic evaluation,
under severe disease pressure (Bouquet et al., 1981, Figure 1.3). Several successive crosses

www.vivc.de
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were needed to recover a large proportion of V. vinifera genetic background, with phenotypes
close to those of cultivated grapevines. As backcrossing to a single cultivar is not possible
in grapevine due to strong inbreeding depression, recurrent cultivar had to be changed at
each generation (Pauquet et al., 2001). Selection was not only focused on PM and DM re-
sistance, but also targeted other quantitative traits, through the choice of V. vinifera parents.
However, in each cycle, several years were needed to apply phenotypic selection. Finally, five
pseudo-backcrosses were performed by A. Bouquet after the initial F1, yielding an expected
proportion of 98.4% of V. vinifera genome; this program lasted 25 years. Seven wine varieties
from this program have a temporary planting authorization in France and four of them will
be used for crossing with Ugni Blanc for Cognac production (Pech-Rouge, 2017). They also
have been used as parents for many breeding programs throughout Europe and US.

INRA-ResDur program
Total resistance conferred by a single gene for PM or DM, as obtained from Bouquet’s pro-
gram, could rapidly be circumvented (Peressotti et al., 2010). Along with the development of
molecular markers, several resistance loci were progressively tagged (Pauquet et al., 2001),
enabling Marker Assisted Selection (MAS) and thus making it possible to early determine if
genotypes were bearing specific resistance genes, for total or partial resistance. Therefore,
breeders could now select genotypes cumulating several resistance genes, for both PM and
DM (Eibach et al., 2007; Merdinoglu et al., 2018).

The INRA-ResDur program started in 2000 at INRA, in collaboration with Julius Kuhn In-
stitute (JKI, Germany), Agroscope (Switzerland), and Weinbau Institute Freiburg (WBI, Ger-
many) (Schneider et al., 2019a; Schneider et al., 2019b and Figure 1.4). Starting from the
varieties developed by Bouquet (4th backcross), the INRA-Resdur program aimed at select-
ing new grapevine varieties cumulating two (ResDur 1 and 2) or three (ResDur 3) resistance
genes, for both PM and DM, in order to ensure long-lasting resistance (Figure 1.4). Presence
of several resistance genes was assessed through MAS, and other traits were phenotypically
selected (Schneider et al., 2019a). Official registration of ResDur 3 varieties is scheduled in
2025 and four ResDur1 varieties are already registered in the French catalogue: Artaban, Vi-
doc, Floreal and Voltis (https://observatoire-cepages-resistants.fr/, Schneider et al., 2019b).

ResDur2 and ResDur3 varieties are currently studied for their wine aptitude with differ-
ent wine-making processes (https://observatoire-cepages-resistants.fr/, Guimier et al., 2019;
Salmon et al., 2018), and tested for their tolerance to abiotic stresses at INRAE Pech-Rouge
(Occitanie).

Current programs
As varieties with several resistance genes are currently available, the goal is now to cross
ResDur2 varieties with emblematic varieties to each wine-growing region (Figure 1.4). For
example, the regional Martell and EDGARR programs crossed their locally grown varieties
(namely Monbadon, Montils and Vidal 36 for Martell; Vermentino and Cinsault for EDGARR)
with resistant genotypes cumulating several resistance genes. The objective is to get resistant

https://observatoire-cepages-resistants.fr/
https://observatoire-cepages-resistants.fr/
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FIGURE 1.4 – INRA-ResDur and French grapevine breeding programs. JKI:
Julius Kuhn Institute (Germany); INRA: Institut National de la Recherche
Agronomique (France), WBI: Weinbau Institute Freiburg (Germany), Agro-
scope (Switzerland). Powdery and downy mildew resistance loci tracked by

Marker Assisted Selection are given in green and brown, respectively.

varieties that are phenotypically close to emblematic cultivars. These programs are the first
one in grapevine involving genomic selection (GS) for predicting quantitative traits of interest
(see below). Offspring with less than two resistance genes for each of PM and DM, as sorted
with MAS, are phenotyped to constitute the training set (TS) to calibrate the model (Figure
1.5). Then, the phenotypes of offspring bearing four resistant genes are predicted with this
model.

However, in these programs, GS is mainly useful to decrease phenotyping effort, not to save
time by avoiding phenotyping. Another regional program, from Inter-Rhône, will be able to
make full use of GS by using an existing and widely studied bi-parental Syrah x Grenache
cross (Coupel-Ledru et al., 2016; Coupel-Ledru et al., 2014; Doligez et al., 2006; Doligez et
al., 2013; Fournier-Level et al., 2009; Fournier-Level et al., 2011; Huang et al., 2013; Huang
et al., 2012; Huang et al., 2014) as TS, and crosses between Grenache and Syrah with resistant
genotypes as target population.

Overall, the use of GS in grapevine breeding programs allows to skip the 2nd step of breeding,
that is the phenotyping step, which occurs after having selected resistant genotypes with
MAS. This step lasts around six years, which could be spared thanks to GS in grapevine
breeding programs (Figure 1.6).
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FIGURE 1.5 – Overlook of current EDGARR and Martell breeding programs
(pers. comm. L. Le Cunff). MAS: marker assisted selection.

FIGURE 1.6 – Grapevine breeding steps without and with GS. MAS: marker as-
sisted selection. Width of shape indicates number of genotypes under selection.

Step 3 is the registration step.

1.1.4 Grapevine ideotype

The ideotype is the theoretical ideal variety that combines breeding objectives for all traits.
For many crops, the ideotype is related to yield, composition of the final product (such as pro-
tein content in wheat grains) (Michel et al., 2019); and tolerance to biotic and abiotic stresses.
Grapevine ideotype is not so easy to define. Few of the main reasons are the fact that the
main final product is a transformed product (wine), the complexity of wine itself and the di-
versity of wines produced. However, grapevine, as others crops, is facing great challenges:
reduced inputs in vineyards, in vinification process and foreseen climate changes. Thus, re-
sistance to diseases such as PM, DM, Pierce’s disease, phylloxera or grapevine fan leaf virus
is crucial. Resistant varieties to PM and DM are already available to winegrowers. However,
abiotic stress tolerance raises more and more concerns, especially with climate change. Wine-
growers are looking for cultivars with a stable production across years, drought tolerance,
with a synchronization between technological and physiological maturity dates (see below).
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Moreover, besides biotic and abiotic stresses tolerance, wine quality is crucial in grapevine
breeding, but wine quality itself is not clearly defined. The final product of grapevine is
obtained by fermentation, thus genetic selection for wine quality needs to take into account
interaction with fermentation practices. Moreover, wine quality being a subtle mix of differ-
ent metabolites and flavors, breeding objective for wine quality will never be to maximize the
accumulation of a given compound.

Grapevine diseases

Grapevine (Vitis vinifera L.) is susceptible to many diseases, caused by fungi, viruses or bacte-
ria. The use of pesticides constitutes a risk for grape growers’ and neighborhoods health and
an environmental threat.

Fungal diseases
Grapevine is susceptible to several fungi or fungus-like eukaryotic microorganisms. As pre-
sented before, the most important diseases are powdery mildew (caused by Erysiphe necator)
and downy mildew (caused by Plasmopara viticola). Cost for the management of these dis-
eases is estimated on average at 979 e/ha in South of France (Ojeda et al., 2010), and pes-
ticide use is less and less socially accepted because of the damage on the environment and
health. Natural resistances are known and used into the breeding programs. PM, DM and
Black rot (Guignardia bidwellii), concentrate most of the fungicide treatments in France. These
three pathogens were imported from North America through infected plants.

PM was first reported in France in 1848 and DM in 1878. PM and DM affect leaves and berries
and can cause substantial yield losses. Almost all Vitis vinifera traditional grapevine varieties
are susceptible to both PM and DM, although partial genetic resistance to PM and DM was
observed (Coleman et al., 2009; Riaz et al., 2013; Sargolzaei et al., 2020). Sulfur and copper are
the most common organic pesticides applied against these fungi, but these treatments only
prevent from the fungi multiplication, thus they are not curative treatments.

Other fungal diseases affect the woody part of the plant, they are called grapevine trunk
diseases (GTD), and are caused by several fungi (Mondello et al., 2018). The three major GTDs
are Esca, Botryosphaeria dieback, and Eutypa dieback (Claverie et al., 2020). Symptoms of
GTDs are not yet fully understood, wood symptoms are not easily observable until apoplexy
and foliar symptoms are not always correlated with disease aggressiveness. However, its
incidence reached 11% in France in 2008 (Grosman & Doublet, 2012). Before 2001, sodium
arsenate was used as curative treatment against GTDs but it has been forbidden because of
its toxicity. Since then, there is no curative treatment available.

Insect diseases
In Europe, viticulture has also suffered from phylloxera (Daktulosphaira vitifoliae), a small in-
sect (aphid) which feeds on grapevine roots and leaves. This insect was accidentally intro-
duced in Britain from America around 1850 and spread all over Europe, destroying most
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vineyards. In France, wine production declined from 54 MhL in 1865 to 29 MhL in 1885
(Stevenson, 1980). There is no chemical treatment, nor genetic resistance to phylloxera in Vi-
tis vinifera genetic background. However, other Vitis species from America co-evolved with
phylloxera and thus display resistance. Nowadays, most planted vines are grafted on resis-
tant rootstocks, except those grown in sandy soils or in countries where phylloxera is absent,
as in South America. Several phytophagous mite species are jeopardizing grapevine, among
which the Tetranychidae and the Eriophyidae families (https://ephytia.inra.fr). Some insects
are also attacking fruiting organs, such as cochylis (Eupoecilia ambiguella) and eudemis (Lobesia
botrana). Damages from these species can be severe, and in addition other rots can develop,
such as gray rot (Botrytis cinerea) (https://ephytia.inra.fr).

Other insects also indirectly cause diseases, by transmitting deleterious bacteria, such as the
blue-green sharpshooter, which transmits the Pierce’s disease (see below), or mealybugs,
which are phytophagous and may transmit grapevine leaf roll virus (http://ephytia.inra.fr).

Bacterial diseases
Pierce’s disease is caused by the bacterium Xyllela fastidiosa and transmitted by sharphopper,
leafhopper or cicadas for example. This bacterium is not specific to grapevine and can infect
for example citrus like in Brazil at the end of the eighties (Chang et al., 1993; Hartung et
al., 1994) or olive trees like in Italia in Apulia region since 2013 (Saponari et al., 2013), but
some strains also affect grapevine by blocking the xylem flow, leading to vine death. Pierce’s
disease caused major damages in the USA at the end of the 19th century. The strain that
affects grapevine (subspecies fastidiosa) has been identified in Balearic Island in Spain but not
elsewhere in Europe for now (Olmo et al., 2017).

Flavescence dorée is a phytoplasma disease transmitted by a leafhopper. The only cure
against this disease is insecticide to eradicate the disease vector. In France, the uprooting
of the contaminated vines is compulsory and if more than 20% of the vineyard surface is
contaminated, the entire vineyard parcel must be uprooted.

Viral diseases
In grapevines (Vitis and Muscadinia sp.), about 70 viruses have been identified (Meng et al.,
2017). The two major diseases caused to V. vinifera by these viruses are leafroll and fanleaf
(Fuchs et al., 2017). Fanleaf is associated with 16 Nepovirus, especially GFLV (grapevine fan
leaf virus) and ArMV (Arabic Mosaic Virus). Vectors of fanleaf viruses are nematodes and
transmission in the field is done from one plant to the next. Grapevine leafroll is mostly
associated with two viruses GLRV1 and GLRa-V3 (Grapevine Leaf Roll associated Virus 1-
3). Other damaging viruses are grapevine Pinot gris virus (GPGV), a trichovirus which causes
chlorotic mottling and leaf deformations, this virus is transmitted by a mite, Colomerus vitis
and grapevine red globe virus (GRGV), a maculavirus which causes fleck on leaves (Fuchs et al.,
2017). Symptoms include loss in yield, delay and heterogeneity in maturity. Only plants free
of these viruses can be sold by nurseries.

https://ephytia.inra.fr
https://ephytia.inra.fr
http://ephytia.inra.fr
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Grapevine response to abiotic stresses

Worldwide, grapevine is mostly cultivated in temperate climate regions, between latitudes
4 and 51◦C in Northern hemisphere and between 6 and 45◦C in the Southern hemisphere
(Santos et al., 2020). In Mediterranean areas, viticulture is sometimes the only agricultural
production possible. Due to climate change, it is very likely that, in Mediterranean areas,
temperature will be higher in summer, while precipitations will decrease (IPCC et al., 2021).
Many factors related to climate change are likely to affect grapevine growth, such as temper-
ature, water availability, light with photosynthetically active radiation (PAR), C02 concentra-
tion, etc (IPCC et al., 2021).

These abiotic factors impact grapevine phenology and yield but also berry composition and
wine-making (Duchêne, 2016; Naulleau et al., 2021; Santos et al., 2020 and see below). In
particular, there is a constant increase of sugar and a decrease of malic acid in harvested
berries, yielding to higher alcohol degrees and less acidity in current wines (Mira de Orduña,
2010; Ruffner et al., 1976).

Several solutions concerning the crop system are currently under investigation to mitigate
the susceptibility of grapevine to climate change effects (Naulleau et al., 2021; Santos et al.,
2020; van Leeuwen & Destrac-Irvine, 2017). Moreover, there is a large genetic variability in
grapevine response to abiotic stresses (Morales-Castilla et al., 2020), that is not yet fully used
in breeding, mostly due to the PDO system which imposes a set of authorized varieties.

Grapevine breeding is a potential response to mitigate climate change consequences. Other
solutions include changes in planting area, cropping system and/or winemaking processes.
The change in planting area is not preferred by viticulturists in France, probably due to the
rigid PDO/AOC system. Winemaking adaptation might not be sufficient to mitigate climate
change effects. Thus, developing new adapted cultivars appears to be an attractive solution,
in combination with previously mentioned ones.

Phenology
The first visible consequence of climate change in plants is phenology (Menzel et al., 2020).
In grapevine the advancement of the onset of ripening (called véraison in French, this stage is
linked to a metabolism change in berry which induces berry softening and anthocyanin syn-
thesis for colored genotypes) and harvest dates over years is well documented and there is a
clear shift. For example, during the 1950-2010 period, average harvest date in Chateauneuf-
du-Pape (Rhône valley) advanced from 26th to 10th September (de Cortázar-Atauri et al., 2017;
Mira de Orduña, 2010). In 2050, phenology stages are expected to occur 6 to 12 days earlier
than today in France, no matter the climatic scenario, and up to 30 days by the end of the
century, depending on the climatic scenario (de Cortázar-Atauri et al., 2017; Duchêne et al.,
2010). This trend is not specific to France or Europe, in New-Zealand, maturity date is ex-
pected to occur 6 to 12 days earlier than today in 2050 on the four main cultivated varieties
(Ausseil et al., 2021). Models have been developed in order to predict phenology stages ac-
cording to weather conditions (Parker et al., 2011; Parker et al., 2020). This shift in phenology
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FIGURE 1.7 – "Modeled harvest dates for Sauvignon blanc (S bl), Merlot (M),
Cabernet franc (CF), and Cabernet-Sauvignon (CS) in Bordeaux for the follow-
ing periods: 1951–1980, 1981–2010, and 1981–2010+ 1 ◦C. Sugar ripeness is
modeled with the grapevine Sugar Ripeness Model (GSR; Parker et al., 2019).
Temperature data is from Bordeaux Mérignac weather station. Warm colors
indicate higher temperatures and cold colors cooler temperatures". The sce-
nario ’1981-2010+1◦C’ corresponds to temperature projections for 2050 (from

van Leeuwen et al., 2019).

dates implies that ripening happens under warmer weather conditions of summer with a di-
rect impact on accumulation of aroma precursors and on wine color. Moreover, at any given
date and due to climate change, temperatures have been increasing, including during berry
development and ripening (van Leeuwen et al., 2019 and Figure 1.7). This shift impacts both
water availability and berry composition (see below).

Genetic variability and determinism of phenological stages have been reported (Duchêne et
al., 2012; Grzeskowiak et al., 2013; Parker et al., 2013; Vezzulli et al., 2019), but not yet their
response to abiotic stresses.

In South areas, grapevine ideotype for drought tolerance would be to select varieties with
an early maturity date, in order to avoid summer water stress for the plant. However, when
considering berry development and composition, varieties with late maturity date would be
preferred.

Water availability
Grapevine is already adapted to moderate drought stress levels typically encountered in
Mediterranean regions. Moderate water deficit could be even beneficial for wine quality
without decreasing yield. However, with climate change, water is expected to become scarcer
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in some areas such as Southern France (IPCC et al., 2021). Thus, water deficit and the associ-
ated higher evaporative demand are expected to be a major threat for future viticulture.

Water deficit has several consequences at the plant level. Soil drying leads to a drop in plant
water potential (potential energy of water, linked to the availability of water in a given area),
thereby increasing the risk of cavitation (gaseous bubbles in the xylem which threaten plant
survival by blocking water flow). Excessive drops may have catastrophic consequences for
the plant, hence they have developed various adaptations to prevent them (Simonneau et al.,
2017). Under water shortage, plants are closing stomata, in order to avoid water loss.

Both rootstock and scion are involved in the response to water stress through specific phys-
iological adaptations, and it was shown that some genetic variability exists for water sav-
ing under soil drying conditions, through daytime and nighttime transpiration for example
(Coupel-Ledru et al., 2016; Coupel-Ledru et al., 2014; Lucini et al., 2020; Marguerit et al.,
2012). Most water losses are controlled by stomatal regulation, with a tradeoff between tran-
spiration and photosynthesis (Simonneau et al., 2017). Some species or genotypes within a
species have been observed to maintain higher leaf water potential compared to others when
submitted to the same edaphic water deficit (Tardieu & Simonneau, 1998). Such genotypes
are called isohydric, such as Grenache, while others called anisohydric cannot prevent their
leaf water potential from dropping, such as Syrah or Chardonnay (Pou et al., 2012; Schultz,
2003). Although this classification is a bit Manichean, plant response to water stress is be-
tween these following extremes (Gambetta et al., 2020; Hochberg et al., 2018). Under mild
water shortage, anisohydric behavior will maintain photosynthesis, thus leading to main-
tained yield and more vigorous plants, while isohydric behavior will have a reduced pho-
tosynthesis. However, under severe or long-lasting drought, anisohydric behavior is prone
to severe damages due to dehydration, while isohydric behavior will be more resistant to
such a climatic scenario (Pou et al., 2012). These two described behaviors are varying across
season, drought characteristics and crop load (Lauri et al., 2016; Naor et al., 2013; Sade et
al., 2012). The ideotype for water availability cannot be easily determined and depends on
climatic scenario and risk management (Coupel-Ledru, 2015; Tardieu et al., 2018).

Berry composition
During ripening (Figure 1.9), phloem unloading of photo-assimilates (mostly sucrose) in the
pericarp dramatically increases. The vacuolar accumulation of hexoses is intimately linked
to the breakdown of malic acid at the beginning of ripening, then to sugar respiration (Savoi
et al., 2021; Shahood et al., 2020). These authors have recently identified a set of sugar trans-
porters and water channels transcripts definitively blocked at phloem arrest. Whatever, sugar
concentration continues to increase following the arrest of phloem, due to the decrease in
volume subsequent to evaporation. Consequently, the effects of temperature largely differ,
depending on water availability, acting both at the photosynthetic level in the canopy, and at
berry growth level.
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FIGURE 1.8 – Developmental stages of grape berries and their compounds
(from Rogiers et al., 2017).

Comparatively to sugar, anthocyanin accumulation occurs at a slower rate during ripening
at high temperatures. As a consequence, harvest is delayed to allow a higher concentration
of anthocyanin in wine, leading to a higher sugar concentration (Sadras & Moran, 2012).

Decrease in malic acid concentration in turn increases wine pH, leading to shorter wine ag-
ing, while increased sugar content induces higher alcohol degree in wines. Aromas are also
changed by higher temperature during ripening, with less herbaceous or vegetative notes
in wines (Pons et al., 2017). On the other hand, moderate water deficit increases secondary
metabolite accumulation in berries with more volatile thiol precursors, while strong water
deficit decreases their synthesis (Pons et al., 2017). Ollat et al. (2018) showed that “Wines of
climate change” were depreciated compared to current wines, based on tasting sessions.

Grapevine varieties can be selected to counteract these changes in wine composition. Objec-
tives are to find varieties with more malic acid and anthocyanin and less sugar contents in
berries (Bigard et al., 2018).
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FIGURE 1.9 – ’Evolution of red wine composition in the Languedoc region
(France) from 1984 to 2018. Each data point is the average of several thou-
sands of analyses of red wines just after alcoholic fermentation (data: Dubernet
laboratory, F-11100 Montredon des Corbières)’ (from van Leeuwen et al., 2019).

Extreme climatic events
In addition to water stress, grapevine can be hit by extreme climatic events, such as heat-
waves, hail or spring frost. These events will occur with higher frequency in the future (IPCC
et al., 2021), but it is hard to conceive a grapevine variety resistant to all these events, e.g.,
severe freeze during burst, severe drought during summer, or heat burn. However, genetic
variability and QTLs have been found for heat burn (A. Coupel-Ledru, pers. comm.)

Measure of drought-related traits
Drought tolerance is a highly complex trait affecting plant growth, berry composition and
wine quality. Most of the time, traits related to drought tolerance are hard to phenotype, de-
pending on environmental conditions and on cropping system (Tardieu, 2012). Traits linked
to transpiration can be measured precisely in a greenhouse under semi-controlled conditions,
but these results often cannot be transposed to the field. Indirect traits such as yield stability
across years or production differential under water stress might be used to assess the drought
tolerance level of genotypes. δ13C is another indirect measure of water stress suffered by
grapevine during the growing season. It refers to the relative amount of isotope 13 of carbon
(over carbon 12) found in plant tissue (generally must or leaves in grapevine). δ13C is related
to intrinsic WUE, which itself is related to photosynthetic activity and stomatal conductance
(Brendel et al., 2002; Farquhar & Richards, 1984).
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1.2 Genotypic value prediction

1.2.1 Genomic prediction

Concept of genomic prediction

Before the advent of genomic prediction (GP), molecular markers were used to identify ge-
netic polymorphisms associated with phenotypic variation through Quantitative Trait Loci
(QTL) detection and mapping. These QTLs could then be used either to provide biologi-
cal knowledge and insights into the underlying candidate genes or to select genotypes with
favorable alleles without the need for phenotyping in a process called marker assisted selec-
tion (MAS). Through several generations, MAS essentially consists in following the allele to
be introgressed or combined. MAS has been successfully applied in many plant species, such
as for example for earliness and grain yield in maize (Bouchez et al., 2002), as well as for
grapevine for disease resistance (see above) and sex of the flower. However, MAS becomes
rapidly unfeasible when the number of QTLs to follow grows: with n QTLs, the probability
to get a genotype harboring all favorable alleles is 1/2n. Moreover, many traits of interest are
quantitative and thus typically controlled by many minor QTLs (Meuwissen et al., 2016). In
addition, marker effects estimation from QTL detection studies is often upward biased and
dependent on the study, the population (Beavis et al., 1994; Meuwissen et al., 2016; Xu, 2003),
and only markers above a significance threshold are retained, many of which explain less
than 10% of total genetic variation.

Genomic selection (GS), which consists in selection based on GP, has been proposed as a solu-
tion to this problem, since all marker effects are estimated without any significance threshold.
It was first conceptualized by Meuwissen et al. (2001), who implemented several GP methods
on simulated data. With the rapid increase of low-cost dense genotyping, the hypothesis that
each causal gene or QTL is in linkage disequilibrium with a molecular marker tends to hold,
making GP possible in many species of interest.

Implementation of GP in breeding programs requires that some genotypes will be both geno-
typed and phenotyped to constitute a reference population used to train the prediction model
(training set, TS), while phenotypes of the target population (genomic estimated breeding
values, GEBVs) will be predicted with the model, based on genotypic data only (Figure 1.10)

Statistically, the training step consists in fitting the following model: y = Xβ + ε,

where y is the n× 1 vector of genotypic values for the trait of interest over all n individuals
of the TS, X is the n× p genotypic matrix for p markers, β is the p× 1 vector of associated
random marker effects, ε is the n× 1 vector of residuals.

Marker effects are estimated in the TS with one of several possible methods (see below), then
these effects are used along with the validation set (VS) genotypic matrix to predict genotypic
values of the trait of interest in the VS: ỹ = Xβ̂.
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FIGURE 1.10 – Scheme of genomic selection implementation in breeding pro-
gram. GEBV: genomic estimated breeding value (from Heffner et al., 2009).

Implementation of GP

Univariate vs multivariate models
The statistical model presented above is a univariate one, i.e., each trait is analyzed separately,
but breeders and geneticists often need to handle several traits at a time. Most of the time,
phenotypic correlations arise among studied traits. Phenotypic correlations are due to both
environmental correlations (e.g., resource availability affect both yield and abiotic stress tol-
erance) and genetic correlations arising from pleiotropy (action of one locus on several traits)
and LD.

Multi-trait, or multivariate, GP models allow to take into account such correlations by han-
dling several traits jointly. The statistical model becomes: Y = XB + E, where Y(n × t),
B(p× t) and E(n× t) are now matrices instead of vectors, adapted to t traits.

B ∼ MN(0, Ub, Vb), B follows a matrix-normal distribution, with Ub a p× p variance-covariance
matrix between markers, and Vb a t× t variance-covariance matrix between traits (including
genetic correlation).

E ∼ MN(0, Ue, Ve), E follows a matrix-normal distribution, with Ue a n×n variance-covariance
matrix between individuals, and Ve a t× t variance-covariance matrix between traits (not due
to genetic correlation).

Several authors compared multivariate GP models to univariate ones and found improve-
ment in GP accuracy, but this improvement was not systematic and often small. Cases most
favorable to multivariate GP were with correlated traits, many missing data, or with traits
showing different heritability values (Calus & Veerkamp, 2011; Guo et al., 2014; Jia & Jan-
nink, 2012; Marchal et al., 2016; Schulthess et al., 2018).

To enhance GP accuracy, some authors proposed to add a secondary trait easy to phenotype
and measured on the test population to train the model for predicting a target trait. But,
as test genotypes are used in the model, this leads to “data leakage” and thus to a bias on
estimated accuracy (Runcie & Cheng, 2019).
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Gene action and subsequent GP models
There are three kinds of gene actions: additive, dominant and epistatic (gene-by-gene inter-
action).

FIGURE 1.11 – Types of QTL effects. Regression of phenotype on genotype at a
locus A with two alleles A1 and A2 in a given population. P(A1A1) represents
the mean phenotypic value for the genotype A1A1. The brown point represents
the mean phenotype in the population, the blue arrow (“d”) the biological dom-

inance effect and the red arrow “a” the additive biological effect.

The additive substitution effect can be measured as the change in phenotypic value when
one allele is substituted to another one at a given locus (Lynch & Walsh, 1998). Another def-
inition is the slope of the regression of phenotype on marker genotype (allelic doses) at the
locus. Dominance deviation is defined as the difference between the heterozygote phenotype
and the mid homozygote phenotype. The magnitude of the additive substitution and domi-
nance deviation effects depends on the population mean, which relies on allelic frequencies
in the considered population. These statistical effects are different from biological additive
and dominance gene effects, defined as the “true” effects of the gene on the phenotype, i.e.,
independently of allelic frequencies in the population (Falconer and Mackay, 2009, Figure
1.11).

The breeder is interested in knowing and predicting the genetic value of genotypes. For
inbred lines, genetic values correspond to breeding values (i.e., additive genetic values), be-
cause genotypes are homozygous, hence there is no dominance. For heterozygous plants
such as grapevine, we are interested in predicting the total genetic values of genotypes, esti-
mating both additive and dominance genetic effects, which may differ from breeding values.
Moreover, grapevine as other outbreeding plants suffer from inbreeding depression which is
directional dominance. Thus, taking into account dominance effects can prevent from getting
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too much homozygous genotypes. However, when choosing parents to cross (mate alloca-
tion), only breeding values are useful, because dominance deviation effects are not transmit-
ted to the progeny.

Epistatic effects are coming from interactions between loci, e.g., additive-by-additive,
additive-by-dominance or dominance-by-dominance interactions. If more and more atten-
tion has been paid to epistasis in the past years, its integration into GP models remains scarce,
mostly because huge datasets are needed to estimate interaction between loci. Estimation of
variance partition for a given trait and species requires computation of specific relationship
matrix (González-Diéguez et al., 2021; Varona et al., 2018; Vitezica et al., 2018). Epistasis ef-
fects may be induced by group-specific QTL effects when crossing heterotic groups together,
as demonstrated in maize (Rio et al., 2019). Using haplotypes in GP may improve the cap-
ture of short-range epistatic effects, while capturing more clearly the LD pattern between
individuals (Hess et al., 2017; Won et al., 2020).

Hence, disentangling genetic variances and effects remains statistically challenging. More-
over, Huang and Mackay (2016) showed that if genetic variance partitions often estimate
negligible non-additive variance components, this is mainly due to statistical coding and this
does not imply that most gene effects are additive. Thus, accounting for non-additive effects
in GP requires specific statistical computing, either by adding specific terms in the equation,
or by using a dedicated non-linear method (see below). The first option requires a specific
matrix for coding heterozygote genotypes, for example coding {aa : 0, aA : 1, AA : 0}. But,
since this coding corresponds to biological dominance effects, then one needs to use other
formula to recover breeding values and dominance deviation effects (Vitezica et al., 2013;
Vitezica et al., 2018). Nevertheless, this investment of taking into account for non-additive
QTL effects could prove useful especially for vegetatively propagated crops.

Genomic prediction methods

Estimating marker effects is a high-dimension problem, also called “small n, big p problem”,
because there are typically much more predictor variable effects (marker effects) to be esti-
mated than observations available (phenotypic records). Thus, ordinary least squares (OLS)
estimation of marker effects cannot be directly performed and other methods are needed,
such as regression with shrinkage. We will consider here three kinds of GP models: frequen-
tist, Bayesian and other non-linear models (classified in Figure 1.12, adapted from Azodi
et al. (2019)). In frequentist GP methods, genetic variance associated with marker effects is
assumed to be fixed, whereas in Bayesian inference, there is a prior on marker effects distri-
bution. Non-linear GP models encompass multi-kernel and deep-learning GP methods.

Frequentist methods
Commonly used frequentist methods for GP are penalized regression methods, such as RR-
BLUP (Ridge Regression – Best Linear Unbiased Predictor or RR) (Henderson, 1985), LASSO
(least absolute shrinkage selection operator) (Tibshirani, 1996) or EN (elastic net) (Zou &
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FIGURE 1.12 – Classification of GP methods. rrBLUP, ridge regression Best
Linear Unbiased Predictor; B-RR, Bayesian Ridge Regression; BL, Bayesian
LASSO; RKHS, reproducing kernel Hilbert space; RF, Random Forest; GTB,
Gradient Tree Boosting; ANN, Artificial Neural Network; CNN, Convolutional

Neural Network

Hastie, 2005). These three methods add shrinkage to the effects estimated by OLS. The
amount of shrinkage is controlled by a parameter (called lambda) which is determined by
cross-validation or maximum likelihood. For EN, the balance between RR and LASSO penalty
is optimized with another parameter (called alpha). These three models are described in the
Materials and Methods section from Brault et al. (2021a) in chapter 2.

In RR models, marker effects are shrunk towards zero but no marker effect is exactly equal to
zero, whereas in LASSO and EN, marker effects can be set to zero (Figure 1.13). This sparsity
property of LASSO and EN (marker selection) makes them useful also for QTL detection (Cho
et al., 2009; Zou & Hastie, 2005).

Another model related to RR-BLUP is GBLUP (Genomic BLUP) which can be written as:
y = µ + Za + ε, with u ∼ (0, σ2

a K), with σ2
a the additive genetic variance and K the additive

genomic relationship matrix, as calculated by (VanRaden, 2008). It is worth mentioning that
GBLUP model is equivalent to RR-BLUP when the RR parameter lambda is equal to σ2

e /σ2
a

and K is the estimator (Habier et al., 2007).

In RR-BLUP, the genotypic matrix is directly entered in the model, whereas in GBLUP, geno-
typic data are used to compute the additive genomic relationship matrix K. Both RR-BLUP
and GBLUP assume a fixed genetic variance for all marker effects.

Bayesian methods
In Bayesian methods, marker effects are considered as a random variable, with an associated
distribution which can be entered in the model as a prior distribution, given the observed
phenotypes. Then, a Gibbs sampler outputs a posterior distribution and best prediction of
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FIGURE 1.13 – Comparison of estimated variable effects. Example of estimated
variable effects by RR, LASSO and EN on the same data. The first ten lambda
values were used (x-axis) and variable effects were reported for all variables
(each line represent a variable). Alpha was kept at 0.2 for EN (from Friedman

et al., 2010)
.

marker effects, which can be seen from a frequentist point of view, as the values minimizing
the difference between the true and estimated marker effects.

Frequentist methods assume a constant variance for marker effects. Conversely, for Bayesian
methods, this variance follows a distribution that can be determined a priori. Thus, this dis-
tribution is not necessarily uniform.

GP methods from the Bayesian alphabet assume different distributions for marker effects:
Student distribution for BayesA (Meuwissen et al., 2001), mixture of student distribution
with a spike at 0 for BayesB (Meuwissen et al., 2001), normal distribution with unknown
variances for BayesC (Habier et al., 2011), mixture of normal distribution with a spike at 0
and a proportion of markers with non-null effect for BayesCπ (Habier et al., 2011), a dou-
ble exponential distribution for Bayesian Lasso (Park & Casella, 2008), a mixture of normal
distribution with different variances for BayesR (Erbe et al., 2012) (Figure 1.14). The advan-
tage of Bayesian methods is that all available phenotypes in the TS are used to train the
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FIGURE 1.14 – Commonly used prior densities of marker effects (all with zero
mean and unit variance). The densities are organized in a way that, starting
from the Gaussian in the top left corner, as one moves clockwise, the amount of
mass at zero increases and tails become thicker and flatter (from de los Campos

et al., 2013).

model, whereas in frequentist models, a subset of phenotypes is left apart during the inner
cross-validation (Gianola & Fernando, 1986). As with frequentist methods, some of Bayesian
methods are performing variable selection.

Non-linear methods
Other types of GP methods such as non-parametric or semi-parametric methods could be
better adapted to model non-additive gene effects (epistatic or dominance) (Desta & Ortiz,
2014; Jacquin et al., 2016). Unlike previously described methods, these methods do not make
hypothesis on additivity of gene effects. Moreover, they provide a flexible manner of dealing
with an always increasing p/n ratio, while former methods are prone to overfitting when p/n
becomes large (more than 50) (González-Recio et al., 2014). I will provide a quick overview
of the most used non-linear methods.

Some of these methods rely on kernel computation, such as Reproducing Kernel Hilbert
Space (RKHS) (Gianola et al., 2006; Gianola & van Kaam, 2008), which is useful to deal with
non-linear gene effects without explicitly including them into the model (Morota et al., 2013).
Instead of using a genomic relationship matrix, this method computes a transformation of
marker genotypes into a kernel matrix based on genetic (Euclidean) distance between geno-
types, which is thereafter used in prediction. Gianola and van Kaam (2008) used a multi-
variate Gaussian kernel for this transformation (Sun et al., 2012). Support Vector Regression
(SVR) also relies on a kernel and is a particular case of RKHS (Kadam & Lorenz, 2019). In ker-
nel methods, using a Gaussian kernel comes to using GBLUP, thus the modeling of non-linear
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gene effects relies on the chosen kernel.

Random Forest method (RF, Breiman (2001)) is a classifier that optimizes and updates marker
effects at each step and thus provide a set of selected markers most likely to have an effect on
the phenotype. However, marker selection is not consistent across repetitions.

Deep-learning methods such as Artificial or Convolutional Neural Network (ANN and CNN,
respectively) are increasingly popular in statistics and in breeding. Briefly, marker genotypes
or other information are entered in the model with an input layer, which is followed by hid-
den layers. Number of layers and links between them are parameters from the model. At
each layer, neurons are weighted and this value is updated in order to minimize a loss func-
tion, so that model errors decrease at each layer. Finally, an activation function is applied
on the last layer to provide the weighted outputs, i.e., the predicted values (González-Recio
et al., 2014). ANN and CNN are underlined by many hyper-parameters that need to be opti-
mized through cross-validation. Azodi et al. (2019) compared many GP methods, including
ANN on multiple species and traits. These authors found that ANN did not performed better
than RR-BLUP, confirming previous findings which pointed out that when gene effects are
additive, non linear methods do not improve predictions over penalized or Bayesian ones
(Desta & Ortiz, 2014).

Kadam and Lorenz (2019) suggested that a limited population size could hamper non-parame-
tric methods to outperform classical parametric methods. This was confirmed on simulated
data by Abdollahi-Arpanahi et al. (2020), who found a slight superiority of CNN over para-
metric methods when number of observations increased from 12k to 80k.

Genetic architecture

Genetic architecture can be defined as the number and type of QTL effects underlying a trait.
Genetic architecture affects GP accuracy, since some methods are more adapted to a specific
genetic architecture such as illustrated with the Bayesian alphabet (Figure 1.14).

Number of QTLs
When the trait under study is controlled by one major QTL, GP is not needed and QTL detec-
tion associated with MAS is better adapted. However, when traits are underlined by many
QTLs with major or minor effects, GP is preferable (Brault et al., 2021a; Meuwissen et al.,
2016).

The hypothesis behind RR-BLUP and GBLUP models is that all markers have a small effect on
the phenotype (infinitesimal model). This assumption is most of the time strongly violated,
with large-effect QTLs or oligogenic genetic architecture for some traits. However, these
methods remain the most widely used in GP studies and give robust GP accuracy across
many traits and species (Azodi et al., 2019).

For traits with simpler genetic architecture, i.e., when there are a few QTLs with large effects,
sparse methods such as LASSO or BayesCπ give better results than RR (Wang et al., 2015).



26 Chapter 1. Introduction

The accuracy of different GP methods therefore can provide insights about genetic architec-
ture of the trait.

Distribution of additive QTL effects
QTL detection studies were useful to provide major QTLs, explaining large part of phe-
notypic variance, such as resistance genes to powdery mildew in grapevine (Pauquet et
al., 2001), but also QTLs with intermediate effects (as reviewed in Vezzulli et al., 2019 for
grapevine). However, QTL detection studies apply a threshold and minor QTLs are not re-
tained in the model. Thus, QTL mapping experiments cannot be a reliable source for deter-
mining QTL effects (Hayes & Goddard, 2001).

For a given number of QTLs, the distribution of QTL effects may differ. Studies hypothesize
that the QTL distribution of many quantitative traits follow a gamma distribution with a few
QTLs with major effects and many QTLs with small effects, estimation of gamma distribu-
tion parameters based on QTL detection studies are provided in (Hayes & Goddard, 2001).
Indeed, these distributions are close to some prior distribution of marker effect from Bayesian
methods (Figure 1.14). However, this does not necessarily imply that these methods would
perform better, as RR or GBLUP remain the most stable method in terms of PA across many
traits (Azodi et al., 2019). Finally, as with number of QTLs, GP methods relative performance
gives us also insights about genetic architecture of the trait.

Genotype-by-environment interaction

When plants are grown in multi-environment trials (METs), they have different phenotypes,
due to environmental effects and genotype-by-environment interaction (GxE). Such inter-
action is fundamental in plant breeding, as the ranking between genotypes may vary across
environments. In particular, some genotypes will show higher performance for a broad range
of environments, while others will have a high performance only in a subset of environments
(Ceccarelli, 1989). From a statistical viewpoint, both residual and genotypic variances vary
across environments and proper statistical models are needed to precisely estimate genotypic
and GxE variances (Granato et al., 2018). In GP, the model can be trained with genotypic
values from a specific environment and candidate genotypes can be predicted for different
environments. Specific GP models allow to include environmental covariates such as solar
radiation, water potential or temperatures to increase GP accuracy (Millet et al., 2019). Other
authors include phenotypes from different environments in multivariate models (Burgueño
et al., 2012). In general, incorporating GxE in GP models increased accuracy by 10% to 40%
(Crossa et al., 2017).

1.2.2 Variables affecting genomic prediction accuracy

Many variables affect GP accuracy, namely GP statistical method, as mentioned above, in
relation with the trait genetic architecture, the composition of TS relative to VS, its structure
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and size, marker density and trait heritability. We will detail the last three variables in what
follows.

Relatedness between training and validation sets

The relatedness between TS and VS, as well as TS structure are crucial for determining PA of
GP. Indeed, this relies on different nested measures (e.g., additive relationship, LD), each of
them having an impact on PA.

Measures of relatedness
Estimating genetic relatedness is useful in breeding as superior individuals transmit part of
their genetic variance to the progeny. Moreover, relatedness is a fundamental part of the GP
model. Before the advent of molecular markers, only pedigree could be used to define the
degree of relatedness between individuals as the probability that a locus is ‘identical by de-
scent’ (IBD), that is inherited from a common ancestor (Speed & Balding, 2015). However,
the alleles inherited from both parents are variable among full-sibs due to recombination.
Molecular markers allow determining relationship as identity by state (IBS), which is the re-
alized proportion of shared alleles between individuals (Toro et al., 2011; VanRaden, 2008). In
GP, additive relationship matrices based on either pedigree or molecular markers are used,
depending on the species under study, but the second one is more precise for full-sibs, as
Mendelian sampling variation is taken into account (Grattapaglia et al., 2018; Jannink et al.,
2010; Nejati-Javaremi et al., 1997). However, using both IBS and IBD matrices could give a
higher PA than using additive relationship matrix alone for population with large and com-
plex pedigrees (Grattapaglia et al., 2018).

Impact of relatedness through LD and allelic frequency
Both allelic frequency and LD between SNPs and causal loci (partly due to distance) in the
TS affect the estimation of additive statistical effects. Marker effects are estimated within
TS, hence they rely on allelic frequencies in TS. Change in allelic frequency between TS and
VS would decrease PA. Moreover, marker effects are also relying on physical association be-
tween a SNP and causal locus, but this association might be broken in VS and this probability
increases with the decrease of genetic relatedness. Thus, differences in allelic frequencies
and LD between training and target populations explain why the relationship between these
populations is crucial to GP accuracy. Besides, Habier et al. (2007), Habier et al. (2013) distin-
guished effects of genetic relationship and LD on GP accuracy, the former changes at every
generation while the latter is more persistent across generations. Then, using all individuals
genotyped in the TS for model training may not be optimal for reaching good prediction ac-
curacy. Indeed, Lorenz and Smith (2015–1) and Brandariz and Bernardo (2019) showed that
adding TS individuals unrelated to VS decreased predictive ability.

Adaptation to breeding programs
Maximum GP accuracy is obtained when TS and VS are highly related, e.g., full-sibs (Habier



28 Chapter 1. Introduction

et al., 2010). However, this configuration is not feasible in a breeding program with hundreds
of crosses every year nor for species with long juvenile period. Nevertheless, several adap-
tations of GP may increase effective relationship between TS and VS. First, TS should reflect
the genetic structure (i.e., allelic frequencies) and diversity of the VS (de Roos et al., 2009;
Rio et al., 2019). Second, the TS needs to be regularly updated with new released varieties,
depending on generation time (Scutari et al., 2016). For that, training set optimization allows
selecting the most related individuals from a TS to a given VS, without selecting close rela-
tives in TS (Akdemir & Isidro-Sánchez, 2019; Rincent et al., 2012; Rincent et al., 2018). Finally,
selected TS should be composed of enough genotypes depending on the genetic diversity, so
that allelic effects could be correctly estimated (Norman et al., 2018; Zhang et al., 2017). TS
design constitutes a resource allocation problem, as several variables are involved and the
phenotyping budget is fixed (Ben-Sadoun et al., 2020).

Type and density of molecular markers

In grapevine, the most widely used molecular markers are SSR (single sequence repeat) and
SNP (single nucleotide polymorphism) markers. Each SSR allele corresponds to a number of
repetitions of short sequences, hence there might be dozens of different alleles (Kalia et al.,
2011). Each SNP allele corresponds to a nucleotide, hence there are four possible alleles. Most
often, only biallelic SNPs (by far the most frequent ones) are used in genetic analyses. That
is why SNP genotyping requires at least two or three times more markers than SSR geno-
typing to give the same level of information in GP (Jannink et al., 2010; Solberg et al., 2008).
For instance in grapevine, the partition of varieties into three subpopulations using 20 SSRs
or 8840 SNPs led to close results (Flutre et al., 2020). But SNPs are much more abundant in
the genome than SSRs, and nowadays, with the advence of sequencing, they can be typed
at relatively low cost and thus constitute the main resource for QTL detection and GP stud-
ies. Moreover, SSRs are mostly located in non-coding regions, which makes them useful for
linkage mapping, but less for GP (Kalia et al., 2011), while a fair proportion of SNPs an be
identified in both genes and regulatory sequences.

Beyond the type of marker, required marker density depends mainly on the TS under study
and its recombination history, as measured by effective population size (Ne) or LD extent.
Many studies in plant and animal breeding measured the impact of SNP density on GP accu-
racy, by fitting the GP model after pruning the number of SNPs (Norman et al., 2018; Tayeh
et al., 2015). Indeed, GP accuracy relies on the linkage between markers and causal poly-
morphisms. If marker density is too low compared to LD extent, this linkage may be broken
in the VS, leading to a loss of PA. Thus, LD extent in the TS is a crucial parameter which
will determine the number of SNPs required. In a bi-parental population, i.e., with long LD,
the number of markers required to reach reasonable PA is quite low (de Bem Oliveira et al.,
2020; Nsibi et al., 2020). These studies also showed that PA with an increasing number of
markers quickly reached a plateau, and even a small decrease was observed with large num-
bers of markers. The level at which PA plateau takes place depends on the training set size
and the span of LD (de los Campos et al., 2013). Marker density is no more a limiting factor
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for PA. Still, sequencing technologies such as genotyping-by-sequencing (GBS) (Elshire et al.,
2011) generate many missing data, thus marker imputation is needed. However, genotypic
imputation is challenging for heterozygous genomes with low-coverage genotyping such as
GBS (Swarts et al., 2014), but several software are available such as Beagle v4.1 (Browning &
Browning, 2016) or FImpute3 (Sargolzaei et al., 2014).

The marker density parameter is also in interaction with the relatedness between training
and validation sets, with a higher marker density being required in case of lower relatedness
(Norman et al., 2018), since LD decrease dramatically with lower relatedness.

Phenotyping and population design

Besides genotyping and TS constitution, phenotyping has a substantial impact on GP PA,
because marker effects will be estimated based on adjusted phenotypic values.

Plant trial design Genetic experiments are conceived so that the genetic value of individ-
uals can be easily estimated. In order to estimate environmental effects, the same genotype
can be replicated in several blocks and randomly distributed within each block.

Prediction of genetic value The genetic value is predicted based on a mixed model, includ-
ing random and fixed effects. We first fit a global model, including genotype effects, all
possible confounding effects such as block, year or field coordinates, and interactions.

Then, model selection can be done, on the basis of Fisher tests for fixed effects and log-
likelihood ratio tests for random effects. Finally, Best Linear Unbiased Predictors (BLUP)
for the random genotypic effect are predicted in the selected model for all individuals. These
values can then be used in GP analysis.

Estimation of heritability value The heritability is the part of the phenotypic variance that
is explained by the genetic variance. Variance components are extracted from the previously
selected model.

There are two kinds of heritability: broad-sense heritability (H²) is basically a measure of re-
peatability, that is, the total genotypic variance over the phenotypic variance; it takes into
account both additive and dominance genetic variances. Narrow-sense heritability (h2) mea-
sures the ratio of additive genetic variance on total phenotypic variance. This characterizes
the part of variance that an individual may transmit to its progeny.

Broad-sense heritability for genotype-entry means can be estimated as in (Piepho & Möhring,
2007).

Broad-sense heritability value determines the part of genetic signal in phenotypic data. If
the heritability value is low, then genetic gain will be limited, as environmental factors add
noise to phenotypic data. Conversely, increasing the number of genotypes (and therefore
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FIGURE 1.15 – Impact of each brick on the parameters of the breeder’s equation
(from Consortium et al., 2021)

associated genetic variance), and the number of replicates and trials may help increasing the
heritability value and getting more precise genotypic values.

Impact of phenotypic data on GP accuracy Heritability value is one of the main drivers of
GP accuracy for a given trait (Zhang et al., 2017). Moreover, GP can only exploit the her-
itable part of a trait for genetic improvement; the rest being determined by environmental
or residual variation. Many studies divide the correlation between observed and predicted
genotypic value by the square root of heritability, so that traits can be compared to each other.

Consequences of GP on breeding programs

GP was successfully implemented in the breeding programs of many species, including cattle
(Hickey et al., 2017; Meuwissen et al., 2016), cereals (Charmet et al., 2014; Krishnappa et
al., 2021), also, but more rarely forest trees (Grattapaglia et al., 2018; Lebedev et al., 2020)
and fruit trees (Cazenave et al., 2021; Nsibi et al., 2020; Roth et al., 2020). Impacts of GP
implementation on breeding programs can be classified into three categories, depending on
which components of the breeder’s equation (genetic gain) are affected (Consortium et al.,
2021, and Figure 1.15).

— Reduced cycle length (T)
Depending on the species under study, GS allows reducing cycle length, because ge-
netic values of individuals can be predicted at early stage, without phenotyping. In
animal breeding, GS was revolutionary because of the long generation time (Hickey et
al., 2017). On annual species, the reduction was lower but enough to get higher genetic
gain (Crossa et al., 2017). In grapevine, phenotypes on fruit and wine are available
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only three to four years after crossing. With GP this phenotyping step is skipped and
replaced by a much shorter genotyping step (Figure 1.6).

— Increased selection accuracy (r)
The increase of selection accuracy (r parameter in Figure 1.15) by using GS is allowed
in several situations. First, if trait to be selected has high GxE interaction, low heri-
tability or phenotype is costly to measure precisely. Thus, using GS allows maximizing
phenotyping efforts on TS only and estimating BLUPs of genotypic value. Second, if
trait is not available on selection candidates, for example female traits in cattle breed-
ing. In this case, phenotypes from relatives are used but without genomic information,
selection accuracy is limited because it is not possible to exploit the Mendelian sam-
pling genetic variability (Consortium et al., 2021).

— Increased selection intensity
Within a breeding program at a given cost, more genotypes can be predicted with GP
than would have been planted and phenotyped without GP, because only TS is phe-
notyped. Thus, selection intensity increases for a given number of released genotypes
and budget.

— Decreased genetic variance (σ2
g )

Compared to phenotypic selection, GP allows maximizing genetic gain at each breed-
ing cycle. However, this implies a sharp decrease of genetic variance, which will ham-
per further genetic gain. To avoid that, GP needs to incorporate knowledge about
inbreeding, in order to manage long-term genetic diversity (Colleau et al., 2017).

1.2.3 Phenomic prediction

The concept of phenomic prediction or selection (PP or PS) was originally defined by Rin-
cent et al. (2018). The authors used a similarity matrix derived from near-infrared spectra
(NIRS), instead of the genomic relationship matrix for GP. In some conditions, PP is similar
to genomic-like omics based (GLOB) prediction, with the prediction model based on tran-
scriptomics or metabolomics data (Feher et al., 2014; Fernandez et al., 2016; Guo et al., 2016;
Riedelsheimer et al., 2012; Schrag et al., 2018; Xu et al., 2016).

Reflectance or absorbance at a given wavelength are determined by chemical bounds in
molecules inside a tissue. This property has been extensively used to predict costly traits
(Holroyd, 2013; Nicolaï et al., 2007; Osborne, 2006; Tsuchikawa & Kobori, 2015). However,
this classical use of spectra in phenotyping is different from PP, as in PP NIRS replace ge-
nomic markers and are used to predict uncorrelated traits in a given environment (Rincent
et al., 2018, Robert et al. 2021, in press). NIRS derived relationship matrix are expected to be
more or less similar to the genomic relationship matrix, because reflectance at a given wave-
length reflects the molecules present in a tissue, that are themselves determined by genetic
and environmental factors. One step further, GLOB allows to predict uncorrelated traits in
an environment for which NIRS are not available, while being measured in another envi-
ronment (Robert et al. 2021, in press). This particular case is the closest one to GP, with a
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relationship matrix coming from NIR measurements in one or several environments to pre-
dict traits in other environments. Another property of NIRS is that it integrates both genetic
and GxE signals, compared to GP. That is why we expect PP where NIRS and traits are mea-
sured in a single environment, to be more accurate than GLOB prediction. Indeed, Rincent
et al. (2018) found promising predictive abilities in wheat and poplar, both for PP and GLOB
and with higher reliabilities compared to GP, especially in wheat. These results have been
confirmed by Krause et al. (2019) in wheat, with spectra coming from unoccupied aerial vehi-
cle (UAV). Besides PP and GLOB reliability, another advantage is that spectra are cheaper and
higher-throughput than genotyping. Neither GLOB nor PP have been ever implemented in
grapevine. Besides, because of its novelty, many questions remain unanswered about the re-
liability of GLOB prediction and the modalities under which GLOB should be implemented.

Theoretical, applied, and foreseen developments or GLOB and PP are reviewed in a book
chapter entitled “Phenomic selection: a new and efficient alternative to genomic selection”
that I have co-authored. This chapter is available in Appendix A.

1.3 Thesis objectives

Most grapevine cultivated varieties in France are susceptible to diseases such as PM and
DM, thus requiring many pesticide treatments each year. Moreover, climate change affects
grapevine growth, phenology, yield and the resulting wine quality. Grapevine breeding can
contribute to mitigate these effects. In France, several winegrowing corporations are starting
breeding programs which involve crossing genotypes resistant to diseases with emblematic
varieties specific to each wine-growing region. Thus, methodologies for optimizing this selec-
tion and avoiding or limiting the time-consuming phenotyping stage are clearly needed. This
thesis is a partnership between Inter-Rhône, a wine-growing corporation located in Orange,
which work in Vallée du Rhône AOC, IFV (Institut Français de la Vigne et du Vin) and IN-
RAE’s team DAAV from UMR Agap Institute, which work on grapevine physiology, genetic
diversity, quantitative genetics and breeding.

Indeed, grapevine breeding presents several peculiarities. First, the selection outcome is a
heterozygous clone. Second, the ideotype is very complex, not clearly defined yet, and it
involves many quantitative traits with various heritability values and genetic architectures.
Thus, assessing PA of GP for a large number of traits, using populations typically encountered
in breeding is a necessity.

It was demonstrated that GP was useful in animal and plant breeding programs mainly be-
cause it allows a precise selection of promising individuals, based on predicted genotypic
values from molecular markers (Meuwissen et al., 2016). In grapevine, the main expected
advantage of GP is time-saving, because of the long generation interval. However, in this
crop, proof-of-concept is lacking for GS implementation in breeding programs. So far, only a
few studies tested GP in grapevine. First, Fodor et al. (2014) used simulated data mimicking
grapevine diversity to test GP first within a core-collection and then across–populations with
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the core-collection as TS and bi-parental families as VSs. Second, Viana et al. (2016) imple-
mented GP within an inter-specific bi-parental population of 143 individuals, on eight traits.
Then, Migicovsky et al. (2017) predicted 33 traits in a set of 580 V. vinifera accessions. Finally,
Flutre et al. (2020) used a diversity panel of 279 genotypes to implement GP on 127 traits, they
also implemented across-population GP, but with a limited VS size (23 genotypes). These
studies did not compare accuracy using different TS and VS, or different parameter affecting
PA .

Strong evidence of the accuracy of GP is needed to implement it in current breeding programs
in a practical way. The most crucial lacking knowledge is the accuracy - or predictive ability
- which can be expected for a given trait with a given model. Several parameters are known
to impact PA, such as GP method, heritability of the trait, relatedness between TS and VS,
genetic architecture of the trait, marker density. Some of these parameters are specific to
grapevine, as the LD, and cannot be extrapolated from other species. Then, a comprehensive
study of GP implementation in grapevine, with the test of various parameters affecting PA in
a breeding configuration is needed. Besides, new methodologies for genetic value prediction
are continuously developed, such as PP, which gave promising results on wheat and poplar
(Rincent et al., 2018).

In this context, the objective of my thesis was to implement GP and PP on many traits and
in various configurations, in order to optimize the release of new grapevine varieties.

To reach this objective, I adopted the following strategy, relying on three different plant pop-
ulations (Figure 1.16) already genotyped and phenotyped.

I first worked on a bi-parental population from a reciprocal cross between Syrah and Grenache,
classical varieties from Vallée du Rhône. I implemented within-population GP on a geneti-
cally homogeneous bi-parental population because it was the most favorable configuration
for GP and thus it was easier to compare multiple GP methods on many traits. SxG was al-
ready genotyped for 3,961 SNPs and phenotyped for 14 traits related to drought tolerance,
measured in semi-controlled conditions after applying a differential water stress (chapter 2).
Within this population, I tested several GP methods, including multivariate (or multi-trait)
ones. Moreover, I used simulated data to truly assess parameters affecting methods relative
performance, such as genetic architecture. Data simulation was also useful to study marker
selection performed by some GP method or their extension. Finally, I applied these methods
for marker selection on the experimental data.

Given the good PA in this ideal combination, I then investigated several configurations closer
to those encountered in plant breeding programs in order to specifically test to what extent
the relationship between TS and VS affects GP, and in turn whether SG could improve breed-
ing in grapevine (chapter 3). Actually, across-population GP in grapevine has been little
tested so far and the thorough characterization of parameters affecting PA has never been
done in grapevine. I tested GP using as TS either a diversity panel or half-sib families to
predict genotypic values in 10 bi-parental crosses of a half-diallel mating design. GP was
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based on common data already available for 32,894 SNPs and 15 traits measured in the field.
This allowed me to characterize which PA range could be obtained in across-population GP
and which parameters were affecting these values. For this, I assessed PA in two different
ways, corresponding to two breeding steps: 1) for predicting the mean genotypic value of
each cross, which is useful to select parents to cross, also known as the mate allocation issue;
2) for predicting genotypic values within each cross, which is useful to select offspring after
crossing, also known as Mendelian sampling prediction.

Finally, I tested the recently developed PP, which was shown to increase accuracy and reduce
costs in breeding programs, and not yet been applied in grapevine. I thus compared its
implementation comparatively to GP, based on the same genotypic and phenotypic data as in
chapter 3, with NIRS data acquired during the thesis (chapter 4). For that, I first assessed the
genetic component in NIRS variance in the two tested populations (half-diallel and diversity
panel), in two tissues (wood and leaves), during two years (2020 and 2021). This allowed me
to determine the conditions under which the genetic signal in NIRS could be best captured.
Then, I applied PP within each population with various statistical models in order to increase
PA.

After the presentation of the results of my work, I have included a general discussion and
proposed several perspectives of the work (chapter 5).

FIGURE 1.16 – Thesis outline.
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Chapter 2

Multivariate genomic prediction

2.1 Summary of the chapter

The aim of this chapter was to provide a fine comparison between several GP methods on a
bi-parental grapevine population. For that, I used a pseudo-F1 bi-parental population from
a reciprocal cross between Syrah and Grenache varieties (SxG). The 188 offspring were phe-
notyped both in a high-throughput phenotyping platform and in the field, with a differential
water stress applied. First, I constructed a new genetic map with 3,961 available SNP mark-
ers and compared it with a previous SSR map (Doligez et al., 2006). Second, I simulated
phenotypic data based on existing genotypic data under various genetic architectures. Third,
I compared univariate and multivariate statistical methods for both genomic prediction (GP)
and marker selection (QTL detection); I applied these methods both on simulated and on pre-
viously studied phenotypic data from the phenotyping platform (Coupel-Ledru et al., 2016;
Coupel-Ledru et al., 2014). Finally, I applied a subset of these methods on phenotypic data
from the field.

2.2 Preliminary tests

In the article I (see below), we compared GP methods using a design matrix from a SNP
genetic map. Before that, I compared two consensus genetic maps with SSR and SNP markers
and their impact on predictive ability.

2.2.1 Quick material and methods

SSR map
We used the consensus genetic map with 153 multi-allelic SSR markers first published in
Huang et al. (2012), and recalculated with the Kosambi mapping function by Doligez et al.
(2013). The physical positions of SSR markers absent from the latest URGI JBrowse (https://
urgi.versailles.inra.fr/Species/Vitis/Genome-Browser) were retrieved by aligning their for-
ward primer with BLAST (Altschul et al., 1990) on the PN40024 12X.v2 reference sequence
(Canaguier et al., 2017) using default parameter values, except for the Expect threshold which

https://urgi.versailles.inra.fr/Species/Vitis/Genome-Browser
https://urgi.versailles.inra.fr/Species/Vitis/Genome-Browser


36 Chapter 2. Multivariate genomic prediction

was set to 1 or 10. Physical positions were still missing for six SSRs and one was uncertain
(high Expect value).

SNP map
The construction of the SNP consensus genetic map including 3,961 markers is described in
Article I (see below). This new map was compared to the SSR map based on genetic and
physical marker positions. Since these 3,961 markers were ordered and imputed with Lep-
MAP3 (Rastas, 2017), they had four alleles each.

Genotypic data format
In the following, we used the JoinMap version 3 format for genotypic data, according to
which each marker genotype is encoded under the following segregation types: ab×cd, ef×eg,
hk×hk, nn×np and lm×ll. Each of these comprises several allelic effects: e.g., for abxcd, the
additive effects are a, b, c and d, and the dominance effects are ac, ad, bc and bd. Among the
153 SSRs, 50 segregated ab×cd, 58 ef×eg, 10 hk×hk, 16 lm×ll and 19 nn×np.

Design matrices
The methods compared in this chapter for both GP and QTL detection are based on multiple
linear regressions, as detailed in Article 1 (see below). They thus require a design matrix,
built from the genotypic data. Here we compared several possible design matrices.

First, for each genetic map (153 SSRs and 3,961 SNPs), we derived two design matrices. In
these matrices, a given marker encoded in the JoinMap v3 format corresponded to several
columns, with one predictor per allelic effect. For each offspring, genotypes were then coded
0, 1 or 2 for additive allelic effects and 0 or 1 for dominance allelic effects. The first matrix
included only additive effects (464 and 15,844 for the SSR and SNP map, respectively). The
second one included both additive and dominance effects (996 and 31,688, respectively).

Then, we also recoded the 3,961 SNP markers into bi-allelic additive gene doses (i.e., 0, 1 or
2), which yielded an additional design matrix with 3,961 predictors (Supplementary Table 1
from Article I).

Finally, we used 17,298 SNP markers coded additively, available from the filtered vcf file,
before genetic map construction.

Genomic prediction
We compared these six different design matrices, based on the mean predictive ability of
seven penalized methods across the 14 traits measured on the phenotyping platform; for one
additional penalized method, we compared only three matrices, and for IM methods only
two (see detailed description of traits and methods in Article I below).
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FIGURE 2.1 – Comparison of SSR and SNP consensus genetic maps of a pseudo-
F1 V. vinifera population, obtained by plotting genetic positions as a function
of physical positions for each chromosome. The position of the SSR marker
indicated by a triangle on chromosome 12 was uncertain. The red line links the

red dots together.

2.2.2 Results and discussion

Comparison between genetic maps

We constructed a saturated consensus genetic map with 3,961 SNP markers (Article I), cov-
ering 1,283 cM. It was essentially superimposed on the 1,116 cM SSR map (Figure 2.1). Chro-
mosome 17 had the largest contribution to the 15% difference in genetic length, its length
being 37.8 cM with SSRs and 63.7 cM with SNPs. Chromosomes 2, 3, 12, 13 and 15 were also
longer on the SNP map. The SNP map was much denser, with an average distance between
markers of 0.34 cM (compared to 9.0 cM for the SSR map) and a maximum distance between
adjacent markers of 12.0 cM (compared to 29.4 cM for the SSR map). At most places along
the genome, genetic order was consistent with physical order for both maps.

Comparison of design matrices

In the SNP genetic map, we observed that some genomic regions were less densely covered
than others (e.g., a 10 cM gap on chromosome 19), which might lead to a decrease in pre-
dictive ability for traits with QTLs in these regions. We tested this hypothesis for penalized
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FIGURE 2.2 – Mean predictive ability across traits according to design matrix.
Mean Pearson’s correlation between predicted and observed genotypic values
(BLUPs of phenotypic data) for different design matrices as input for 10 meth-
ods. Results were averaged across the 14 traits x 10 cross validation (CV) repli-
cates x 5 CV-folds. Error bars correspond to the 95% confidence interval around
the mean. SSR add: design matrix from multi-allelic SSR markers, with addi-
tive effects only. SSR add dom: design matrix from multi-allelic SSR markers,
with both additive and dominance effects. SNP raw: gene dose design ma-
trix from all bi-allelic SNP markers in the filtered vcf (before genetic mapping),
imputed with the mean. SNP gene dose: gene dose design matrix from the
multi-allelic SNP markers mapped and imputed with Lep-MAP3, and then re-
coded into bi-allelic markers. SNP add: design matrix from multi-allelic SNP
markers mapped and imputed with Lep-MAP3, with additive effects only. SNP
add dom: design matrix from multi-allelic SNP markers mapped and imputed

with Lep-MAP3, with both additive and dominance effects.

methods, by using the raw genotypic data (all markers before mapping) imputed with the
mean (SNP raw on Figure 2.2, 17,298 markers). On average, this design matrix gave worse
prediction ability than other SNP ones with a lower dimension, except for TE.WW (transpira-
tion efficiency for well-watered condition), for which the raw matrix gave the best predictive
ability values (data not shown). This suggests that some QTLs for TE.WW were lost (markers
not selected) when we predicted with sparser design matrices, whereas this was not the case
for other traits. Filtering markers by genetic mapping before applying prediction thus proved
to be useful for most traits.

Furthermore, we tested several design matrices for GP on grapevine data. The matrices de-
rived from the SNP map most often led to better predictive ability than those derived from
the SSR map, due to higher density, while the additive + dominant coding of allelic effects did
not provide any increase in predictive ability over the additive-only coding (Figure 2.2). This
could suggest that dominance effects have negligible impact on these traits. Moreover, the
additive + dominant coding doubles the matrix dimension (up to 31,688 predictors), which
might hamper allelic effect estimation and thus prediction.
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We also found that SPRING can explicitly make use of a genetic map. We observed that
SPRING had a larger increase in predictive ability from SSR to SNP design matrix than other
methods (Figure 2.2). This was probably due to the fact that SPRING uses LD pattern for
prediction, this pattern being better captured with a dense genetic map.

Finally, we showed that for most methods, the SNP genotypes recoded into gene doses gave
the best predictive ability (Figure 2.2), tied with other SNP design matrices. For computa-
tional reasons, we hence chose to use this one for methods comparison in Article I.

2.3 Article I: Harnessing multivariate, penalized regression meth-
ods for genomic prediction and QTL detection of drought-related
traits in grapevine

This article was submitted to G3: Genes, Genome, Genetics on 11th, January 2021, was ac-
cepted on 2nd, July 2021 and was published on 22th July, 2021. Most of supplementary mate-
rials can be found in Appendix B.
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Abstract

Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key le-
ver to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially
more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci
(QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-
related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in
a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method
Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs.
Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did
not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-
controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population predic-
tion whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits,
these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate
genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.

Keywords: genomic prediction; QTL detection; multi-trait; breeding; candidate gene; water stress; grapevine

Introduction
Viticulture is facing two major challenges, i.e., coping with cli-
mate change and decreasing inputs such as pesticides, while
maintaining high yield and quality. This requires understanding
the physiological processes that determine adaptation to climate
change, such as water use efficiency and their genetic basis
(Condon et al. 2004). Breeding schemes could then use crosses be-
tween genotypes with high water use efficiency, and others resis-
tant to downy and powdery mildews (Vezzulli et al. 2019b), to
select offspring displaying the most favorable combinations. In
crop species, the widespread use of molecular markers through
marker-assisted selection (MAS) or genomic prediction (GP) sub-
stantially accelerates genetic gains as compared to the traditional
phenotypic selection, by allowing early selection of promising
genotypes, without the corresponding phenotypic information
(Heffner et al. 2009). This is of acute interest in perennial fruit

species because of the long juvenile period during which most
traits of interest cannot be phenotyped. MAS and GP are now
widely developed in many perennial species such as pear (Kumar
et al. 2019), oil palm (Cros et al. 2015; Kwong et al. 2017), citrus
(Gois et al. 2016), apple (Muranty et al. 2015), and Coffea (Ferr~ao
et al. 2019). In grapevine, quantitative trait loci (QTL) detection in
bi-parental populations led to the identification of major genes
for traits with a simple genetic architecture such as resistance to
downy and powdery mildews, berry color, seedlessness, and
Muscat flavor (Fischer et al. 2004; Welter et al. 2007; Fournier-
Level et al. 2009; Emanuelli et al. 2010; Mejı̀a et al. 2011;
Schwander et al. 2012). Based on these results, most breeding
efforts in grapevine use MAS to improve disease resistance.
However, genetic improvement is also needed for traits with a
more complex genetic determinism, as well as for others, such as
drought-related traits, that are difficult to phenotype. Many
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minor QTLs have been found for tolerance to abiotic stresses
(Marguerit et al. 2012; Coupel-Ledru et al. 2014, 2016), yield com-
ponents (Doligez et al. 2010, 2013), and fruit quality (Huang et al.
2012), as reviewed in Vezzulli et al. (2019a). But MAS is not well
suited to traits with many underlying minor QTLs (Bernardo
2008). Genomic prediction, which relies on high-density genotyp-
ing, is a promising tool for breeding for such complex traits, espe-
cially in perennial plants (Kumar et al. 2012). Nevertheless, in
grapevine, GP has been used in three published papers, only once
on experimental data (Viana et al. 2016a; Migicovsky et al. 2017)
and once on simulated data (Fodor et al. 2014). Thus, before ap-
plying GP to this species, it has to be empirically validated by
thoroughly investigating the efficiency of different methods on
traits with various genetic architectures.

Both QTL detection and genomic prediction rely on finding
statistical associations between genotypic and phenotypic varia-
tion. So far, QTL detection in grapevine has been mainly achieved
by using interval mapping (IM) methods in bi-parental popula-
tions, or more recently genome-wide association studies (GWAS)
in diversity panels [see Vezzulli et al. (2019a) for a comprehensive
review of QTL detection studies in grapevine]. However, most
quantitative traits are explained by many minor QTLs, which are
difficult to detect either by IM methods or GWAS where each QTL
has to exceed a significance threshold. In contrast, GP methods,
by focusing on prediction, are less restrictive on the number of
useful markers, sometimes resulting in all markers being
retained as predictive with a nonzero effect. This is why GP meth-
ods are more efficient at predicting genotypic values (Goddard
and Hayes 2007) and therefore increasingly popular with breeders
(Heffner et al. 2010; Crossa et al. 2017; Kumar et al. 2020).

Widely used methods for GP are based on penalized regression
(Hastie et al. 2009), notably RR [Ridge Regression, equivalent to
Genomic BLUP, GBLUP, Habier et al. (2007)] and LASSO (Least
Absolute Shrinkage and Selection Operator). Bayesian
approaches are also commonly used (e.g., de los Campos et al.
2013; Kemper et al. 2018), see Desta and Ortiz (2014) for a classifi-
cation of GP methods. However, overall, Bayesian methods do not
achieve better predictive ability than RR or LASSO, while they
bear a heavy computational cost when fitted using Markov chain
Monte-Carlo algorithms (Ferr~ao et al. 2019). Other methods based
on nonparametric models (e.g., Support Vector Machine,
Reproducing Kernel Hilbert Space, Random Forest) have been
shown to yield lower predictive ability than parametric models
(frequentist or Bayesian) when the trait displayed an additive ge-
netic architecture (Azodi et al. 2019).

Traits are often analyzed one by one in GP, using univariate
methods. Nevertheless, breeders want to select the best geno-
types that combine good performance for many favorable traits.
Analyzing several traits jointly in GP allows taking into account
any genetic correlation between traits (Henderson and Quaas
1976). Calus and Veerkamp (2011), Jia and Jannink (2012),
Hayashi and Iwata (2013), and Guo et al. (2014) compared univari-
ate vs multivariate models’ performance. They found a slight ad-
vantage for multivariate analysis when heritability was low and
data were missing. Predictive ability was particularly improved if
the test set had been phenotyped for one trait while prediction
was applied to another correlated trait (trait-assisted prediction)
as in Thompson and Meyer (1986), Jia and Jannink (2012),
Pszczola et al. (2013), Lado et al. (2018), Velazco et al. (2019), and
Liu et al. (2020). However, this breaks independence between the
training and test sets, leading to over-optimistic prediction accu-
racy (Runcie and Cheng 2019). Multivariate methods have also
been proposed for QTL detection by Jiang and Zeng (1995), Korol

et al. (1995), Meuwissen and Goddard (2004), notably for distin-
guishing between linkage and pleiotropy when a QTL is found
common to several traits. Some methods of multivariate penal-
ized regression, such as in Chiquet et al. (2017), were designed to
allow both QTL detection and genotypic value prediction.
Multivariate GP methods are expected to perform better if traits
are genetically correlated, but this remains to be confirmed with
additional data. We also hypothesize that these methods will
have higher QTL detection power, by making better use of infor-
mation on the genetic architecture of several intertwined traits.

Methods designed for QTL detection are rarely used for geno-
typic value prediction. As they select only the largest QTLs, we
hypothesize that these methods will provide an accurate predic-
tion so long as the genetic architecture is simple, but would result
in poor prediction performance otherwise, as determined in sev-
eral studies (Heffner et al. 2011; Wang et al. 2014; Arruda et al.
2016). Conversely, some methods for GP, such as the LASSO and
its extensions, are also able to select markers with nonnull
effects, and hence to perform QTL detection. Their accuracy in
detecting QTLs has been partially investigated in an inbred spe-
cies by Li and Sillanpää (2012) on a single trait and simulated
data and by Cho et al. (2010) on human data and a binary trait.
Additional analyses are thus clearly needed.

This article aims to compare the ability of various methods to
predict genotypic values and to detect QTLs in a bi-parental
grapevine progeny, by focusing on traits related to climate
change adaptation. We first complemented the only available,
low density, SSR genetic map (Huang et al. 2012) by restriction-
assisted DNA sequencing, to construct a saturated SNP map.
Using this map, we then simulated phenotypic data to compare
several univariate and multivariate methods and assess the im-
pact of simulation parameters. Finally, we reanalyzed the pheno-
typic data on water stress from Coupel-Ledru et al. (2014, 2016),
obtained in semi-controlled conditions. The same genotyping
data and methods as those applied to simulated data were com-
pared, providing deeper insight into the genetic determinism of
key traits underlying water use efficiency, by finding new QTLs
and candidate genes.

Materials and methods
Plant material
This study was based on a pseudo-F1 progeny of 188 offspring
from a reciprocal cross made in 1995 between Vitis vinifera L. cul-
tivars Syrah and Grenache (Adam-Blondon et al. 2005).

GBS markers
Genotyping was done by sequencing was performed after geno-
mic reduction, using RAD-sequencing technology, with ApeKI re-
striction enzyme (Elshire et al. 2011), as described in Flutre et al.
(2020). Keygene N.V. owns patents and patent applications pro-
tecting its Sequence Based Genotyping technologies. This yielded
a total number of 17,298 SNPs.

Consensus genetic map
The genetic map was built with Lep-MAP3 (Rastas 2017), as de-
scribed in https://doi.org/10.15454/QEDX2V. The resulting map
had 3961 fully-informative markers (abxcd segregation) without
missing data (missing marker genotypes being automatically im-
puted in Lep-MAP3). These data were numerically recoded in
biallelic doses (0,1,2) according to the initial biallelic segregation
and phase (Supplementary Table S1).
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Simulation
Phenotype simulations were carried out to (i) compare several
methods for prediction accuracy, and (ii) assess the efficacy of
these methods to select the markers most strongly associated
with trait variation.

Two traits, y1 and y2 were jointly simulated according to the
following bivariate linear regression model: Y ¼ XBþ E, where Y
is the n� k matrix of traits, X the n� p design matrix of allelic
effects, B the p� k matrix of allelic effects, and E the n� k matrix
of errors. For X, the 3961 SNP markers mapped for the SxG prog-
eny were encoded in four additives and four dominance effects.
Therefore n¼ 188, k¼ 2, and p¼ 31,688. For B, allelic effects corre-
sponding to s additive QTLs were drawn from a matrix-variate
Normal distribution, B � MVð0; I;VBÞ, with I the p� p identity ma-
trix and VB the k� k genetic variance-covariance matrix between

traits such that VB ¼
r2

B1
qBrB1 rB2

qBrB1 rB2 r2
B2

" #
, where qB is the ge-

netic correlation among traits and r2
B1

and r2
B2

are the genetic var-

iances for both traits y1 and y2. In the same way, E � MVð0; I;VEÞ,
with the k� k error variance-covariance matrix

VE ¼
r2

E1
qErE1 rE2

qErE1 rE2 r2
E2

" #
, where qE is the residual error correla-

tion between traits, and r2
E the error variance. We set qB to 0.8,

r2
B1

and r2
B2

to 0.1, qE to 0, and narrow-sense heritability to 0.1,

0.2, 0.4 or 0.8, and r2
E was deduced.

To explore different genetic architectures, we simulated s¼ 2
or 50 additive QTLs, located at s SNP markers, so that all corre-
sponding additive allelic effects had nonzero values in B. Because
all allelic effects were drawn from the same distribution, all QTLs
had “major” or “minor” effects for s¼ 2 and s¼ 50, respectively.
All dominant allelic effects were set to zero. Two QTL distribu-
tions across traits were also simulated. For the first one, called
“same,” all QTLs were at the same markers for both traits. For the
second one, called “diff,” the two traits had no QTL in common.
Thus, there was genetic correlation among traits only for the
“same” QTL distribution.

For each configuration (2 or 50 QTLs, combined with “same”
or “diff” distribution), the simulation procedure was replicated
t¼ 10 times, each with a different seed for the pseudo-random
number generator, resulting in different QTL positions and
effects.

In a first simulation set, narrow-sense heritability was as-
sumed equal for both traits and prediction was done with all
methods described below. In a second set, we simulated two
traits with different heritability values (0.1 and 0.5), for the
“same” QTL distribution with s¼ 20 and s¼ 200 QTLs, with
QTL effects drawn from a matrix-variate distribution with
r2

B¼1 and qB ¼ 0.5, in order to test the simulation parameters
from Jia and Jannink (2012) with our genotyping data. For this
second simulation set, prediction was done with a subset of
methods only. Simulation parameters are summarized in
Table 1.

Experimental design, phenotyping, and statistical
analysis
Seven phenotypes related to drought tolerance had already been
measured for 2 consecutive years on the Syrah � Grenache prog-
eny (on 186 genotypes among the existing 188), in semi-
controlled conditions on the PhenoArch platform (https://www6.
montpellier.inrae.fr/lepse_eng/M3P, last accessed on 07-21-21) in

Montpellier, France, as detailed in Coupel-Ledru et al. (2014,
2016). Briefly, of all replicates (six and five per genotype respec-
tively in 2012 and 2013), three (in 2012), or two (in 2013) were
maintained under well-watered conditions (well-watered condi-
tion, WW), whereas the other three were submitted to a moder-
ate water deficit (water deficit condition, WD). Specific
transpiration, i.e. transpiration rate per leaf area unit, was mea-
sured during daytime (TrS) and night-time (TrSnight). Midday leaf
water potential (wM, PsiM) was also measured and the difference
between soil and leaf water potential (Dw, DeltaPsi) calculated.
Soil-to-leaf hydraulic conductance on a leaf area basis (KS) was
calculated as the ratio between TrS and DeltaPsi. Growth rate
(DeltaBiomass) was estimated by image analysis. Transpiration ef-
ficiency (TE) was calculated over a period of 10 to 15 days as the
ratio between growth and total water loss through transpiration
during this period.

These seven phenotypes were studied under each watering
condition (WW and WD). We thus considered 14 traits in this
study, a trait being defined as a phenotype � watering condition
combination, and used the raw data available online (https://doi.
org/10.15454/YTRKV6). For each trait, a linear mixed model was
fitted with R/lme4 version 1.1-21 (Bates et al. 2014) using data
from both years:

y ¼ lþ Y þ Rþ xg þ yg þ xc þ yc þ Oþ Cþ D
G þ G:Y þ G:D þ e

(1)

First, model 1 with nine fixed effects (Y year, R replicate, xg, yg

coordinates in the platform within the greenhouse, xc, yc coordi-
nates in the controlled-environment chamber where PsiM and
TrS were measured, O operator for PsiM measurements, C
controlled-environment chamber and D date of measurement)
and three random effects (G genotype, G : Y genotype-year, and
G : D genotype-date interactions) was fitted with maximum likeli-
hood (ML). The R/lme4 output was given to R/lmerTest version
3.1-2 (Kuznetsova et al. 2017) to use its function “step.” Backward
elimination of random-effect terms was performed using likeli-
hood ratio test, followed by backward elimination of fixed-effect
terms using F-test for all marginal terms, i.e., terms that can be
dropped from the model while respecting the hierarchy of terms
in the model (Kuznetsova et al. 2017).

The final model after backward elimination was then fitted
with restricted maximum likelihood (ReML) to obtain unbiased
estimates of the variance components and empirical BLUPs (Best
Linear Unbiased Predictions) of the genotypic values. The accept-
ability of underlying assumptions (homoscedasticity, normality,
independence) was visually assessed by plotting residuals and
BLUPs. Broad-sense heritability on a genotype-mean basis was
computed assuming a balanced design [see the introduction of
Piepho and Möhring (2007)], as:

Table 1 Parameter values in two sets of simulation of two traits
in a bi-parental population

Simulation
parameter

Same heritability values Different
heritability values

QTL number 2–50 20–200
Heritability value 0.8/0.8–0.4/0.4–

0.2/0.2–0.1/0.1
0.1/0.5

Genetic variance 0.1/0.1 1/1
Genetic correlation 0.8 0.5
QTL distribution Same-Diff Same
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H2 ¼ r2
G

r2
G þ

r2
G:Y

nyear
þ r2

e
nyear�nrep

; (2)

with r2
G:Y the genotype-year interaction variance, r2

e the residual
variance, nyear the arithmetic mean number of trials (years) and
nrep the mean number of replicates per trial. Its coefficient of vari-
ation was estimated by bootstrapping with R/lme4 and R/boot
packages.

Comparison of genotypic BLUPs
We first recomputed genotypic BLUPs from the raw phenotypic
data of Coupel-Ledru et al. (2014, 2016) in order to control the
model selection step in a reproducible way. These new BLUPs had
a strong linear correlation (>0.9) with those used in Coupel-Ledru
et al. (2014, 2016), as shown in Supplementary Figure S2. The esti-
mates of broad-sense heritability followed the same trend as in
Coupel-Ledru et al. (2014, 2016) (Supplementary Figure S3). They
were higher in WD condition than in WW condition for all traits
except DeltaBiomass.

Genetic correlation between traits varied widely, some abso-
lute correlation values being very high (e.g., up to 0.99 between
PsiM and DeltaPsi in both conditions) when traits derived from
others (Supplementary Figure S4).

Interval mapping methods
Two univariate IM methods were compared, using R/qtl version
1.46-2 (Broman et al. 2003). For both, the probability of each geno-
typic class was first inferred at markers and every 0.1 cM between
markers along with the genetic map, using the R/qtl::calcgeno-
prob function.

Simple interval mapping:
Simple interval mapping (SIM, Lander and Botstein 1989)
assumes that there is at most one QTL per chromosome. A LOD
score was computed every 0.1 cM with R/qtl::scanone, then 1000
permutations were performed to determine the LOD threshold so
that the family-wise (genome wide) error rate (FWER) was con-
trolled at 5%.

Multiple interval mapping:
Multiple interval mapping (MIM, Kao et al. 1999) allows the simul-
taneous detection of several QTLs. It was performed with R/
qtl::stepwiseqtl, using a forward/backward selection of Haley-
Knott regression model (Haley and Knott 1992), with a maximum
number of QTLs set to 4 (or 10 for ROC curve construction, see be-
low), replicated 10 times to overcome occasional instability
issues. Only main effects were included (no pairwise QTL � QTL
interaction). The LOD threshold was computed with permuta-
tions (1000 for QTL detection and 10 for cross-validation of GP,
see below) to determine the main penalty with R/qtl::scantwo.
QTL positions and effects were determined with R/qtl::refineqtl
and R/qtl::fitqtl, respectively. For both methods, QTL positions
were determined as those of LOD peaks above the threshold, with
LOD-1 confidence intervals (Lander and Botstein 1989).

Penalized regression methods:
Genomic prediction can be seen as a high-dimension regression
problem with more allelic effects (in B) to estimate than observa-
tions (in Y), known as the “n� p” problem. The likelihood of such
models must be regularized and various extensions, called penal-
ized regression of the Ordinary Least Squares (OLS) algorithm

were proposed. Such penalization generally induces a bias in the
estimation of allelic effects.

Univariate methods
Ridge regression:
Ridge regression (RR, Hoerl and Kennard 1970) adds to the OLS a
penalty on the effects using the L2 norm and solves the following
equation: ^bRR ¼ argminkjjY � Xbjj22 þ kjjbjj22. As a result, all esti-
mated allelic effects are shrunk toward zero, yet none is exactly
zero. The amount of shrinkage is controlled by a regularization
parameter (k). We tuned it by cross-validation using the
cv.glmnet function of the R/glmnet package version 3.0-2
(Friedman et al. 2010) with default parameters, except family
¼“gaussian” and a ¼ 0, keeping the k value that minimizes the
mean square error (MSE). Note that effects associated with corre-
lated predictors are averaged so that they are close to identical,
for a high level of regularization.

Least absolute shrinkage and selection operator:
Least absolute shrinkage and selection operator (LASSO,
Tibshirani 1996) adds to the OLS a penalty on the effects using

the L1 norm and solves the following equation: ^bLASSO ¼
argminkjjY � Xbjj22 þ kjjbjj1. As a result, some allelic effects are ex-
actly equal to zero, while others are shrunk toward zero. Hence
LASSO performs predictor selection, i.e., provides a sparse solu-
tion of predictors included in the best model, in addition to esti-
mating their allelic effect. The LASSO regularization parameter
(k) was tuned by cross-validation with cv.glmnet function (family
¼“gaussian,” a ¼ 1), as above. If n< p, LASSO selects at most n
predictors.

Extreme gradient boosting:
We first applied LASSO for dimension reduction and then
Extreme Gradient Boosting, a popular machine learning method
(Mason et al. 1999), to estimate marker effects. Hence, we called
this method LASSO.GB. As gradient boosting is a nonlinear
method, it can take into account any nonlinear interaction be-
tween markers, providing better prediction. Briefly, Extreme
Gradient Boosting iteratively updates the estimation of weak pre-
dictors, in order to reduce the loss. This method requires an opti-
mization of many parameters associated with the loss function
(MSE). This optimization was done with train function from R/
caret package version 6.0-86 (Kuhn 2008) using the “xgbTree”
method. As the optimization of numerous parameters was com-
putationally heavy, we fixed some of them (nrounds ¼ max_-
depth ¼ 2, colsample_bytree ¼ 0.7, gamma ¼ 0, min_child_weight
¼ 1 and subsample ¼ 0.5), while testing a grid of varying parame-
ters (nrounds ¼ 25, 50, 100, 150; eta ¼ 0.07, 0.1, 0.2).

Elastic net:
Elastic net (EN, Zou and Hastie 2005) adds to the OLS both L1 and
L2 penalties, the balance between them being controlled by a pa-

rameter (a); it solves the following equation: ^bEN ¼ argminkjjY �
Xbj j22 þ ð1� aÞkjjbjj22 þ akjjbjj1. Both a and k were tuned by nested
cross-validation: 20 values of a were tested between 0 and 1 and,
for each of them, we used cv.glmnet function to choose between
500 values of k. EN performs predictor selection but is less sparse
than LASSO.

Note that RR, LASSO, and EN all assume a common variance
for all allelic effects.
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Multivariate methods
Multi-task group-EN:
Multi-task group-EN (MTV_EN, Hastie and Qian 2016) is a multi-

variate extension of EN, it solves the following equation: ^BMTVEN ¼
argminkjjY � Xbjj2Fþ ð1� aÞkjjbjj2F þ akjjbjj2, F being the Frobenius
norm. It assumes that each predictor variable has either a zero or
nonzero effect across all traits, allowing nonzero effects to have
different values among traits. k and a parameters were tuned us-
ing cv.glmnet (family ¼ “mgaussian”). MTV_RR is the multivariate
extension of RR, also tuned with cv.glmnet (family ¼
“mgaussian,” a ¼ 0). MTV_LASSO is the multivariate extension of
LASSO, also tuned with cv.glmnet (family ¼ “mgaussian,” a ¼ 1).
The implementation of these three methods is identical.

The multivariate structured penalized regression:
The multivariate structured penalized regression (called SPRING
in Chiquet et al. 2017) applies a L1� penalty (k1 parameter) for con-
trolling sparsity (like LASSO) and a smooth L2� penalty (k2 param-
eter) for controlling the amount of structure among predictor
variables (L) to add in the model, i.e., the correlation between
markers according to their position on the genetic map. Both
parameters k1 and k2 were tuned by cross-validation using
cv.spring function (from R/spring package, version 0.1-0). The re-
gression equation can be written as: Y ¼ XBþ e with e � Nð0;RÞ,
R is the covariance matrix of residuals (Gaussian noise). The alle-

lic effects are: B ¼ �XXyX
�1
yy and they comprise both direct effects

XXy and indirect ones Xyy.
SPRING solves the following equation: ðX̂Xy ; X̂yy Þ ¼ argmin � 1

n

log ‘ðXXy;XyyÞ þ k2
2 trðXyXLXXyX

�1
yy Þ þ k1jjXXyjj1. Unlike multi-task

group-EN, SPRING selects specific predictors for each trait, i.e., a
selected predictor can have a nonzero effect for a subset of the
traits. Moreover, SPRING allows the distinction between direct
and indirect effects by using conditional Gaussian graphical
modeling. These effects are due to covariance of the noise such
as environmental effects affecting several traits simultaneously.
This distinction results in two kinds of estimated allelic effects:
the direct ones, re-estimated with OLS, which are best suited for
QTL detection (we called the corresponding prediction method
spring.dir.ols) and the regression ones, which involve both direct
and indirect effects and are best suited for prediction (spring.reg
method).

Robust extension for marker selection
To enhance the reliability of marker selection by penalized
methods, we used two approaches: stability selection (SS)
(Meinshausen and Buhlmann 2009) and marginal False Discovery
Rate (Breheny 2019), both of which aim at controlling the number
of false-positive QTLs. We did not use these methods for genomic
prediction, as they are not designed for this purpose.

Stability selection:
SS is a method that controls FWER, it computes the empirical se-
lection probability of each predictor by applying a high-
dimensional variable selection procedure, e.g., LASSO, to a differ-
ent subset of half the observations for all k values from a given
set, and then retains only predictors with a selection probability
above a user-chosen threshold. SS is implemented in R/stabs
package version 0.6-3 (Hofner and Hothorn 2017) and can also be
adapted to a multivariate framework. For QTL detection on ex-
perimental data, the probability threshold we applied was 0.6 for
LASSO.SS and 0.7 for MTV_LASSO.SS.

Marginal false discovery rate:
Marginal false discovery rate (mFDR) has been defined by
Breheny (2019) as a modified version of the FDR in which those
variables correlated with the causative features are not consid-
ered as false discovery. This study provided an accurate estima-
tion of mFDR for a given k when using EN or LASSO, thus
allowing the selection of a more conservative value of k in order
to remain below a given mFDR threshold. We applied mFDR with
the R/nvcreg package version 3.12.0 (Breheny 2019). For QTL de-
tection on experimental data, we set mFDR to 10% for
LASSO.mFDR and EN.mFDR. To our knowledge, this approach
had not been adapted yet to a multivariate framework.

Evaluation and comparison of methods
All methods were compared on two aspects: their ability to pre-
dict genotypic values, and their ability to select relevant markers,
i.e., to detect QTLs. To assess the prediction of genotypic values
on simulated data, we used the Pearson’s correlation coefficient
between predicted and simulated genotypic values (prediction
accuracy). On experimental data, we used the same criterion, but
the actual genotypic values being unknown, we used their empir-
ical BLUPs instead (predictive ability).

For QTL detection on simulated data, the methods were com-
pared using criteria of binary classification based on the numbers
of true positives and false negatives. On experimental data, be-
cause true QTLs are unknown, no such comparison could be per-
formed; instead, we compared the outcome of the different
methods and QTLs were deemed reliable when found with sev-
eral methods.

Genomic prediction
A nested cross-validation (CV) was applied to assess prediction
by the various methods.

• An outer k1� fold CV was performed to estimate the perfor-
mance metrics, with an inner k2� fold CV applied to the train-
ing set of each outer fold to find the optimal tuning
parameters for the method under study (Supplementary
Figure S5). Both k1 and k2 were set to 5 (see Arlot and Lerasle
(2016). The partitions of the outer CV were kept constant
among traits and methods.

• For IM methods, the optimal tuning parameter was the LOD
threshold obtained from permutations, and the effects for the
four additive genotypic classes (ac, ad, bc, and bd) were esti-
mated by fitting a multiple linear regression model with geno-
type probabilities at all QTL peak positions as predictors,
using R/stat::lm. For penalized regression methods, parame-
ters were optimized with specific functions such as cv.glmnet
and cv.spring.

• As performance metrics, we used mainly Pearson’s correla-
tion (corP) but we also calculated the root mean square pre-
dicted error (RMSPE), Spearman correlation (corS), the model
efficiency (Mayer and Butler 1993), and test statistics on bias
and slope from the linear regression of observations on pre-
dictions (Pi~neiro et al. 2008).

For experimental data, the whole nested cross-validation pro-
cess was repeated 10 times (r¼ 10), whereas for simulated data it
was performed only once, but on 10 different simulation repli-
cates (r¼ 1 and t¼ 10). The 14 traits were analyzed jointly for
MTV_RR, MTV_LASSO, and MTV_EN. But for SPRING, since ana-
lyzing all traits together was computationally too heavy, we split
traits into three groups by hierarchical clustering
(Supplementary Figure S6) performed with R/hclust applied to
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genotypic BLUPs. All traits within a given cluster were analyzed
together.

For simulated data with the same heritability values for both
traits, performance results were averaged not only over simula-
tion replicates and partitions of outer CV, but also over traits, be-
cause both traits were equivalent in terms of simulation
parameters. For simulated data with different heritability values,
performance results were averaged only over simulation repli-
cates and partitions of outer CV. For experimental data, perfor-
mance results were averaged over partitions of outer CV and
outer CV repetitions.

QTL detection
Simulated data:
The quality of a predictor selection method is usually assessed
through the relationship between statistical power (i.e., the true
positive rate, TPR) and type I error rate (i.e. the false positive rate,
FPR). To compare methods, we thus used the ROC (receiver oper-
ating characteristic) curve (Swets et al. 1979), which is the plot of
TPR as a function of FPR over a range of parameters (Table 2),
and the pAUC (partial Area Under the Curve; McClish 1989; Dodd
and Pepe 2003). Any marker selected at 62 cM of a simulated
QTL was counted as a True Positive.

For methods with two tuning parameters, one parameter
was kept constant (a at 0.7 for EN and EN.mFDR, and k2 at 10e-8
for SPRING). We tested several a values for EN but it did not
change much the results (data not shown). For MIM, the maxi-
mum number of QTLs that can be integrated into the model was
set to 10.

Experimental data:
Comparison between methods was based on the number of
detected QTLs, the magnitude of their effects, and the percentage
of variance globally explained by all detected QTLs.

For MTV_LASSO and SPRING, we split traits into three groups
as described above, for computational reasons (for SPRING) and
to test whether such splitting evidenced more reliable QTLs (for
MTV_LASSO). The parameters of penalized methods were tuned
by cross-validation, with MSE as the cost function. We compared
predictor selection between methods in terms of the number of
common selected markers per trait, i.e., the intersection between
markers selected by penalized methods and markers inside confi-
dence intervals found by IM methods. Then all markers in high
LD with those selected were considered as selected too. The
threshold was defined as the 95% quantile of LD value distribu-
tion, for all pairs of markers belonging to the same chromosome
(Supplementary Figure S7), which gave a LD threshold of 0.84.

We deemed selected markers as highly reliable if they were ei-
ther (i) selected by at least five methods, whatever the methods,
(ii) or selected by both EN.mFDR and MIM (see Results). Then, we
defined a highly reliable QTL as the interval of 6 3 cM around
each highly reliable marker (Price 2006; Viana et al. 2016b), as pre-
dicted by polynomial local regression (loess) fitting of genetic
positions to physical position. When several markers were se-
lected inside the 6 cM interval, the QTL interval was extended

accordingly. The genetic positions of this interval were then con-
verted into physical positions, by fitting loess. QTLs overlapping
for several traits on the SNP map were merged into a single QTL,
by physical intervals’ union.

Candidate genes exploration:
After merging the most highly reliable QTLs colocalized between
traits, we searched for underlying candidate genes. We retrieved
the list of genes overlapping the intervals of our QTLs from the
reference Vitis genome 12X.v2 and the VCost.v3 annotation
(Canaguier et al. 2017). We then used the correspondence be-
tween IGGP (International Grapevine Genome Program) and NCBI
RefSeq gene model identifiers provided by URGI (https://urgi.ver
sailles.inra.fr/Species/Vitis/Annotations, last accessed on 07-21-
21) to identify putative functions from NCBI, when available. For
those genes with a putative function, we then refined the analy-
sis to retrieve additional information about their function and ex-
pression. We searched UniProt (https://www.uniprot.org/, last
accessed on 07-21-21) and TAIR (https://www.arabidopsis.org/,
last accessed on 07-21-21) databases based on homologies to ac-
cess a complete description of gene function, name, and corre-
sponding locus in Arabidopsis. In addition, we used the GREAT
(GRape Expression Atlas) RNA-seq data analysis workflow
(https://great.colmar.inrae.fr/app/GREAT, last accessed on 07-21-
21), which gathers published expression data, to assess the level
of expression of our candidate genes in grapevine leaves and
shoots, relevant organs for the traits under study. RNA-seq data
are normalized as detailed in the ‘User manual’ section of the
GREAT platform: “from the raw read counts, the normalized
counts (library size normalization) and the RPKM (gene size nor-
malization) are calculated for each gene in each sample.” Data
were retrieved with all filters set to “Select All” except for the or-
gan considered that was restricted to ‘Leaves’ and ‘Shoot’.

Results
Comparison of methods with simulated data
prediction: cross-validation results
Traits with the same heritability value:
Methods were compared for prediction accuracy by applying
cross-validation on simulated data with four different configura-
tions and four heritability values.

Mean Pearson’s correlation coefficient varied from 0.16 to
0.98, with a strong effect of heritability on prediction accuracy in
all configurations, for the seven main methods (Figure 1). As
expected, MIM performed very well in the “major” configurations
across all heritability values but yielded the least accurate predic-
tion in the “minor” ones. On the opposite, RR performed very well
in the “minor” configurations, but yielded the least accurate pre-
diction in the “major” ones. EN prediction performance was al-
ways intermediate between those of RR and LASSO. QTL
distribution among traits – “same” (for QTLs at the same posi-
tions) or “diff” (for QTLs at different positions) - had very little ef-
fect on prediction accuracy. Moreover, we did not observe any
superiority of multivariate methods over univariate ones, despite

Table 2 Parameter ranges for ROC curve computation, for comparing predictor selection performance of different methods

Method SIM/MIM LASSO/MTV_LASSO Stability Selection SPRING EN mFDR

Parameter name LOD k probability threshold k1 k mFDR
Lowest constraint 0 10e-5 0.5 10e-8 10e-4 0.3
Highest constraint 14 0.25 0.9 0.25 8 0
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the strong genetic correlation simulated between traits (qB¼0.8)
and no correlation between errors.

The prediction accuracy of four additional methods is shown
in Supplementary Figure S8 and prediction accuracy values.
Other performance metrics (see Materials and Methods) are given
for all methods in Supplementary Table S9. All IM methods
yielded equivalent prediction accuracy. LASSO.GB did not im-
prove performance compared to LASSO. MTV_RR showed equiva-
lent performance to univariate RR. Prediction accuracy with
spring.dir.ols was always lower than with spring.reg, and even very
low for “minor” configurations. With 100 or 1000 simulated QTLs
(under each QTL distribution) the ranking of methods based on
prediction accuracy did not change compared to “minor” configu-
rations (Supplementary Figure S10).

Traits with different heritability values:
To further compare prediction accuracy between univariate and
multivariate methods, we simulated two correlated traits with
different heritability values, 0.1 and 0.5. MTV_LASSO performed
slightly better than univariate LASSO for the lowest heritability
trait; however, differences were not significant (Supplementary
Figure S11). On the opposite, prediction accuracy was lower with
MTV_LASSO than with univariate LASSO for the highest herita-
bility trait, reaching quite low values with 200 simulated QTLs.
The same trends were also visible for MTV_EN and EN. MTV_RR
never improved prediction over RR and spring.reg never per-
formed better than RR.

Since these results were unexpected, we also compared pre-
diction accuracy of the above methods using the simulated data
published by Jia and Jannink (2012). We obtained very similar
differences among methods to those with our own simulated
data, even though prediction accuracy was higher in all cases
(Supplementary Figure S12).

QTL detection: ROC curve results
We compared the main methods mentioned above (except RR
that does not perform marker selection), as well as some robust
extensions, for their marker selection performance, by means of
ROC curves, using the same simulated data in the four configura-
tions (Figure 2). The closer a ROC curve obtained through a given
method approaches the optimum point (i.e., FPR¼ 0 and TPR¼ 1),
the better is the method’s selection performance. As expected, IM
methods (SIM and MIM) showed low selection performance when
many minor QTLs were simulated and high selection perfor-
mance when a few major QTLs were simulated. Note that the
MIM curve was hardly visible; it roughly overlapped with the SIM
curve but stopped at a low FPR because it could not select many
QTLs by design.

The penalized regression methods always performed at least
as well as the IM methods and even much better in the case of
“minor” configurations. Among penalized methods, none was
clearly better than the others in all configurations, except for a
slight superiority of MTV_LASSO in the “same_minor” configura-
tion. These methods, and particularly spring.dir.ols, displayed
high variability in classification results with two simulated QTLs
(“major” configurations). Indeed, when one QTL was not
detected in one trait, impact on TPR was stronger than with 50
simulated QTLs.

The most interesting part of the ROC curve for QTL detection
is the left most part, i.e., that with a low FPR (e.g., below 0.1). We
thus calculated the partial Area Under the Curve (pAUC) for FPR
between 0 and 0.1 for methods reaching that value (Supplemen-
tary Figure S13). EN resulted in constantly high pAUC across
configurations and heritability values. In contrast, pAUC for SIM
was quite high at low heritability values for the “same_major”
configuration but dropped for other configurations and herita-
bility values.
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Results on experimental data
Genomic predictive ability:
Mean genomic predictive ability per trait ranged from �0.10 to
0.68 (Figure 3 and Supplementary Table S14). It decreased with
broad-sense heritability. IM methods (in blue) were always
among the three poorest methods for prediction. Based on the
mean predictive ability averaged across traits, MTV_EN yielded
the highest correlation (0.384), followed by RR (0.3721), MTV_RR
(0.3716), MTV_LASSO (0.369), EN (0.357), spring.reg (0.344), LASSO

(0.329), LASSO.GB (0.313), MIM (0.200), and SIM (0.162). However,

based on the number of traits for which each method gave the

best prediction, spring.reg had the highest score, with 6 traits out

of 14, followed by MTV_EN (3 out of 14) and EN (2 out of 14).
In a nutshell, MTV_EN and RR, tied with MTV_RR, provided

the best mean predictive ability across traits. Even though spring.-
reg outperformed them for some traits, its performance was un-
stable and especially low for DeltaBiomass.WW, DeltaBiomass.WD,
DeltaPsi.WW, and DeltaPsi.WD. For computational reasons, all
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traits could not be analyzed together with spring.reg, but were di-
vided into three groups. These four traits with low predictive abil-
ity belonged to the same group. Yet, the effect of group
membership on predictive ability was not significant at 5% (P-val-
ue¼ 0.30 and percentage of variance explained¼ 24%).

QTL detection:
To address the intersection of SNP selection by all methods, and
determine the number of reliable intervals (QTLs) and their posi-
tion, we examined in detail marker selection for each trait and
chromosome. These results are given in Supplementary Table
S15, together with genetic and physical positions and the per-
centage of variance explained. These results are plotted in Figure
4 for night-time transpiration under water deficit (TrS_night.WD)
and in Supplementary Figure S16 for all traits.

Most of the time, more markers were selected for traits under
water deficit than for traits in well-watered conditions, and they
were most often selected by several methods. Penalized methods
tended to select exactly the same markers, not only close ones;
for example, for TrSnight:WD on chromosome 4, the same marker
(at physical position 21,079,664 bp) was selected by seven differ-
ent methods (Figure 4).

We considered markers selected by both MIM and EN.mFDR
as highly reliable ones for three reasons: (1) markers selected by
both MIM and EN were considered as reliable ones, because most
markers selected by LASSO were also selected by EN, whereas
MIM marker selection was quite different; (2) simulations showed
that MIM and mFDR methods led to a very low FPR; (3) these
methods belong to different method classes (IM vs penalized re-
gression). We also considered as highly reliable those markers se-
lected by at least five methods. These criteria resulted in a set of
59 highly reliable selected markers, which were converted to ge-
netic intervals of 6 3 cM around each selected marker.
Overlapping intervals per trait were merged, resulting in 25
highly reliable QTLs.

These 25 QTLs involved nine traits, mostly under water deficit,
and were located on seven chromosomes (Supplementary Figure
S17, Supplementary Table S18). Some QTLs colocalized for differ-
ent traits, such as on chromosome 1, and had similar distribu-
tions of genotypic BLUPs according to genotypic classes
(Supplementary Figure S19).

Among these 25 QTLs, we found eight new highly reliable
QTLs compared to Coupel-Ledru et al. (2014, 2016), among which
five were not detected by MIM. In particular, a completely new
QTL for TrS_night.WD was found alone on chromosome 12. Most
other new QTLs were colocalized with QTLs previously found in
single-year analysis and/or for the other watering condition.

Notably, we observed colocalization of TrS_night.WD, TE.WD and
DeltaBiomass.WD QTLs on chromosomes 4 and 17.

In total, the percentage of variance explained (adjusted R2) per
trait was 51.3% for TrS_night.WD (36% in 2012 for Coupel-Ledru
et al. 2016), 33.9% for PsiM.WD, 31.4% for DeltaPsi.WD, 26.9% for
DeltaBiomass.WW, 19.4% for TE.WD, 18.6% for TE.WW, 17.0% for
KS.WD, 14.9% for DeltaBiomass.WD, and 8.5% for TrS.WD.

Candidate genes
After merging the QTLs colocalized between traits, we obtained
12 intervals, located on chromosomes 1, 4, 10, 12, 13, 17, and 18,
harboring a total of 3461 genes according to the VCost.v3 annota-
tion (Canaguier et al. 2017). Among them, 2379 had an NCBI
Refseq identifier and 1757 a putative function (Supplementary
Table S20). We then focused our analysis on the eight “new”
intervals, i.e., those that were not overlapping with QTL intervals
repeated over years by Coupel-Ledru et al. (2014, 2016). They
encompassed 1155 genes, half of which were annotated. We were
able to retrieve from TAIR and/or UniProt a more precise descrip-
tion of the gene function for 86% of the annotated genes
(Supplementary Table S20). The remaining ones either did not
have any homologous gene in Arabidopsis or were not described
in the above-mentioned databases. RNA-seq data was available
on the GREAT platform for 90% of the annotated genes. We fur-
ther focused on the highly reliable QTL co-localized on chromo-
some 4 for TE, TrS_night and DeltaBiomass under various
conditions. We proceeded to a functional classification of the 161
annotated genes underlying this QTL, based on the full descrip-
tion previously retrieved (Supplementary Tables S5 and S21). For
75 genes, an integrated function at the plant or organ level was
explicitly quoted in the homologous-based description. We
grouped these integrated functions into 12 major groups (Figure
5). For a substantial part of genes, functions consistently related
to traits involved: 15 genes related to hydraulics (stomata, xylem,
and trichomes), relevant for TrS_night and thus TE; 27 to growth
or development and one to photosynthesis, both relevant to
DeltaBiomass and thus TE. For the 86 genes for which no inte-
grated function was explicitly quoted, we further built a classifi-
cation based on their cellular or molecular function. Among
them, we found six genes related to carbon metabolism, one to
wall formation (both relevant for DeltaBiomass) and six to drought
stress signaling and drought-related hormones (relevant for
TrS_night).

Discussion
This study contributes to our knowledge of the complex genetic
determinism of vegetative traits under different watering
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conditions in three different ways. We compared by simulation
several univariate and multivariate methods for genomic predic-
tion and QTL detection, and re-analyzed grapevine phenotypes
obtained under semi-controlled conditions. In particular, we
showed that penalized methods are valuable not only for predic-
tion but also for QTL detection. Indeed, we found new QTLs using
these methods and identified relevant candidate genes.

Methodological aspects: method comparison
Handling linkage disequilibrium:
IM methods estimate genotypic probabilities between markers
according to a genetic map which is computationally costly to
build. On the other hand, most penalized methods do not require
any previous knowledge on LD.

The LASSO assumption that all predictor variables are inde-
pendent is all the more violated that there are many markers. In
the case of a group of correlated predictors (e.g., SNPs in LD), EN
selects either no or all predictors within the group with close esti-
mated effects (Zou and Hastie 2005), whereas LASSO selects a
single predictor. In that sense, EN aims at correcting the draw-
backs of LASSO when predictor variables are highly correlated. By
exploring a large number of configurations of the finite-sample
high-dimensional regression problem, Wang et al. (2020) showed
that EN is competitive for both prediction and selection in most
cases with highly correlated predictors. In agreement with these
results, we showed that EN performed well for both prediction
and selection on our simulated data, and that multivariate EN
performed best for prediction on grapevine experimental data.

It would be interesting to test whether EN still remains the
main default method when applied to a population with a shorter
LD, e.g., a diversity panel as defined in Nicolas et al. (2016).

Indeed, the ranking of methods is likely to depend not only on
linkage disequilibrium and population size, but also on the ge-
netic architecture of the traits of interest as well as the accuracy
with which phenotypic values were obtained, and all these varia-
bles can interact with each other, but studying this was out of the
scope of the current work.

Comparison between interval-mapping and penalized re-
gression methods for genomic prediction:
As expected, IM methods performed poorly to predict accurate
genotypic values when the QTL number was large. These conclu-
sions are in agreement with previous studies (Figure 1 and
Supplementary Figure S8), even though most implemented
marker selection methods other than interval-mapping
(Bernardo and Yu 2007; Lorenzana and Bernardo 2009; Mayor and
Bernardo 2009; Olatoye et al. 2019). This confirms that for com-
plex traits, genomic prediction should not be based only on QTLs
detected by IM methods.

None of the penalized univariate methods performed opti-
mally in all cases (Figures 1 and 3 and Supplementary Figure S8),
as also found in the literature (Heslot et al. 2012; Riedelsheimer
et al. 2012; Azodi et al. 2019). As shown by simulation, RR was bet-
ter adapted to highly polygenic genetic architecture, whereas
LASSO was better adapted to a few major QTLs. Moreover, in the
case of many minor QTLs, RR was the most stable method across
heritability values, as previously described for several traits and
species (Heslot et al. 2012; Azodi et al. 2019). However, RR predic-
tion accuracy dropped when the QTL number was too small,
whereas EN still predicted as well as LASSO. EN was hence well
adapted to various numbers and distributions of QTLs.

Figure 5 Functional classification of the annotated genes underlying the highly reliable QTL detected on chromosome 4 for night-time transpiration,
growth, and TE. Hierarchical classification of the 161 genes based on their functions. See Supplementary Table S21 for the details of this classification.
When an integrated function at the organ or plant level was explicitly quoted in the gene annotation, genes were classified on this basis. When no
integrated function was explicitly quoted, they were classified based on their cellular or molecular function. In both cases, functions were then
classified as “Related” if related to the traits of interest in this QTL, or “Unrelated” if not.
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Multivariate vs univariate:
When the same heritability was simulated for both trait varia-
bles, no superiority of multivariate methods was observed, even
when both traits had QTLs at the same positions (Figure 1 and
Supplementary Figure S8). When different heritability values
were simulated for the two traits, we observed a slight superiority
of MTV_LASSO (resp. MTV_EN) over LASSO (resp. EN) only in the
“same” and “major” configuration (with both traits sharing the
same two QTLs) for the trait with small heritability (Supplemen-
tary Figure S11).

Other authors who tested multivariate GP on simulated data
systematically applied different heritability values; they found a
superiority of multivariate methods over univariate ones for the
trait with the smallest heritability (Calus and Veerkamp 2011; Guo
et al. 2014; Jiang et al. 2015; Dagnachew and Meuwissen 2019).
However, all these studies were based on a smaller, more favor-
able, p/n ratio, a key component of high-dimensional models
(Verzelen 2012). For example, in Jia and Jannink (2012), their 500
observations for 2020 predictors correspond to a ratio of �4, com-
pared to our 188 observations for 3961 predictors corresponding to
a ratio of �21. Indeed, parameters n and p are involved in the sam-
ple complexity function defined in Obozinski et al. (2011), which
predicts the theoretical cases where MTV_LASSO is superior to its
univariate counterpart in terms of variable selection. Accordingly,
applying our methods to Jia and Jannink (2012) data allowed us to
evidence a larger difference between univariate and multivariate
LASSO than with our simulated data.

Unexpectedly, when reanalyzing the data simulated by Jia and
Jannink (2012), we obtained lower prediction accuracy with our
MTV_LASSO (Supplementary Figure S11) than they did with their
multivariate BayesA (their Figure 1A). A similar result in a univar-
iate setting was found by Guan and Stephens (2011), who com-
pared BSVR (comparable to BayesA) and the LASSO. They found
that BSVR had markedly higher power than LASSO. Moreover,
the parameters of both BSVR [in Guan and Stephens (2011)] and
BayesA [in Jia and Jannink (2012)] were estimated with a MCMC
algorithm. No inner cross-validation was needed, hence the sam-
ple used to train the model was larger. This difference may ex-
plain why Figure 1A from Jia and Jannink (2012) shows better
prediction accuracies for multi-trait models compared to their
single-trait counterparts, although no confidence interval was
displayed. Note that our RR prediction accuracies were close to
those of their GBLUP (univariate and multivariate). In conclusion,
prediction accuracy is affected both by the dimension of the
problem (i.e., n and p) and the method used (i.e., Bayesian with
MCMC or cross-validation).

For experimental data, we observed that MTV_LASSO (respec-
tively MTV_EN) was superior to LASSO (resp. EN) for the five traits
with the smallest heritability (Figure 3). Such this improvement
suggests that MTV_LASSO (resp. MTV_EN) was able to borrow sig-
nals from the most heritable traits to the least heritable ones,
likely because of a partially overlapping genetic architecture be-
tween these traits. This interpretation is reinforced by the fact
that a QTL for low-H2 trait, TE.WW, colocalizes on chromosome 4
with QTLs for four high-to-moderate-H2 traits (TrS_night.WD,
DeltaBiomass.WW, DeltaBiomass.WD and TE.WD). This improve-
ment was not found in Jia and Jannink (2012), who also tested
their methods on real pine data from Resende et al. (2012). These
observations suggest that the number of traits analyzed (14 in
our case and 2 in Jia and Jannink 2012 study) may also play a role
in the gain in prediction accuracy of multivariate over univariate
methods.

Furthermore, we simulated data with various levels of resid-
ual correlation among traits (0, 0.4, and 1) but this did not signifi-
cantly change prediction results (data not shown). A more
detailed methodological analysis is out of the scope of the cur-
rent work.

Comparison between interval-mapping and penalized re-
gression methods for QTL detection:
Comparison with the ROC curve between IM and penalized re-
gression methods for marker selection has not been extensively
studied before. As expected, we found that IM methods are well
adapted to detect a few major QTLs but not many minor QTLs
(Figure 2). Yi et al. (2015) similarly compared the FDR and TPR
reached by single marker analysis and different penalized regres-
sion methods, some of which being adapted to control FDR; they
found contrasting results, depending on the criteria studied
(modified version of TPR or FDR). However, they focused only on
an association panel whereas we worked on a bi-parental popula-
tion. Other authors (Cho et al. 2010; Li and Sillanpää 2012;
Waldmann et al. 2013) successfully applied LASSO or EN for per-
forming GWAS, but without comparing IM and penalized meth-
ods for QTL detection. Moreover, we found that penalized
methods could be as good at marker selection as IM methods,
and even far better when there were many minor QTLs. Among
the penalized methods we compared, none clearly outperformed
the others for marker selection in all configurations.

Multivariate vs univariate:

As MTV_LASSO selects one predictor for all traits, its superiority
over univariate LASSO depends on QTL distribution across traits,
notably on the amount of genetic basis shared by the traits
(Obozinski et al. 2011). However, as for prediction, we showed that
MTV_LASSO performance was not different whether QTLs were
at the same or at different positions across traits (Figure 2).
Nevertheless, we observed that MTV_LASSO was slightly better
than LASSO when many QTLs were simulated.

SPRING had never been evaluated before for its quality of pre-
dictor selection. As for prediction, SPRING showed unstable
results across our simulation replicates and hyper-parameter
values. However, for the ROC curve, we did not include predictor
structure in the model, which may have hampered marker selec-
tion quality.

Efficient default method for both QTL detection and genomic
prediction:
IM methods were designed for marker selection; hence they are
not expected to be optimal for prediction, as confirmed in our
study. Among penalized regression methods, some may be better
at prediction than at marker selection, and vice versa. For exam-
ple, our results showed that EN performed well across several
configurations for both aims. Some methods such as SPRING are
specially adapted to handle both purposes but this method pro-
duced too variable results for either prediction or QTL detection.
However, SPRING is a recent method that still can be improved to
correct this drawback.

New penalized regression methods are continuously being de-
veloped. In particular, graph structured sparse subset selection
(Grass) recently proved to outperform existing methods for both
prediction and predictor selection, thanks to a L0 regularization
that limits the number of nonzero coefficients in the model
(Do et al. 2020). It could be tested on our data when available.
Moreover, multivariate methods are presented as being more
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efficient at using the whole signal in the data, whether for marker
selection (Inouye et al. 2012) or prediction (Jia and Jannink
2012; Guo et al. 2014), but our results revealed no systematic ad-
vantage of multivariate methods over univariate ones for both
aims.

Using penalized methods for both marker selection and geno-
mic prediction requires adapted hyper-parameter values. For EN,
LASSO, and SPRING, the k value controls sparsity (e.g., the num-
ber of selected markers). Thus, the optimal k value might not be
the same if the aim is to limit FPR or to maximize predictive abil-
ity (Li and Sillanpää 2012). For prediction, we traditionally use
cross-validation to tune hyper-parameters by minimizing MSE.
For marker selection, there is no direct equivalence. That is why
we tested extensions of these methods (mFDR and SS) that con-
trol sparsity for robust marker selection; both proved efficient in
selecting the most relevant markers.

In order to shed light on the link between prediction accuracy
and marker selection, we plotted the prediction accuracy at each
point of the ROC curve for EN and EN.mFDR against FPR for mi-
nor configurations (with 50 simulated QTLs) (Supplementary
Figure S22). For EN, we showed that prediction accuracy reached
its maximum when FPR was below 0.05. Then, FPR increased
while prediction accuracy decreased until it reached a plateau.
This means that prediction quality is intimately linked to selec-
tion quality, especially at low heritability. For EN.mFDR, FPR al-
ways stayed below 0.015 but prediction accuracy was lower.

As a consequence, as an efficient default method, we advise at
this stage to apply EN for performing genomic prediction, and its
extension EN.mFDR for performing sparser marker selection.

Genetic determinism and prediction of grapevine response
to water deficit:
Based on experimental data on the Syrah � Grenache progeny
(new genotypic data and already published phenotypic data), we
compared the same methods as above for both prediction and
marker selection. To the best of our knowledge, grapevine GP
within a bi-parental family has only been applied to a limited
number of traits, with very few methods and never multivariate
GP. Fodor et al. (2014) studied GP in grapevine with simulated
data on a diverse structured population; they tested RR-BLUP,
Bayesian Lasso, and a combination of marker selection and RR.
Viana et al. (2016a) used an inter-specific grapevine bi-parental
population. They predicted cluster and berry phenotypes (num-
ber and length of clusters, number, and weight of berries, juice
pH, titrable acidity) with RR-BLUP and Bayesian LASSO applied to
table grape breeding. In addition to yielding further insights into
method comparison beyond those obtained by simulation, our
study brought valuable novel biological knowledge about grape-
vine water use under different watering conditions. Indeed, new
methods and the new SNP genetic map allowed us to find novel
QTLs, as compared to those previously detected with the same
phenotypic data (Coupel-Ledru et al. 2014, 2016). Our study also
provides novel results of practical interest to grapevine breeders.
We showed what predictive ability they can expect for drought-
related traits within a progeny: here, always higher than 0.3, and
up to more than 0.65 for some traits. Even though these traits are
difficult to phenotype, they correspond to crucial breeding targets
in the context of climate change. Our results may help motivate
their phenotyping in the training panels of breeding programs.

Predictive ability and genetic architecture:
Among univariate penalized methods, RR generally had equiva-
lent or better predictive ability compared to LASSO. For the traits

with the largest discrepancy between RR and LASSO, this sug-
gests that trait variability was rather due to many minor QTLs
than to a few major ones. On the other hand, for a few traits, e.g.,
PsiM.WD, DeltaPsi.WD, and TE.WW, predictive abilities with sparse
methods (s, LASSO, and IM methods) were better than with RR,
suggesting a genetic architecture with few major QTLs rather
than an infinitesimal one in those cases.

Finally, while not considered by the penalized methods
used, nonadditive genetic effects such as epistasis could be in-
volved. We, therefore, tested the superiority of LASSO.GB over
LASSO. Extreme Gradient Boosting methods are indeed among
the best machine learning methods (Chen and Guestrin 2016).
LASSO.GB did not markedly increase predictive ability on ex-
perimental data (Figure 3). However, we cannot exclude that
this might be due to a poor optimization of Extreme Gradient
Boosting parameters or to an insufficient number of observa-
tions to correctly fit the model. We also tested if coding differ-
ently the design matrix to estimate dominance genetic effects
improved predictive ability and it was not the case (data not
shown).

Candidate gene analysis:
The thorough methodology deployed for candidate genes analy-
sis allowed us not only to retrieve a list of genes potentially un-
derlying the QTLs of interest, but also to classify them based on
their function and expression to point at the most likely candi-
dates. We focused on the highly reliable QTL detected on chro-
mosome 4 for TrS_night, TE, and DeltaBiomass. TrS_night QTL was
previously described as a promising target for marker-assisted se-
lection, as alleles limiting night-time transpiration also favor
plant growth, resulting in a doubly, beneficial impact on improv-
ing TE (Coupel-Ledru et al. 2016). Moreover, this QTL was found
using seven methods. Among the plethora of integrated functions
represented within the list of annotated genes underlying this
QTL, we show here that a subset of more likely candidates can be
defined as possibly related to the traits of interest. On the one
hand, these include genes related to broad-sense hydraulics and
water loss, with a possible direct impact on TrS_night: seven genes
involved in stomatal development, nine involved in stomatal
opening—sometimes through the abscicic acid signaling path-
way—, one related to xylem development and one to trichome
development (Supplementary Table S21). One of these genes, the
trihelix transcription factor GT-2 (Vitvi04g01604), was specifically
shown to impact transpiration and TE in Arabidopsis by acting as
a negative regulator of stomatal density. On the other hand, 27
genes in the list are directly related to growth, development, or
photosynthesis, hinting to a possible direct impact on
DeltaBiomass. A histidine kinase 1 (Vitvi04g01483) may be a partic-
ularly interesting candidate for its multiple roles in Arabidopsis in
ABA signaling, stomatal development, and plant growth, hence
potentially simultaneously acting on both components of TE.
Both these likely candidates were often highly expressed in
grapevine leaves. More precise analyses of these candidate genes,
including functional genomics work and possibly gene editing,
will now be necessary to identify the causative polymorphisms
under these new QTLs.

Conclusions
Rather than decoupling genomic prediction from the identifi-
cation of major QTLs, we argue for the need to pursue both
goals jointly. Indeed, they provide complementary information
on the genetic architecture of the target traits, as well the key
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underlying functions. Our study provided encouraging findings
for further implementing genomic prediction in grapevine
breeding programs. Applied to both simulated and 14 experi-
mental traits, univariate and multivariate Elastic Net proved to
be efficient for both goals, followed by mFDR control for the ro-
bust identification of QTLs. Moreover, of interest to plant biolo-
gists seeking to understand the response to water stress, our
results highlighted several candidate genes underlying inte-
grated traits such as night-time transpiration, TE, and biomass
production. For some, their putative functions suggest causal
links with stomatal functioning, trichome development, or the
ABA pathway.

Code availability
All software we used was free and open-source and most analy-
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Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, et al.

2007. Genetic mapping and localization of quantitative trait

loci affecting fungal disease resistance and leaf morphology in

grapevine (Vitis vinifera L). Mol Breed. 20:359–374.

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New

York, NY: Springer-Verlag.

Yi H, Breheny P, Imam N, Liu Y, Hoeschele I. 2015. Penalized multi-

marker vs. single-marker regression methods for genome-wide

association studies of quantitative traits. Genet Sec Invest. 199:

205–222.

Zou H, Hastie T. 2005. Regularization and variable selection via the

elastic net. J R Statist Soc B. 67:301–320.

Communicating editor: J-L. Jannink

16 | G3, 2021, Vol. 11, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/9/jkab248/6325507 by guest on 22 Septem

ber 2021
2.3. Article I: Harnessing multivariate, penalized regression methods for genomic prediction and
QTL detection of drought-related traits in grapevine

55



56 Chapter 2. Multivariate genomic prediction

2.4 Application of some GP methods on field data

2.4.1 Material and methods

Experimental design and phenotypes

Field trial was located in Villeneuve-lès-Maguelone (Occitanie, South of France), with two
complete randomized blocks planted in 2003 (Doligez et al., 2013). Within a plot, five repli-
cates of the same genotype were planted in a row. A mild water stress was applied during
two years (2010 and 2011) on one block with inter-row grassing, while the other block was
irrigated and thus underwent no water stress.

Several phenotypes related to development and production were measured in 2010 and 2011:
pruning weight (pruw), the total weight of pruned canes per vine (in kg); verday, the véraison
date (onset of ripening, in number of days since January 1st); nbclu, the number of clusters
per vine at maturity (defined as véraison date + 35 days); yield, the total fruit production per
vine at maturity (in kg); mbw, the mean berry weight (over 200 random berries), fertility,
the number of clusters divided by the number of shoots. One phenotype related to drought
tolerance was also measured the same years: δ13C (d13C), which is the relative amount of
carbon 13 over carbon 12 isotopes, measured in the must at maturity. This measure reflects
the intrinsic water-use efficiency (WUE) during the growing season (Farquhar & Richards,
1984).

Processing of phenotypes

For each of the seven phenotypes, I derived three traits from raw phenotypic data, corre-
sponding to three modalities: without water stress (well-watered modality, referred to as
WW), with water stress (water deficit modality, referred to as WD) and response to stress
(normalized difference WW−WD

WW , referred to as diff.norm).

Then, for each of the 21 resulting traits, I applied a transformation to raw data when distri-
bution was skewed. Then, I fitted a mixed model, derived broad-sense heritability from vari-
ance components and used the best linear unbiased predictor (BLUP) of offspring genotypic
values for implementing GP, following the same procedure as in Article I. The fitted model
was: yij = µ + genoi + yearj + ranki + locationi + εij. For diff.norm modality, rank and location
couldn’t be estimated as the difference is computed from vines at different field coordinates.

Genomic prediction

The same genotypic data as in Article I were used (3,961 SNP markers). The six GP methods
applied and predictive ability measures are described in Article I. We chose a subset of GP
methods which gave promising results in Article I.
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2.4.2 Results and discussion

Broad-sense heritability

FIGURE 2.3 – Broad-sense heritability for the 21 traits.

For WW and WD modalities, broad-sense heritability was around 0.8 for all traits, except
d13C for which it was about 0.6 and 0.2 for WW and WD, respectively (Figure 2.3). For all
traits except d13C, computing the normalized difference between WW and WD led to a sharp
decrease in heritability, which nearly reached 0 for nbclu. d13C was the only trait for which
there was no difference in heritability between diff.norm and WW.

The genetic correlation between these traits under the two modalities was 0.06 for d13C, 0.69
for fertility, 0.83 for mbw, 0.71 for nbclu, 0.76 for pruw, 0.78 for verdayand 0.76 for yield.

These results show that signal/noise ratio is lower for diff.norm modality. One reason may
be that the the WW and WD phenotypic data came from two different vine plots, from two
blocks and with no common coordinate in the field, which might make it more difficult to cap-
ture the genetic variance, or to correct for spatial heterogeneity. Another hypothesis could be
that there was a low genotype-by-environment variance, as the genetic correlation was quite
high between the two modalities, except for d13C. This is consistent with the low genetic cor-
relation between d13C.WW and d13C.WD, which suggest specific response to drought, which
is modelled with diff.norm modality. The fact that d13C.diff.norm, the trait most tightly related
to drought tolerance, had a heritability value of 0.6 is encouraging for studying response to
drought in the field.
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Predictive ability

Strikingly, PA for diff.norm modality and d13C trait were close to zero, while PA values for
other traits were all close to 0.6 (Figure 2.4). PA values for WW and WD modalities were
mostly consistent with heritability values from Figure 2.3, except for d13C.

FIGURE 2.4 – Predictive ability of 6 GP methods for 21 traits (7 phenotypes x
3 modalities) in the bi-parental grapevine population SxG. WW: well-watered;
WD: water deficit; diff.norm: normalized difference between WW and WD.
pruw: pruning weight, mbw: mean berry weight, verday: véraison date, nbclu:

number of clusters, d13C: carbon isotope discrimination.

The six GP methods had very close PA for the 21 traits studied (Figure 2.4). Closer inspection
of the figure shows that EN and LASSO were the worst performing methods for several traits
such as d13C.WW, verday.WW, pruw.WD, verday.WD or pruw.diff.norm. Mean PA per method
was 0.331 for MTV_LASSO, 0.329 for MTV_EN, 0.320 for RR, 0.318 for MTV_RR, 0.303 for
EN and 0.285 for LASSO. Overall, multivariate methods thus gave slightly better results than
univariate ones.

Such a discrepancy for some traits or modalities between broad-sense heritability values and
PA could be explained by non-additive effects that were not taken into account in our GP
models. To assess this hypothesis, we could compute the narrow-sense heritability using
molecular marker, in order to characterize the relative proportion of genetic additive vari-
ance.

Studying grapevine response to drought on field remains a challenge. This situation is closer
to what is encountered by wine-growers but drought stress intensity is not controlled. More-
over, drought stress likely affects the plant for several years, and phenotypes were only mea-
sured during two years. Besides, using two vines at different field coordinates makes impos-
sible the estimation of field heterogeneity. Instead, we could use more blocks as repetition
within each modality.



2.5. Chapter general discussion 59

2.5 Chapter general discussion

Interestingly, for single-modality trait, heritability values measured in PhenoArch phenotypic
platform and in the field could be as high as 0.7. Moreover, range of PA values were mostly
consistent with heritability in both experiments. Then, the ranking of methods, when com-
pared based on PA, was nearly the same in the field as in the high-throughput phenotypic
platform PhenoArch, with a slight superiority of multivariate methods over univariate ones.

Overall, heritability values for drought-related traits measured in PhenoArch were lower
than those measured in the field. A possible explanation for this difference is that traits mea-
sured in PhenoArch are highly variable and difficult to measure and thus subjected to micro-
environmental heterogeneity, despite a strong control of environmental conditions, which
may hinder genetic signal. This heterogeneity has probably a smaller impact on integrative
traits, such as those measured in the field.

However, results with data from field were not completely comparable with those obtained
in Article I because we did not compute diff.norm modality. Genotypic correlations between
water scenarios were around 0.4 for all traits in Figure S4 from Appendix B, we thus hypoth-
esize that some GxE could be captured by computing diff.norm modality.

Overall, these findings suggest that genetic variance and heritability for phenotypes facing
water deficit is moderate to high and that these traits could be quite accurately predicted
using GP. As a perspective, we could compare genotype ranking between d13C measured in
the field and other phenotypes measured in PhenoArch.

Nevertheless, these results were focused on a single bi-parental population, with a narrow
genetic diversity explored.
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Chapter 3

Across-population genomic prediction

3.1 Summary of the chapter

In this chapter, we aimed at implementing GP in a configuration more applicable in a breed-
ing context, i.e., across-population. For that, we used two other populations: a diversity
panel (N=277) as TS and a half-diallel (N=622) as TS and VS. PA was decomposed between
predicting cross mean and predicting individuals within a cross. We also implemented the
prediction of cross variance. Finally, we applied TS optimization and we quantified the rela-
tive effect of different parameters on PA, both for cross mean and individual prediction.

3.2 Article II: Across-population genomic prediction in grapevine
opens up promising prospects for breeding

This article was submitted to Horticulture Research on 12th, August 2021 and is available in
bioRxiv. Supplementary materials can be found in Appendix C.

https://www.biorxiv.org/content/10.1101/2021.07.29.454290v1
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Abstract
Crop breeding involves two selection steps: choosing progenitors and selecting offspring within progenies. 

Genomic prediction, based on genome-wide marker estimation of genetic values, could facilitate these steps. 

However, its potential usefulness in grapevine (Vitis vinifera L.) has only been evaluated in non-breeding contexts 

mainly through cross-validation within a single population. We tested across-population genomic prediction in a 

more realistic breeding configuration, from a diversity panel to ten bi-parental crosses connected within a half-

diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield, berry 

composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic 

values of individuals within each cross (individual values). Genomic prediction in these conditions was found 

useful: for cross mean, average per-trait predictive ability was 0.6, while per-cross predictive ability was halved on 

average, but reached a maximum of 0.7. Mean predictive ability for individual values within crosses was 0.26, 

about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-

population predictive ability values are promising for implementing genomic selection in grapevine breeding. This 

study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well 

predicted by genetic distance between parents and when this predictive ability was below 0.6, it was improved by 

training set optimization. For individual values, predictive ability mostly depended on trait-related variables 

(magnitude of the cross effect and heritability). These results will greatly help designing grapevine breeding 

programs assisted by genomic prediction.

Keywords: genomic prediction, grapevine, half-diallel, multi-parental population, diversity panel, 

across-population
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Introduction
Breeding for perennial species is mostly based on phenotypic selection and is hindered by cumbersome field 

trials and the long generation time. Genomic prediction (GP), based on genome-wide prediction of genetic 

values 1, has been widely adopted in modern plant and animal breeding programs, for its superiority in terms of 

cost and time saved compared to traditional phenotypic selection, but also because it allows handling traits with

complex genetic determinism. GP requires a model training step within a reference population, prior to model 

application to a target population of selection candidates 2. In perennial crops, a universal population 

encompassing most of the species' genetic diversity could be particularly interesting as a training population to 

reduce phenotyping effort, since breeding cycle and juvenile phase are long.

Breeding schemes typically involve first the choice of parents (individuals to be crossed) and then the selection 

of offspring within crosses. GP is adapted both for predicting cross mean and for ranking genotypes within a 

cross (Mendelian sampling). These steps correspond to the components of the predictive ability (PA) of GP. It is 

indeed defined as the sum of cross mean and Mendelian sampling terms, as detailed in Werner et al. 3. 

Under an additive framework, cross mean is expected to be the sum of the breeding values of parents, but 

some deviation may result from dominance or epistasis 4. So far, a few studies only have investigated cross 

mean PA 5, 6, 7, 8, although none of them clearly investigated its influencing parameters. 

In contrast, the prediction of genetic values within a cross (Mendelian sampling), has been widely studied, both 

with simulated and real data. Various parameters affecting PA have been pointed out, including the statistical 

method used 9, the composition and size of training and validation populations 10, 11, the trait genetic 

architecture and heritability 12, 13 and marker density 14. Genetic relationship between the training and validation 

sets is known to strongly affect PA 15, with low or even sometimes negative accuracies for across-breed GP in 

animals 16. This can be explained by the loss of linkage phase between the marker and QTL or by differences in 

linkage disequilibrium among populations 17. Another explanation is the presence of specific allelic effects and 

allele frequencies, due to the genetic background 18. All these effects are linked to genetic relationship. Some 

studies specifically derived deterministic equations to predict PA for across-population GP, based on genetic 

relationship and heritability (e.g., 19, 20, 21).

In grapevine (Vitis vinifera subsp. vinifera), very few authors have assessed the potential interest of GP. Viana et

al. 22 investigated GP within a bi-parental population from a cross between an interspecific hybrid and a seedless

table grape. Later, Migicovsky et al. 23 used a panel of 580 V.vinifera accessions to perform both GP and 

genome-wide association study (GWAS) for 33 phenotypes. More recently, Brault et al. 24 investigated GP within

a bi-parental population from a cross between Syrah and Grenache. In a related study, Fodor et al. 25 had 

simulated a structured and highly diverse grapevine panel and bi-parental populations with parents originating 

from the panel. They applied GP and found little difference between PA values estimated within the panel or 

across populations. Finally, Flutre et al. 26 studied 127 traits with GWAS and GP within a diversity panel; they 

also applied across-population GP, but with 23 test offspring and for one trait only. Before genomic selection 

can be deployed in grapevine, evaluating PA across populations is thus crucially needed. In particular, PA should 

be evaluated with a diversity panel and a bi-parental progeny as training and validation sets, respectively, a 
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configuration much more likely to occur in actual breeding schemes than GP within the same population. As in 

grape, studies investigating across-population GP are also lacking in most clonally propagated crops.

The aim of this study was to assess across-population genomic PA and to provide a more thorough 

understanding of parameters affecting PA in a situation close to the one typically encountered in a breeding 

context, i.e. across populations, for a clonally propagated crop such as grapevine. Our study was based on 

phenotypic data for 15 traits, related to yield, berry composition, phenology and vigour, measured both in a 

diversity panel 27, and in a half-diallel with 10 bi-parental crosses. We assessed PA under three scenarios, first 

for cross mean, and then for Mendelian sampling term; the results provided keys to understand PA 

determinants in both cases. Finally, we implemented training population optimization to investigate under 

which conditions PA can be improved. 

Results

Extent of genetic diversity within the half-diallel 
population
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Figure 1: Description of the half-diallel, relative to the diversity panel. a: PCA of the diversity panel based on 32,894 SNPs with the 3 sub-
populations distinguished by different colors, on which half-diallel progenies (dots) and parents (triangles) were projected. b: Broad-sense 
heritability estimates in the whole half-diallel (red) and in the diversity panel (blue) for the 15 traits studied (left axis), with shape 
corresponding to the transformation applied to raw data; the relative variance due to the cross effect and the R² of the subpopulation effect, for
the half-diallel (red) and the diversity panel (blue), respectively, are also reported with '+' (right axis). c, d, e: genotypic value BLUP distribution 
in each subpopulation or progeny, for mean berry weight, mean cluster width and vigour, respectively; BLUPs for parents are indicated by their 
initial letters (Table S4). Number of genotypes per subpopulation/progeny is indicated below the subpopulation/progeny name. These traits 
were chosen to represent various levels of H² and relative importance of cross effect. BLUP distributions for all traits are presented in Figure S3.

We first evaluated the genetic variability of half-diallel crosses with respect to the diversity panel, through their 

projection on the first plane of a PCA based on genotypic data at 32,894 SNPs within the diversity panel. The 

half-diallel crosses were genetically close to the wine west (WW) subpopulation from the diversity panel (Figure 

1a), which was expected, given that all half-diallel parents except Grenache are wine varieties from western 

Europe (Figure 1a, Figure S1). The half-diallel diversity covered the whole range of WW diversity, and progenies,

all located exactly between their respective parents, were well separated from each other along the first two 

PCA axes (Figure 1a).

We then investigated broad-sense heritability values (H²) for 15 traits related to yield, berry composition, 

phenology and vigour. Overall H² values were medium to high, ranging from 0.49 for mcwi in the half-diallel to 

0.92 for mbw in the panel (Figure 1b; Table S1). Correlation between half-diallel and diversity panel heritability 

values was 0.31. Per-cross H² values for each trait varied among half-diallel crosses (Figure S2), which might 

result from the fairly small number of offspring per cross (from 64 to 70). Nevertheless, we observed a 0.68 

correlation between overall and per-cross H². Mean cluster width displayed extreme variation in H² per cross 

(from 0.02 to 0.67). This might be due to the difficulty to phenotype this specific trait because of the presence 

of lateral wings in some individuals.

Within the half-diallel and for all traits, the cross effect was retained in the mixed model for genetic value 

estimation, but its magnitude with respect to the total genetic variance varied depending on the trait, ranging 

from less than 10% to ca. 50% (Figure 1b; Table S1). Depending on the trait or cross, the distribution of 

genotypic BLUPs varied widely (Figure 1c-e; Figure S3), some traits such as vigour being quite comparable 

among crosses, while others such as mbw or mcwi varied greatly. We also observed transgressive segregation 

within the half-diallel progenies (Figure 1c-e; Figure S3) for most traits and subpopulations. The 15 traits studied

represented a large phenotypic diversity, structured among crosses (Figure S4). 
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Prediction of cross mean and Mendelian sampling 
within- and across-populations

Prediction of cross mean

Figure 2: Schematic description of the three scenarios tested. TS: training set, VS: validation set. In scenario 1a, GP was applied within the half-
diallel population with 10-fold cross-validation repeated 10 times. In scenario 1b, half-sib families from each parent were used separately as TS. 
In scenario 2, TS was the diversity panel. See details in Table S5.

We first implemented cross mean prediction, as if aiming to select parents for future crosses, selecting the 

method best adapted to genetic architecture between RR and LASSO (see Material and Methods).  Predictive 

ability (PA) was assessed as Pearson's correlation between the observed mean genotypic value per half-diallel 

cross and the one predicted based on parental average genotypes (Table S2). Three scenarios were tested 

(Material and Methods, Figure 2): allelic effects estimated within the whole half-diallel (scenario 1a), in families 

with one parent in common (scenario 1b), or within the whole diversity panel (scenario 2).
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Figure 3: Boxplots of PA values for the three scenarios (1a: within whole half-diallel prediction; 1b: half-sib prediction within half-diallel; 2: 
across-population prediction with diversity panel as training set and each half-diallel cross as validation set). Each PA value was the best one 
obtained between RR and LASSO methods. Average PA is indicated next to each boxplot. 
a: per-cross PA, b: per-trait PA. 

 In scenario 2, per-trait and per-cross predictive ability was lower and more variable than in scenarios 1a and 1b 

(Figure 3). Average per-cross PA was 0.56, 0.62 and 0.29 in scenarios 1a, 1b and 2, respectively (Figure 3a). 

Average per-trait PA was close to 1 for most traits in scenarios 1a and 1b (Figure 3b), and still high (around 0.75)

in scenario 2, when excluding nbclu and vigour (Table S3). Overall PA (over the 150 cross x trait combinations) 

was 0.32. There was upward or downward bias for some traits, scenarios or methods, and in scenario 1a, LASSO

resulted in larger bias (Figure S5).
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Prediction of Mendelian sampling
We then measured PA for individual offspring within each half-diallel cross, thus considering separately the 

Mendelian sampling component. For each cross and trait, we compared the observed and predicted genotypic 

values in the three scenarios (Figure 2; Figure S6) 
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Figure 4: a: Mendelian sampling PA per trait and cross for scenario 1a with the best method between RR and LASSO. Vertical bars represent the 
standard error around the mean (95 % of the confidence interval), based on the outer cross-validation replicates. PA corresponds to the 
Pearson's correlation between the BLUPs of the genotypic value and the predicted genotypic values.
b: Difference between PA of scenario 1a and of the other scenarios. S2 is displayed with a triangle, and S1b by circles, colored according to the 
parental training set and filled if the best method was RR and empty otherwise.

In scenario 1a (Figure 4a), average PA per trait ranged from 0.18 for vermatu to 0.58 for mbw, with a 0.47 

overall average (Figure S7a). The extent of PA variation among crosses depended on the trait and could be very 

large, as for vermatu (from -0.074 to 0.443). Unlike for traits, no cross had constantly high or low PA (Figure 

S7b). RR method yielded the highest PA values in most cases (91% of the 150 trait x cross combinations).

In scenario 1b (Figure 4b), there were two PA values per cross, one for each parental training set (TS). The 

difference between these two values varied widely, depending on the cross and trait (up to about 0.5 for 

mal.ripe in GxS), with an overall average of 0.39. Most often, PA was lower in scenario 1b than in scenario 1a, 

likely because no full-sibs were included in the training set. However, there were several cases with PA values 

similar or higher in scenario 1b for one parental TS compared to scenario 1a. RR method produced the best PA 

in 61% of the 300 combinations (2 parents x 15 traits x 10 crosses).

In scenario 2 (Figure 4b), overall average PA (0.26) was nearly halved compared to scenario 1a, with trait 

dependent differences in PA between both scenarios. Some traits such as vigour, clucomp and maltar.ripe 

displayed a particularly marked decrease. On the opposite, mcwi and vermatu reached equivalent PA values in 

both scenarios. RR provided the best PA in 61% of the 150 combinations.

Exploring factors affecting predictive ability, and 
training set optimization
We sought those variables affecting the PA values observed above, both for prediction of cross mean and 

Mendelian sampling. We then implemented training set (TS) optimization in an attempt to increase PA.

Variables affecting the prediction of cross mean
In scenario 2, per-cross PA was highly negatively correlated (-0.9) with the cross parents' pairwise distance on 

the first axis of the diversity panel PCA (Figure 5a, Figure S8a). Correlation with the additive relationship 

between parents was slightly lower (0.75) and non-significant at 5% (Figure S8a). No such strong correlation was

found for per-cross PA in scenarios 1a or 1b (Figure S8a). The proportion of non-segregating markers showed 

low correlation with per-cross PA in all scenarios (Figure S8a).
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Figure 5: a: Plot of per-cross PA for cross mean in scenario 2, obtained with the best method between RR and LASSO for each cross, against the 
distance between cross parents on the first axis of the diversity panel PCA (Figure 1a). Best method is indicated with the triangle filling and cross
with the color. b: Relative importance of variables affecting PA for Mendelian sampling in the three scenarios tested. Variables were selected 
from an overall model, after a model selection step. Response individual PA values were obtained either as the best one between RR and 
LASSO, with RR or with LASSO. Relative importance was estimated with pmvd method, from relaimpo R-package version 2.2-5.

Since variation in per-cross PA for scenario 2 was extremely large, from -0.3 for GxPN to 0.72 for CSxS (Figure 

3a), we implemented TS optimization for each cross, to try and increase low PA values. Optimization actually 

improved PA for crosses with PA initially below 0.6, for TS sizes between 50 and 150 (Figure 6). The largest 

improvement, from -0.29 to 0.62, was observed for GxPN cross.
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Figure 6: PA for cross mean predicion after training set optimization and with the best method between RR and LASSO, for each cross. Best 
method is indicated with the triangle filling and TS optimization method with the color. For comparison, random selection of TS genotypes (in 
grey) was performed and repeated ten times, error bars correspond to 95% of the confidence interval around the mean. We also report per-
cross PA with the whole diversity panel (in red), with a maximum TS size of 279 which may vary depending on traits.

The variable that most affected per-trait PA was the σ C
2
/(σC

2
+σG

2 ) ratio (relative variance of cross effect). It was 

strongly correlated with PA in scenarios 1a and 1b (0.82 and 0.88, respectively), but not in scenario 2 (Figure 

S8b). 

No other explanatory variable displayed any significant impact despite a fairly high correlation with per-trait or 

per-cross PA, which could be due to low sample sizes (15 and 10 for per-trait and per-cross PA, respectively).

Factors affecting Mendelian sampling prediction
To model Mendelian sampling PA for each scenario and method selected for each trait (RR, LASSO or best), we 

applied multiple linear regression on six to nine variables depending on the scenario, as detailed in Material and

Methods. The highest coefficient of determination (44.2%) was obtained in scenario 1a with the best method 

(Figure 5b). Coefficients of determination were equivalent, lower and higher for LASSO compared to RR in 

scenarios 1a, 1b and 2, respectively. Three variables were found to impact PA in all scenarios: half-diallel overall 
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H², per-cross H² and the proportion of non-segregating markers. Surprisingly, half-diallel overall H² was not 

selected in scenario 2 with either RR or best method, while it had a strong effect in other modalities.

The selected variables were quite similar between scenarios 1a and 1b, with a high effect of half-diallel overall 

and per-cross H², but differed in scenario 2 in which more variables were selected. Overall, most of the relative 

importance came from variables related to the trait and not to the genetic composition of TS or validation set 

(VS). 

We also calculated individual PA with optimized TSs derived from the diversity panel (Figure S9). However, we 

did not observe any improvement compared to using the whole diversity panel. This is consistent with the fact 

that genetic relationship seemed not to impact PA (Figure 5b).

Discussion
Our study allowed us to thoroughly explore GP potential in grapevine breeding, by scanning a large range of 

potentially useful configurations: (i) with 15 weakly related traits with variable levels of H² and phenotypic 

structure (subpopulation or cross effects on phenotypic data) (Figure S4), (ii) in across-population scenarios with

TS ranging from half-sibs (scenario 1b) to a diversity panel (scenario 2), (iii) with 10 balanced VS crosses. 

Moreover, we decomposed PA into cross mean and Mendelian sampling components, each being useful in 

breeding to select parental genotypes and offspring within crosses, respectively. All these results allowed us to 

get insight into main factors affecting PA. We will focus our discussion on prediction with the diversity panel as 

TS, since this is the most sought-after configuration in perennial species breeding.

Range of PA values
For the prediction of cross mean, overall PA was 0.32 in scenario 2, equivalent to the average per-cross PA 

(0.29), while the average per-trait PA was twice as high (0.6) (Figure 3). In other studies concerning other plant 

crops, the average per-cross PA was not reported 5, 6, 7, 8, probably because, in most cases, there were not 

enough traits to estimate it. Bernardo et al. 5 and Osthushenrich et al. 6 also reported a high-average per-trait 

PA, above 0.9, while Yamamoto et al. 8 reported PA values from 0.21 to 0.57 depending on the trait.

For the prediction of Mendelian sampling, overall average PA was slightly lower than overall PA for cross mean 

in scenario 2 (0.26 and 0.32, respectively). Yet, Mendelian sampling PA was still quite high, considering that TS 

was essentially unrelated to VS, i.e., with no first-degree relationship with predicted progenies. The same 

diversity panel was previously used in Flutre et al. 26 for predicting individual genotypic values of 23 additional 

Syrah x Grenache offspring. The reported PA for mbw was 0.56, whereas in the present study, we obtained 0.35

in the Grenache x Syrah progeny (n=59). We further investigated such discrepancy, and found it related to a 

sampling bias due to the small VS size in Flutre et al. 26 (data not shown).

The range of average per-trait Mendelian sampling PA observed in scenario 2 (from 0.15 to 0.38) was consistent

with those described on fruit perennial species where individual prediction was performed with a TS not directly

related to the VS (neither half-sib nor full-sib). In Coffea, Ferrao et al. 28 reported differences in per-trait PA, 

from slightly negative values up to ca. 0.60. But, in this study, overall PA was calculated for all crosses of the VS, 

thus encompassing both cross mean and Mendelian sampling predictions, making comparison with our 

Mendelian sampling results alone impossible. In contrast, some studies in apple yielded within cross individual 
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PA values. For instance, Muranty et al. 29 reported average per-trait PA ranging from -0.14 to 0.37, and Roth et 

al. 30 found PA values from -0.29 to 0.72 for fruit texture, highly dependent on the cross for all traits. Conversely,

our PA values were mainly stable over crosses and variable over traits, in the three scenarios (Figure S7). This 

difference might partly be due to the larger trait diversity we explored as compared to Roth et al. 30, as 

suggested by comparing our Figure S4 with their Figure 1A. A complementary explanation could be that progeny

size varied from 15 to 80 in Roth et al. 30, while here progeny sizes were very close and thus less likely prone to 

sampling variability and to upward or downward bias.

Several factors may influence Mendelian sampling PA in our study compared to others. Among potential 

inflating factors, we can mention a slight over-representation of phenotyped individuals from the WW panel 

subpopulation, to which four out of the five parents of the half-diallel belong, leading to a higher genetic 

relationship between effective TS and VS. Factors potentially decreasing PA could be differences between TS 

and VS experimental designs since the diversity panel and the half-diallel were not phenotyped on the same 

years, had different plant management systems (overgrafting or simple grafting, respectively) and were planted 

a few kilometers apart. Nevertheless, for most studied traits, two years of phenotyping were used to compute 

genotypic BLUPs, which could at least compensate for differences between years, usually referred to as the 

millesime effect.

Variables affecting PA in across-population genomic 
prediction
We focused on PA obtained with the best method between RR and LASSO, to take into account the part of 

variability among traits associated with genetic architecture. Indeed, LASSO is supposed to be better adapted to 

traits underlined by few QTLs, while RR would yield better PA for highly polygenic traits. However, we showed 

that for a given trait x cross combination, i.e., for a given genetic architecture, the best method selected 

changed depending on the scenario: LASSO was more often selected for scenario 2 than for scenario 1a, both 

for cross mean and individual prediction. This means that the best method choice also depends on the 

relationship between TS and VS. This was also suggested in cattle breeding by MacLeod et al. 31, who found that 

BayesRC method (comparable to LASSO) yielded better results than GBLUP (comparable to RR) for across-

population GP.

Regarding the other factors affecting PA, for cross mean prediction in scenario 2, no tested variable significantly 

affected per-trait PA. Conversely, per-cross PA was strongly affected by the genetic distance between parents 

(Figure 5a, Figure S8a). To our knowledge, such correlation has never been reported before, most probably 

because previous works investigated too few traits to afford per-cross PA calculation. We could hypothesize 

that when one parent is farthest from WW -the most represented panel subpopulation in TS- (e.g., Grenache, 

Figure 1a, Figure S1), marker effects for this parent might reflect different QTLs or allelic frequencies, compared 

to WW ones, thereby explaining the decrease in PA for crosses related to Grenache. Such differences underlying

marker effects were already described in maize 32. Simultaneously, some QTLs in this parent might be less 

genetically linked to causal polymorphisms due to more recombinations. However, this cannot be the only 

explanation for the large correlation of per-cross PA with pairwise parent distance, because the correlation 

between PA and genetic distance between TS and VS was much lower (Figure S8a).

For the prediction of Mendelian sampling, the variables explaining individual PA in scenario 2 were quite 

different from those explaining cross mean PA. Trait-related variables had a large impact on individual PA: half-

12

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

3.2. Article II: Across-population genomic prediction in grapevine opens up promising prospects
for breeding

73



Across-population genomic prediction in grapevine

diallel overall and per-cross heritability, but also the relative variance of cross effect (Figure 5b). Surprisingly, 

genetic relationship between TS and VS had little to no impact on PA, although this factor has often been 

reported to affect PA 17,15. Most studies reported separately the effects of different variables on individual PA. 

Riedelsheimer et al. 33 also performed multiple linear regression of individual PA on several factors to study their

impact. They found that TS composition (number of crosses and their relationship with VS) explained most of 

the variance (41.7 %), followed by trait (27.6%) and VS composition (4.8%). The variance in genetic relationship 

between TS and VS may be smaller in our study.

Practical consequences on breeding programs
Across-population GP with model training in a diversity panel appeared to be promising in grapevine breeding 

for some traits and crosses, particularly for parent choice (Figure 3; Figure 4; Table S3; Figure S7).

The usefulness of GP for better selecting parents for future crosses can be at first assessed by the low overall 

correlation between mean parental genotypic values (BLUPs) and mean offspring BLUPs (0.28; see also Figure 

S10). This correlation was much lower than overall PA for cross mean in scenario 1b (0.66) and slightly lower 

than overall PA for cross mean in scenario 2 (0.32). In strawberry, Yamamoto et al. 8 also evidenced the interest 

of GP for predicting cross mean, with no additional benefit from including dominance effects into GP models, 

even if cross means were not equal to parental means. Moreover, in some cases, GP could provide other 

advantages over mean parental genetic values, for instance when parents are not phenotyped for some 

reasons, because too young or without representative phenotypes (e.g., using microvine 34, in a new 

environment, etc). This was actually the case, in our half-diallel trial, for the Terret Noir parent, which suffered 

from mortality probably due to rootstock incompatibility and consequently had no phenotypic record for most 

studied traits.

Even though PA was quite high for some traits and crosses in scenario 2, on average it remained moderate both 

for cross mean and individual prediction. Both PAs were much higher in scenario 1a, due to increased 

relationship between training and validation sets. Nevertheless, such an extreme configuration is rarely used in 

plant breeding programs, especially in perennial species, because it requires to partly phenotype the cross to be

predicted. An intermediate configuration, scenario 1b, could be implemented in breeding programs when PA 

from scenario 2 is not sufficient and half-sib families are available, because in this scenario, cross mean PA was 

similar as in scenario 1a and individual PA intermediate between scenarios 1a and 2.

We found TS optimization useful mostly for cross mean prediction for crosses with low PA. The advantage of TS 

optimization was less clear for individual prediction. This was consistent with the fact that genetic parameters 

more strongly affected cross mean PA than individual PA. In contrast, Roth et al. 30 observed in apple a 

systematic increase of individual PA with an optimized TS in the same context (i.e., with a diversity panel as TS 

and bi-parental families as VS, and common optimization methods). To our knowledge, only a single study 

tested TS optimization for cross mean prediction, by Heslot and Feoktistov 35, who implemented optimization of 

parent selection for hybrid crossing in sunflower while selecting individuals to phenotype, but did not calculate 

cross mean PA.

Since our results show that prediction of cross mean can be quite accurate and useful in scenario 2, we decided 

to go one step further and implemented cross mean prediction for all 38,781 possible crosses between the 279 

genotypes of the diversity panel, based on parental average genotypes (Table S2) and on marker effects 

estimated with RR in this population. As predicted cross mean were biased for some traits in the ten half-diallel 
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crosses (Figure S5), we estimated the bias for each trait from these data to correct the predicted mean in the 

possible diversity panel crosses. Figure S11 shows the large potential diversity to be explored through crossing 

in grape, for all the traits considered in the present study, illustrating the finding of Myles et al. 36  that genetic 

diversity in grapevine was largely unexploited. Such an example opens many prospects for the use of GP to 

design future crosses. Indeed, we limited here our prediction to the 279 panel genotypes representing the Vitis 

vinifera diversity, but potentially any other (unphenotyped) genotype of interest with dense genotypic data 

could be used for this purpose as exemplified with the half-diallel, since its five parents were not part of the 

diversity panel.

Prospects
Based on our results, the following improvements could be tested: i) increase SNP density 25, 37 and include 

structural variants ii) implement non-additive effects in GP models such as dominance or epistatic effects and iii)

add crosses from other panel subpopulations as VSs. Indeed, since all our half-diallel crosses had at least one 

parent belonging to the WW subpopulation, it would be beneficial to include crosses with parents from the WE 

and TE subpopulations too. Specific GP models that include genetic structure in marker effect estimation 38, 39 

could also be tested. 

Predicting cross variance could also prove useful to design the offspring selection step, more specifically for 

choosing the number of offspring to test or produce for a given cross. Depending on the available funds and 

breeding program, a breeder may want to select crosses with high genetic variance, in order to maximize the 

probability to generate top-ranking genotypes. Conversely, choosing a cross with low variance could limit the 

risk of breeding poor genotypes.

Conclusion
We implemented GP in grapevine in a breeding context, i.e., across populations, on 15 traits, in ten related 

crosses, and obtained moderate to high PA values for some crosses and traits, thus showing GP usefulness in 

grapevine. Never before had genomic prediction been implemented for so many traits and crosses 

simultaneously in this species. We showed that per-cross PA was strongly correlated with the genetic distance 

between parents, whereas Mendelian sampling PA was largely determined by trait-related variables, such as 

heritability and the magnitude of the cross effect.

Material and Methods

Plant material
The half-diallel consists of 10 pseudo-F1 bi-parental families obtained by crossing five Vitis vinifera cultivars: 

Cabernet-Sauvignon (CS), Pinot Noir (PN), Terret Noir (TN), Grenache (G) and Syrah (S) 40. Each family comprised 

between 64 and 70 offspring, with a total of 676 individuals including parents. 

The diversity panel consists of 279 cultivars selected as maximizing genetic diversity and minimizing kinship 

among cultivated grapevine. Grapevine genetic diversity is highly heterozygous and weakly structured into three

subpopulations: WW (Wine West), WE (Wine East) and TE (Table East) 27.
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Field experiments
Field design

The half-diallel was created in 1998 at INRAE Montpellier, grafted on Richter 110, and planted in 2005, at the 

Institut Agro experimental vineyard "Le Chapitre" in Villeneuve-lès-Maguelone (Southern France). The progenies

were planted in two randomized complete blocks, with plots of two consecutive plants per offspring per block. 

The field design for the diversity panel was previously described in Flutre et al. 26. Briefly, cultivars were 

overgrafted on 6-year-old Marselan in 2009, itself originally grafted on Fercal rootstock, a few kilometers away 

from the diversity panel. They were planted in five randomized complete blocks, with one plant per cultivar per 

block. 

Phenotyping

We studied 15 traits in both trials: berry composition with malic (mal.ripe), tartaric (tar.ripe) and shikimic acid 

(shik.ripe) concentrations in μeq . L
−1

 measured at ripe stage (20° Brix) (according to Rienth et al. 41), from which

two ratios were derived, shikimic / tartaric acid (shiktar.ripe) and malic / tartaric acid (maltar.ripe); 

morphological traits with mean berry weight (mbw, in g) measured on 100 random berries, mean cluster weight

(mcw, in g), mean cluster length (mcl, in cm) and mean cluster width (mcwi, in cm), measured on 3 clusters, 

number of clusters (nbclu) and cluster compactness (clucomp) measured on the OIV semi-quantitative scale; 

phenology traits with veraison date (onset of ripening; verday, in days since January 1st), maturity date 

corresponding to berries reaching 20° Brix (samplday, in days since January 1st) and the interval between 

veraison and maturity (vermatu, in days); vigour (vigour, in kg), derived as the ratio between pruning weight 

and the number of canes. Phenotypic data were collected between 2013 and 2017 for the half-diallel and in 

2011-2012 for the diversity panel. There was a slight over-representation of phenotypes from the WW 

subpopulation because of fertility issues in WE and TE subpopulations

SNP genotyping
For the half-diallel, we used genotyping-by-sequencing (GBS) SNP markers derived by Tello et al. 40, 622 of the 

676 individuals being successfully genotyped, as well as the five parents. Raw GBS data were processed 

separately for each cross, and then markers from all crosses were merged together (390,722 SNPs), thus 

generating many missing data (85% of missing data per marker on average), since all markers did not segregate 

in all progenies. Markers with more than 80% of missing data were removed and remaining markers were 

imputed with FImpute3 42 (86,017 SNPs). Some parental cultivars were used either as female or male, depending

on the cross, a configuration not allowed by FImpute3. We thus declared only a partial pedigree maximizing the 

number of crosses defined with both parents (Table S4). For the diversity panel, we used the same SNP markers 

as in Flutre et al. 26, except that we applied a filter on minor allelic frequency (5%) and no filter on linkage 

disequilibrium, which yielded 83,264 SNPs.

Finally, we only retained the 32,894 SNPs common to both populations.

Phenotypic data analyses
Half-diallel

 Statistical modeling for estimating genotypic values

15

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

76 Chapter 3. Across-population genomic prediction



Across-population genomic prediction in grapevine

For each trait, we excluded outlier values by visual inspection of raw phenotypic data and computed a log or 

square-root transformation if its distribution looked skewed. Then, we fitted the following linear mixed full 

model by Maximum Likelihood:

y ijkl=μ+Gi+C j+Bk+Y l+(B :Y )kl+(G :Y )il+(C :Y ) jl+x+ y+x : y+ ( x :Y )l+( y :Y )l+ϵ ijkl

with y ijkl the phenotype of genotype i from cross j in block k and year l. Among the fixed terms, μ was the 

overall mean, and Bk and Y l the effects of block k and year l. Among the random terms, Gi and C j were the 

effects of genotype i nested within cross j, and x and y  the field coordinates. Interactions are indicated with ":".

ε ijkl was the random residual term, assumed to be normally distributed.

Sub-model selection was based on Fisher tests for fixed effects and log-likelihood ratio tests for random effects. 

It was performed with the step function from lmerTest R-package 43. Variance components were estimated after

re-fitting the selected model by Restricted Maximum Likelihood, and diagnostic plots were drawn to visually 

check the acceptability of model hypotheses such as homoscedasticity or normality. Best Linear Unbiased 

Predictors (BLUPs) of cross (C) and genotype (G) values were computed. For genomic predictions, we used their 

sum (C+G) as total genotypic values for both training and validation data. Variance component estimates were 

used to compute the proportion of genetic variance due to differences between crosses as: σ C
2
/(σC

2
+σG

2 ).

 Heritability estimation

We estimated overall (for the whole half-diallel) broad-sense heritability for genotype-entry means 44 as:

H 2
=

σ C
2
+σG

2

σC
2
+σG

2
+
σC :Y
2

+σG :Y
2

+σx :Y
2

+σ y :Y
2

nyear
+
σ x
2
+σ y

2
+σ x : y

2
+σ ϵ

2

n year×nrep. year

with genotype (G) and cross (C) variances at the numerator. Random variance components involving year (Y) 

were divided by the mean number of years (n year). Other random variance components involving spatial effects 

or residuals were divided by the mean number of years times the mean number of replicates per year (nrep . year).

We also estimated broad-sense heritability per cross (thereafter used to name half-diallel full-sib family). For 

that, we applied the same selected model, but removed all effects involving cross. Then, we estimated variance 

components within each cross, and heritability with the same formula, after removing variances involving cross.

All information on analyses of phenotypic data and heritability of the half-diallel is detailed in Table S1.

Diversity panel
We used the genotypic values previously estimated in Flutre et al. 26 with a similar statistical procedure to the 

one described above for the half-diallel. All phenotypic analysis information is provided in Table S3 of Flutre et 

al. 26.

For each of the two populations, genotypic BLUPs were scaled, allowing comparison among traits.
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Genomic prediction statistical methods
Marker effects were estimated using two methods to take into account varying genetic architecture among the 

traits studied. Ridge regression (RR) 45, best adapted to many minor QTLs, shrinks marker effects towards 0. 

Least Absolute Shrinkage and Selection Operator (LASSO) 46, best adapted to a few major QTLs, applies a L1 

norm on allelic effects, thus forcing some to be exactly 0. Both methods were implemented with R/glmnet 

package 47 and the amount of shrinkage, controlled by λ parameter, was calibrated by five-fold inner cross-

validation within each training set, using cv.glmnet function. 

Genomic prediction scenarios
We assessed prediction within half-diallel crosses under three different training scenarios (Figure 2; Table S5):

 Scenario 1a: whole half-diallel prediction. We applied random outer 10-fold cross-validation over the 

whole half-diallel population. In each fold, 90% of the phenotyped offspring were used as the training 

set (TS) and the remaining 10% as the validation set (VS). Cross-validation was replicated ten times.

 Scenario 1b: half-sib prediction. For each half-diallel cross used as VS, we trained the model with the 

three half-sib crosses of each parent in turn, thus predicting each cross twice.

 Scenario 2: across-population prediction. We used the whole diversity panel as TS and each half-diallel 

cross as VS.

Predictive ability assessment
In order to account for the effect of genetic architecture, we applied both RR and LASSO methods for each trait 

and cross and kept the best PA, for both cross mean and within cross individual prediction.

Prediction of cross mean
Cross mean PA was assessed as Pearson's correlation between the average value of observed total genotypic 

values (sum of genotype and cross BLUPs for each offspring) for each cross, and the mean predicted genotypic 

value per cross, calculated in two ways, as:

  average predicted value over all offspring of the cross. In scenario 1a, each offspring was predicted 10 

times, thus we also averaged the predicted value over the 10 replicates.

  predicted value for the parental average genotype, defined at each locus and for each cross as the 

mean allelic dosage according to the expected segregation pattern based on parents' genotypes (Table 

S2).

 genotypic values predicted with these two modalities were highly correlated (above 0.98) in the three 

scenarios and for the two methods (partly shown in Figure S12). Therefore, in subsequent analyses, we 

used only prediction with parental average genotypes.

Pearson’s correlation between observed and predicted values was calculated on all cross x trait combinations 

(overall PA), for each trait (per-trait PA) and for each cross (per-cross PA).

Within-cross individual prediction
We measured PA within each cross in each scenario as Pearson's correlation between observed total genotypic 

values and predicted genotypic values. 
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Test of variables affecting predictive ability
We tested the effect of several variables on within-cross individual PA, in each scenario. We built a multiple 

linear regression model with PA per trait x cross combination as the response variable and as predictors, a set of

variables common to all three scenarios plus specific variables for scenarios 1b and 2. Common variables were: 

the proportion of non-segregating markers in the cross, overall and per-cross broad-sense heritability, the 

distance between the parents of the cross measured either as the additive relationship or as the distance on the

first or first two axes of the panel PCA (Figure 1a) and the proportion of genetic variance due to differences 

between crosses (σ C
2
/(σC

2
+σG

2 )ratio). A specific variable for scenarios 1b and 2 was the mean additive 

relationship between training and validation sets. In scenario 2, it was calculated for each trait only with 

phenotyped individuals. Specific variables for scenario 2 were: broad-sense heritability in the diversity panel 

(retrieved from Flutre et al. 26 and Table S1) and the percentage of trait variance explained by the subpopulation

factor (see below). After fitting the overall model, we applied a forward-backward stepwise regression, with the 

AIC criterion to select the best explanatory model. Then, we estimated the relative importance of each variable 

selected in this model with the pmvd method 48, which allows to decompose the R² of correlated regressors 

with the R-package relaimpo 49.

The percentage of trait variance within the diversity panel explained by subpopulation (WW, WE or TE) was 

evaluated by fitting for each trait the following linear model: G=P+ϵ , where G is the genotypic (BLUP) value 

within the diversity panel, P is a fixed subpopulation effect, and ϵ  a random residual term. The percentage of 

variance due to differences between subpopulations was then estimated as the coefficient of determination (R²)

of the model.

Training set optimization
We tested three methods for optimizing TS in scenario 2, for both cross mean and within-cross individual 

prediction. We used the STPGA R-package50  to implement Prediction Error Variance (PEVmean) and CDmean 

(based on the coefficient of determination)10. Moreover, we computed the mean relationship criterion 

(MeanRel), as the mean additive relationship between each genotype in TS and all genotypes in VS. Each 

optimized TS was specific to a cross. The realized additive relationship based on marker data was estimated 

using the rrBLUP R-package51 with the A.mat function implementing the formula from VanRaden et al. 52. For 

each of these three optimization methods, we tested five TS sizes (50, 100, 150, 200, 250). PA values obtained 

with each optimized TS were compared with those obtained with a random sample of genotypes of the same 

size, repeated 10 times.

Data availability
All analyses were conducted using free and open-source software, mostly R. Phenotypic and genotypic data, R 

scripts and result tables are available at https://data.inrae.fr/privateurl.xhtml?token=1925c973-a11b-45ad-

b297-69db8ec2c270 . 
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3.3 Variance prediction

Article II describes the prediction of cross means in three different prediction scenarios. Here
I describe the prediction of cross variances, which could be useful for choosing new crosses
in breeding. But this exploratory study was done only in one scenario, for which estimates of
the required parameters were available.

3.3.1 Material and methods

I predicted cross variances in scenario 1a (within half-diallel prediction), using the predCross-
Var R-package (Wolfe et al., 2021), based on parental haplotypes, recombination frequency
and additive marker effects in the whole half-diallel. Parental haplotypes were recovered
from FImpute3 outputs (see Article II). Recombination frequency was estimated from the
half-diallel consensus genetic map (Tello et al., 2019). The genetic position of markers that
were not located in the genetic map was predicted from their genomic location with lo-
cal polynomial regression (loess R-package). Marker effects were averaged over 10 cross-
validation folds repeated 10 times in the half-diallel.

3.3.2 Results and discussion

Observed variances were calculated from the genotypic BLUPs. Predicted variances were
computed for each cross and trait within the half-diallel. Predicted cross variances were fairly
well correlated with observed values (overall correlation of 0.58, Figure 3.1), even though
systematically lower, i.e., with a downward bias. Some traits, such as mcwi and mcw were
predicted with a lower variance compared to other traits, although genotypic BLUPs were
scaled for all traits.

Predicting cross variance could also prove useful to design the offspring selection step, more
specifically for choosing the number of offspring to test or produce within a given cross. De-
pending on the budget and breeding program, a breeder may want to select crosses with
high genetic variance, in order to maximize chances to get top-ranking genotypes. Con-
versely, choosing a cross with low variance could limit the risk of getting poor genotypes.
As a preliminary test, I implemented cross variance prediction in scenario 1a, and the results
showed that cross variance prediction was quite accurate, almost as much as cross mean
prediction (respectively 0.58 and 0.61 with RR). Conversely, Wolfe et al. (2021) found that
per trait cross variance was less accurately predicted than cross mean. Implementing cross
variance prediction in scenario 2 was unfortunately not possible, because I did not have hap-
lotypes nor recombination fraction within the TS. If haplotypes could be retrieved using a
dedicated phasing software, further studies are needed to determine recombination fraction
in a diversity panel without related genotypes.
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FIGURE 3.1 – Observed vs predicted cross variances for 15 traits in the half-
diallel. Observed variances were calculated from the genotypic BLUPs. Pre-
dicted variances were computed using predCrossVar R-package, for each cross

and trait.

3.4 Chapter general discussion

The selection of parents for future crosses should aim at getting offspring with high genotypic
values by maximizing cross means and variances. Cross mean and variance predictions,
associated with a selection index can be combined into a multi-trait usefulness criterion, as
defined by Wolfe et al. (2021). However, crosses with superior mean are likely to also have
lower variance (Neyhart & Smith, 2019; Zhong & Jannink, 2007). When using the usefulness
criterion, the associated GP model might be adapted to account for directional dominance,
i.e., inbreeding depression.
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Abstract

Phenomic prediction has been defined as an alternative to genomic prediction by
using spectra instead of molecular markers. Reflectance at a given wavelength
reflects the biochemical composition within a tissue, this composition being it-
self genetically determined. Thus, a relationship matrix built from spectra could
potentially capture genetic relationship. This new methodology has been success-
fully applied in several cereal species but little is known so far about its interest
in perennial species. Besides, phenomic prediction has only been tested for a re-
stricted set of traits, mainly related to yield or phenology. This study aims at
applying phenomic prediction for the first time in grapevine for 15 traits, using
spectra collected on two tissues and over two consecutive years, in two popula-
tions, a half-diallel and a diversity panel. First, we characterized the genetic signal
in spectra and under which condition phenomic prediction could be maximized,
then phenomic predictive ability was compared to the genomic one. Finally, spec-
tra and SNPs were combined into a single model, to test if it could enhance ge-
nomic predictive ability.
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We found that the co-inertia between spectra and genomic data was stable across
tissues or years, but variable across populations, with co-inertia around 0.3 for the
diversity panel and 0.6 for the half-diallel population. Differences between pop-
ulations were also observed for predictive ability of phenomic prediction, with
an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both
populations, there was a correlation across traits between predictive ability of ge-
nomic and phenomic prediction, with a slope around 1 and an intercept of –0.2,
thus suggesting that phenomic prediction could be applied for any trait.

Overall, our results suggest the usefulness of NIRS as a low-cost alternative to
genotyping for predicting complex traits in grapevine.

4.1 Introduction

Viticulture has to face two major threats in the next decades, diseases and climate change,
which impact both yield and wine quality. Plant breeding could help mitigating these impacts
by mobilizing grapevine genetic diversity (Morales-Castilla et al., 2020). However, grapevine
breeding is currently slow because of the long juvenile period and cumbersomeness of field
trials. Genomic prediction (GP), first proposed by Meuwissen et al. (2001) is a promising tool
to speed up breeding programs and increase selection accuracy, by using genomic informa-
tion to predict breeding values of candidates to selection. Even though genotyping costs have
decreased drastically during the last decades, they can still be prohibitive when hundreds of
selection candidates have to be genotyped. That is why Rincent et al. (2018) proposed to
switch from genomic markers to near-infrared spectra (NIRS) measured on plant tissues, in
a new concept called phenomic prediction (PP). The relationship matrix based on NIRS is in-
deed expected to share similarities with the genomic relationship matrix, because reflectance
at a wavelength is determined by the molecular composition of the analyzed sample (Beer-
Lambert law), which in turn is determined by genetic and environmental factors. As PP uses
endophenotypes such as NIRS, it may better account for genotype-by-environment interac-
tions (GxE) than GP, as well as for non-additive genetic effects. In addition, besides being
cheaper, NIR measurements are high-throughput, which is required for screening the large
populations typically evaluated in breeding programs. One step further, Robert et al. 2021 (in
press) proposed a definition of genomic-like omics based (GLOB) prediction, which encom-
passes both phenomic and other omics-based prediction as in Schrag et al. (2018). GLOB is a
particular configuration where NIRS (or other omics) used for model training and prediction
come from different environments.

Rincent et al. (2018) found that PP could reach higher predictive ability (PA) than GP with
wheat grain NIRS and equivalent PA with poplar wood NIRS for some traits. In wheat,
when predicting across environments, PP was still more accurate than GP for most traits.

Other studies, such as Lane et al. (2020) in maize reported PA for PP, but in this study, GP was
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not implemented for comparison. Krause et al. (2019) applied PP in wheat in a single environ-
ment with hyperspectral imaging from different phenological stages, they found higher PA
with PP than with GP for most time-points studied. Indeed, this might be explained thanks
to GxE interactions, because NIRS on training set (TS) and validation set (VS) were measured
in a single environment. Several studies also reported an increase in PA when combining ge-
nomic and phenomic matrices in a single prediction model (Cuevas et al., 2019; Galán et al.,
2020). Nevertheless, PP is still in its infancy, as it has been mostly applied to cereals with
grain and leaves as tissues. Many issues remain, in particular which could be the best way to
implement PP in breeding programs. In the case of perennial species, such as grapevine, year
effect is known to strongly affect phenotype, and how behaves PP in this context remains to
be studied. Also, in the case of woody perennial, wood matter offers another kind of material
for collecting spectra which could be complementary to leaves. Rincent et al. (2018) found
in wheat that combining NIRS collected on leaves and grains could enhance the PA, but the
gain was not systematic. More work is thus required to devise a strategy for implementing
PP in breeding programs.

In grapevine, GS has been already implemented and gave promising results on different
populations (Brault et al., 2021a; Brault et al., 2021b; Flutre et al., 2020; Fodor et al., 2014).
However, so far to our knowledge only one study has evaluated PP in woody perennials (in
poplar, Rincent et al., 2018) and consequently none on grapevine.

The aim of this study was to understand under which configuration PP could be implemented
in grapevine breeding programs. For that, we first provided a thorough characterization of
the genetic signal in spectra. Specifically, we performed a co-inertia analysis (Dolédec &
Chessel, 1994) to assess the pairwise relationship between genotyping and NIRS matrices.
This methodology was already used in ecology and multi-omics studies but has never been
applied in this context (Meng et al., 2014; Min et al., 2019).

Then, we compared multiple modalities for performing PP, such as using raw NIRS vs de-
rived BLUPs over a single or two years and over a single or two tissues. Finally, two distinct
questions, never addressed before in grapevine, were answered: how do phenomic PA per-
forms compared to genomic PA? Can adding NIRS to genotypic data increase PA?

4.2 Material and Methods

4.2.1 Plant Material

Our plant material is composed of a diversity panel reflecting the whole genetic diversity
of Vitis vinifera (Nicolas et al., 2016) and a half-diallel (Tello et al., 2019), better reflecting
populations used in breeding programs.

The diversity panel is composed of 279 varieties, with an equal proportion of individuals
from each of the three gene pools: Wine West (WW), Wine East (WE) and Table East (TE)
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(Nicolas et al., 2016). This panel was overgrafted on Marselan in 2009, itself grafted on Fer-
cal. Field location is in the Domaine du Chapitre experimental vineyard of Institut Agro |
Montpellier SupAgro in Villeneuve-lès-Maguelone (South of France). The panel is replicated
in five randomized complete blocks, each variety being represented by one plot of a single
vine in each block.

The half-diallel is composed of 676 individuals from ten bi-parental populations (hereafter
named crosses) in a half-diallel mating design between five parents: Syrah (S), Grenache
(G), Cabernet-Sauvignon (CS), Terret Noir (TN) and Pinot Noir (PN) (Tello et al., 2019). All
of them, except Grenache, belong to the WW gene pool (Brault et al., 2021b). Each cross
comprises between 64 and 70 offspring. This population was planted in 2005 and grafted on
Richter 110. Field location is the same experimental vineyard, a few kilometers away from the
diversity panel field trial. The half-diallel is replicated in two randomized complete blocks,
each offspring being represented by one plot of two consecutives vines in each block.

4.2.2 Phenotyping

We studied the same 15 traits in both trials, related to (i) berry composition at harvest, with
malic acid (mal.ripe), tartaric acid (tar.ripe), shikimic acid (shik.ripe) concentrations, and
shikimic / tartaric acid (shiktar.ripe) and malic / tartaric acid (maltar.ripe) ratios, (ii) mor-
phological traits, with mean berry weight (mbw), mean cluster weight (mcw), mean cluster
length (mcl), mean cluster width (mcwi) and cluster compactness (clucomp), (iii) phenology
traits, with véraison date (onset of ripening, verday), harvest date (samplday) and the inter-
val between véraison and harvest (vermatu), (iv) vigor (vigour). Details about phenotypic
measurements, statistical processing and heritability can be found in Brault et al. (2021b). For
prediction, we used the Best Linear Unbiased Predictors (BLUP) of genotypic values from
Flutre et al. (2020) in the diversity panel and Brault et al. (2021b) in the half-diallel. Briefly, a
mixed linear model was fitted for eliminating experimental confounding effects and in order
to extract BLUPs of genotypic values. In the following, only BLUPs of genotypic values were
used for the diversity panel, whereas the sum of genotypic and cross BLUPs were used for
the half-diallel.

4.2.3 SNP genotyping

We used a set of 32,894 SNP markers common to both populations. Details about genotyping
and marker processing are given in Tello et al. (2019) for the half-diallel and in Flutre et al.
(2020) for the diversity panel. The selection of common SNPs was done in Brault et al. (2021b).
622 out of 676 individuals were successfully genotyped in the half-diallel, and 277 out of 279
individuals in the diversity panel.

4.2.4 Spectra measurements

Spectra were measured in both trials on dried wood and leaves collected during two consec-
utive years (2020 and 2021). For wood tissue, two shoots were cut per plot, on two vines in
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the half-diallel and one in the diversity panel. These wood shoots were approximately 3 cm
long. Wood was harvested on January 27th in 2020 and January 14th in 2021. For leaf tissue,
four discs were sampled per plot, on two adult leaves per vine for two different vines in the
half-diallel and on four leaves per vine in the diversity panel. Leaf disks had diameters of
circa 1 cm and 0.5 cm in 2020 and 2021, respectively. Leaf tissue harvest occurred on July 1st

2020 and June 16th 2021. Two blocks were used in both trials, leading to a total of four wood
shoots and eight leaf discs per genotype. After harvest, shoots and leaves were dried at 60◦C
until the weight stopped decreasing, and then stored in a cold chamber until measurements.

Spectra were measured with a reflectance probe plugged to an infra-red spectrometer (Lab-
Spec 2500 Portable Vis/Nir spectrometer device; Analytical Spectral Devices, Inc.) and its
associated software IndicoPro. A reference spectrum was taken twice a day, using Spectralon
®. For each wood shoot, two scans were taken, one on each end of the shoot. For each leaf
disc, one scan was taken, on the adaxial surface. Thus, for each tissue, four scans were pro-
duced per plot (i.e., per genotype x block combination). Wavelengths ranged from 350 to
2,500 nm, with a 1 nm step. Each scan consisted in an average over 10 spectra, automatically
computed during spectrum acquisition. In total around 1,800 and 5,400 scan were collected
on the diversity panel and the half-diallel populations for each year and tissue, respectively.

4.2.5 Spectra processing

Spectra were processed separately within each trial. The first 50 wavelengths (visible range)
were cut, because of instabilities. The average of the four spectra per plot were then car-
ried out over the 2,101 remaining wavelengths. From these averaged raw spectra (raw), five
pre-processing were then applied: smoothing (smooth) using Savitzky and Golay (1964) pro-
cedure, normalization or standard normal variate (snv) which consists in centering and scal-
ing (Barnes et al., 1989), detrend (dt) for removing baseline (Barnes et al., 1989), and first
and second derivative on normalized spectra (der1and der2, respectively), also for removing
baseline and exacerbate some parts of the signal.

On each of these six spectra matrices (raw, smooth, snv, dt, der1 and der2), we applied a
mixed model over the reflectance at each wavelength, to compute variance components and
derive NIRS genotypic BLUPs for each possible combination of three modalities at the tissue
level times three modalities at the year level (Table 4.1).

The base mixed model was:
re f lectanceijk = µ + genoi + cross/subpopi + block j + x + y + εijk

With re f lectance the reflectance at a given wavelength, µ the intercept, geno the random geno-
typic effect, cross/subpop the random effect for cross (10 levels in the half-diallel) or subpopu-
lation (3 levels in the diversity panel) effect, block the fixed effect of block, x and y the random
effects for plot coordinates, and epsilon the residuals.

Factors could then be added to this base model, depending on the modality combination
(Table 4.1).
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Wood Leaves Wood + leaves

2020 Base model Base model Base model
+geno : tissue +
cross : tissue

2021 Base model Base model Base model
+geno : tissue +
cross : tissue

2020 +
2021

Base model
+geno : year +
cross : year

Base model
+geno : year +
cross : year

Base model
+geno : tissue +
cross : tissue +
geno : year + cross : year

TABLE 4.1 – Mixed model fitted, depending on the modality combination. cross
effect is replaced by subpop for the diversity panel.

NIRS BLUPs used further were the sum of genotypic and cross or subpopulation BLUPs. For
comparison, we also computed genotypic BLUPs from models without cross or subpopulation
effects.

For comparison purpose and to evaluate the benefit of fitting a mixed model per wave-
length to extract a genotypic BLUP, we also computed for each of the 6 spectra matrices (raw,
smooth, snv, dt, der1 and der2) the averaged spectra per genotype.

4.2.6 Variance components and co-inertia

Variance components from mixed models were extracted at each wavelength and compared
between modality combinations and populations.

We also compared relationship matrices obtained independently from SNPs (that is, the ge-
nomic relationship matrix, GRM) and NIRS BLUPs (that could be called the phenomic rela-
tionship matrix), using co-inertia analysis (Dolédec & Chessel, 1994). Briefly, the co-inertia
between two matrices X and Y (from SNP and wood NIRS for example) is computed as:
coinertia(X, Y) = trace(XQXXTDYQYYTD), with QX and QY the weights associated with
X and Y columns (SNP markers and reflectances), which were set to 1, and D the weights
associated with X and Y rows (individuals), which were set to 1/n with n the number of
individuals.

Then, a measure of correlation between X and Y can be computed as the RV coefficient: RV =
coinertia(X,Y)√

coinertia(X,X)
√

coinertia(Y,Y)

We applied co-inertia analysis to SNPs, wood and leaf NIRS BLUPs, in order to estimate
pairwise RV coefficients between these matrices.
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4.2.7 Heritability assessment

Heritability values of phenotypic data were assessed for both populations in Flutre et al.
(2020) for the diversity panel and in Brault et al. (2021b) for the half-diallel.

Heritability values were also assessed for reflectance data at each wavelength, after mixed
model fitting. As for phenotypic data, heritability formula was:

H2 =
σ2

geno+σ2
cross

σ2
geno+σ2

cross+
σ2

geno:year+σ2
cross:year

nyear +
σ2

x+σ2
y+σ2

ε
nrep×nyear

, with the variance components previously estimated

in the mixed model, nrep.year the mean number of replicates per year, and nyear the number of
year (one or two, depending on the modality).

4.2.8 Phenomic and genomic prediction models

Three methods were compared for the implementation of PP and GP, based on two models.
Models were fitted separately for each population and trait.

RR-BLUP vs GBLUP/HBLUP model type

— In RR-BLUP, we fitted the following model: y = Xβ+ ε, with y the vector of genotypic
BLUPs from phenotypic data, X the matrix for marker genotypes (additively coded as
in Brault et al., 2021b) or wavelength data (from NIRS BLUPs for each of the nine
above-mentioned modality combinations), β the marker or wavelength effects and
ε the residual effects. This model was fitted using R/glmnet package version 4.1-2
(Friedman et al., 2010). In RR-BLUP, marker or wavelength effects are shrunk towards
zero, according to a regularization parameter, chosen by an inner cross-validation
(CV).

— In HBLUP (GBLUP model, using the NIRS relationship matrix H), we fitted the fol-
lowing model: y = u + ε, with y the vector of genotypic BLUPs from phenotypic
data, u the random effects for genomic or phenomic estimated breeding value, with
u ∼ MN(0, σ2

uK), K being the relationship matrix from markers or spectra, σ2
u the ge-

netic variance, and ε the random residual effect, ε ∼ MN(0, σ2
ε I, I being the identity

matrix. K = XscXT
sc

nb o f Xsc columns , Xsc the previously described X matrix scaled on allelic fre-
quencies or wavelength reflectances. This model was fitted using R/lme4GS package
version 0.1 (Caamal-Pat et al., 2021).

Cross-validation

PP and GP models were assessed within each population and for each trait using CV. In the
half-diallel, 10-fold CV was applied, while in the diversity panel, 5-fold CV was applied; CV
was repeated 10 times. For each CV replicate, predicted values from all folds were combined
and compared with observed genotypic BLUPs. We computed predictive ability (PA) as Pear-
son’s correlation between the observed and predicted genotypic values. In the half-diallel, PA
was calculated within each cross, as it was done in Brault et al. (2021b).
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Multi-matrix model fitting

Using R/lme4GS allowed us to fit a single model involving several variance-covariance ma-
trices, such as: y = ∑

q
j=1 uj + ε, with uj ∼ MN(0, σ2

j Kj), and Kj the relationship matrix from
SNPs, wood NIRS or leaf NIRS previously described. We fitted this multi-matrix model us-
ing two or three variance-covariance matrices: SNPs + wood NIRS, SNPs + leaf NIRS, wood
NIRS + leaf NIRS and SNPs + wood NIRS + leaf NIRS.

4.3 Results

4.3.1 Characterization of genetic signal in spectra

Variance components

Variance components for the nine modality combinations studied in each population are
shown in Figure 4.1 for der1 pre-processing. In both populations, genotypic variance was
maximized in single-year and single-tissue analyses, with an essentially comparable mag-
nitude between wood and leaves on one hand and 2020 and 2021 on the other hand. In
multi-tissue analyses, genotypic variance drastically decreased and was mostly replaced by
geno:tissue variance, while in multi-year analyses, genotypic variance was only partly re-
placed by geno:year variance. A strong x effect (row effect) was observed, while barely no
y effect was present.

Comparing populations, the cross variance in the half-diallel was larger than the subpop vari-
ance in the diversity panel. The variance of interactions between cross or subpop and year or
tissue remained low. The geno:year interaction was more important in the diversity panel than
in the half-diallel.

Heritability

Genotypic variance results were consistent with heritability values calculated for each wave-
length (distributions of heritability values for each pre-process are given in Figure S1). When
comparing raw and pre-processed spectra, it was clear that the lowest heritability values gen-
erally corresponded to raw and smooth spectra. Heritability values for other pre-processes
were close to each other, der1 yielding the highest heritability values overall (Figure S1). In-
cluding both wood and leaf NIRS in the mixed model resulted in very low heritability values
(Figure S2), hence we excluded this modality in the following analyses. The analysis wave-
length by wavelength has showed that NIRS carry some genetic variance, with a moderate
magnitude. To further characterize this genetic signal over the entire spectral range, we then
carried out a co-inertia analysis between NIRS and SNP matrices.

Comparison of matrices from SNPs, NIRS and phenotypes, using co-inertia analysis

Co-inertia analysis was conducted on single-tissue modalities only. Figure 4.2 shows for each
population the relative co-inertia between matrices of SNPs, wood and leaf NIRS BLUPs of
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FIGURE 4.1 – Variance components from the mixed models applied to NIRS
after der1 pre-process. A: in the diversity panel population, B: in the half-diallel

population.

genotype + cross or subpopulation effects for “2 years” modalities. For both populations, cor-
relation with SNPs was similar between wood and leaf NIRS. However, this correlation was
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nearly twice higher in the half-diallel than in the diversity panel. It is noteworthy that in both
populations, the correlation between the SNP matrix and NIRS BLUPs matrices (obtained
from wood or leaves) was higher than between the two NIRS BLUPs matrices obtained on
wood and leaves.

We also carried out the co-inertia analysis with matrices derived from NIRS BLUPs of geno-
type effect for a model containing either a genotype effect only or both genotype and cross or
subpopulation effects (Figure S2).

FIGURE 4.2 – Correlation between the genomic relationship matrix (“snp”) and
the relationship matrices derived from wood and leaf NIRS BLUPs of genotype
+ cross or subpopulation effects with both years included in the mixed model
(“wood.2y”, “leaves.2y”, respectively). A: in the diversity panel, B: in the half-

diallel.

Using such matrices strongly decreased correlation with the SNP matrix, as compared to
using matrices derived from BLUPs of genotype + cross or subpopulation effects (Figure S2).
Therefore, in subsequent prediction analyses, we used only the latter matrices including cross
or subpopulation effect. Matrices from multi-year NIRS BLUPs generally displayed a slightly
higher correlation with the SNP matrix than the single-year BLUPs, and this effect was more
pronounced in the half-diallel (Figure S3).

4.3.2 Phenomic prediction using BLUPs vs base spectra and RR-BLUP vs HBLUP

In each population, using spectra BLUPs instead of base spectra almost always resulted in
higher PA (Figure 4.3). However, differences were observed depending on the method and
population. The method yielding the highest PA was HBLUP (implemented with lme4GS) in
the half-diallel and RR-BLUP (implemented with glmnet) in the diversity panel. However, it
is worth mentioning that differences between methods were found to be more pronounced in
the half-diallel than in the diversity panel. The highest differences between base spectra and
BLUPs were observed for the best method in each population.
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Thus, we retained spectra BLUPs in all cases, lme4GS in the half-diallel and glmnet in the
diversity panel.

We observed higher variance in PA in the half-diallel than in the diversity panel, because
in the half-diallel, PA distribution was over 10 crosses in addition to the 6 years x tissues
modality combinations retained (see above). Average PA for the best method was slightly
higher in the half-diallel (0.31) than in the diversity panel (0.26).

FIGURE 4.3 – Predictive ability of phenomic prediction for 15 traits, in two pop-
ulations with two methods, using base spectra (in golden) or spectra BLUPs (in
dark blue) after der1 pre-process. For each trait, PA distribution was over the
6 modalities retained for years and tissues (and also over the 10 crosses in the

half-diallel).

We compared PA for all pre-processes, after selecting the best method for each population
(Figure S4). We found that der1 and der2 pre-processes gave close results, with a slight supe-
riority of der1 overall. Therefore, we kept only this pre-process in subsequent analyses.

4.3.3 Phenomic prediction using NIRS collected over one or two years and tissues

We further compared PP models including a single vs both NIRS BLUP matrices obtained
from wood and leaves. For each tissue configuration, we used the NIRS BLUPs derived from
the above-described year modalities (2020, 2021 or both). For single tissue configurations,
we used the best method selected above in each population, and one NIRS BLUP matrix was



96
Chapter 4. Interest of phenomic prediction as an alternative to genomic prediction in

grapevine

fitted. For the wood+leaves configuration in both populations, two NIRS BLUP matrices (one
for wood and one for leaves) were fitted using lme4GS package.

For both populations, the nine configurations tested resulted in close PA distributions (Figure
4.4). Yet, "two years" modalities and “two tissues” configurations overall gave the best aver-
age PA values. We thus retained only multi-year and multi-tissue PP results for subsequent
comparison with GP.

Finally, PA was slightly higher in the half-diallel on average, with a larger variance originat-
ing from differences between crosses (see hereafter).

FIGURE 4.4 – Predictive ability of phenomic prediction with a single vs both
years and tissues, over the 15 traits in both populations and the 10 crosses in the
half-diallel. Prediction models were fitted with glmnet in the diversity panel
(except for wood+leaves configuration) and with lme4GS in the half-diallel. In
both populations, models were carried out after der1 pre-processing. The white

cross indicates the average PA for each configuration.

If we now turn to details per trait, the results show that, within the diversity panel, each trait
displayed nearly the same PA for the different tissue configurations, for PA values above 0.2
(Figure S5). In the half-diallel, there were larger differences between tissue configurations.
However, this factor still had far less impact on PA than cross or trait.

Overall average PA of PP for "2 years" and "wood+leaves" configuration was 0.27 in the di-
versity panel and 0.35 in the half-diallel (Figure 4.4). PA values per trait ranged from -0.04 for
shiktar.ripe to 0.59 for mbw in the diversity panel (Figure S5A), and from 0.09 for mal.ripe to
0.72 for mbw in the half-diallel (note that in the half diallel, PA values per trait are averaged
over the 10 crosses). However, large differences in PA of PP were observed within a trait at
the cross level in the half-diallel for “2 years” and “wood+leaves” configuration, such as for
tar.ripe, from –0.49 for GxCS to 0.74 for TNxS (Figure 4.5B and Figure S5B). Comparatively,
differences at the cross level were lower for GP (Figure S6). The best predicted cross with PP
over all traits was GxS (average PA of 0.41) and the worst one was TNxG (0.29) (Figure S7).
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For some crosses and traits, PA values could be above 0.8, the maximum PA for PP being 0.91
for mbw and TNxG (Figure S5B).

4.3.4 Comparison of PP with GP

Before comparing PP with GP, we applied GP on both populations with the two methods
previously compared for PP (Figure S6). We found that lme4GS was overall the best method
in both populations, hence we retained this method for the following comparison. Like this
was the case for PP, differences between methods appeared to be more pronounced in the
half-diallel than in the diversity panel.

The PA reached by PP was close to that of GP in both populations for a few traits and for
some half-diallel crosses (samplday, vermatu and mbw) (Figure 4.5). PP even outperformed
GP for some crosses and traits in the half-diallel, such as for CSxPN, GxCS, GxPN and vigour,
or GxCS, SxPN, TNxPN and clucomp. Differences in PA between PP and GP were lower in
the diversity panel than in the half-diallel.

In the diversity panel, PA of PP was significantly higher (non-overlapping error bar) than
PA of GP for one trait (mcl) and non-significantly different for two other traits (clucomp and
vermatu) (Figure 4.5A). In the half-diallel, PA of PP was significantly higher than PA of GP
for 28 trait x cross combinations out of 150, while this difference was not significant in 17
other cases (Figure 4.5B). In all other cases, PA of PP was lower than PA of GP.

In Figure 4.6, we further compared mean PAs of PP and GP per trait in each population.
In both populations, the slope of the regression model was close to 1 and the intercept to
–0.2. This suggests that PA of PP and GP follow the same ranking, independently of the trait.
However, this regression had a much lower R2 in the half-diallel than in the diversity panel.

4.3.5 Enhancing genomic prediction using NIRS

Another possible way of using NIRS is to add it into the predictive model together with
SNPs, in order to increase PA. We thus implemented multi-BLUP models with SNPs and
NIRS BLUPs and compared them to GP models in each population.

Overall, for both populations and for all traits, differences in PA between GP and different
combined GP+PP models were small (Figure S8). In the diversity panel, combining wood
NIRS with SNPs led to the best PA (0.405), closely followed by leaves NIRS + SNPs (0.403),
wood NIRS + leaves NIRS + SNPs (0.402) and SNPs alone (0.400). In the half-diallel, SNPs
alone gave the highest PA (0.595), followed by wood NIRS + leaves NIRS + SNPs (0.587),
leaves NIRS + SNPs (0.576), and wood NIRS + SNPs (0.569).

Nevertheless, adding NIRS to a predictive model could lead to minor (non-significant) im-
provements in PA for some traits, compared to classic GP. Combining GP + PP from wood
NIRS slightly increased PA over the GP model for two traits in the diversity panel (clucomp
and mcl) (Figure S8A). In the half-diallel, the difference in average PA with GP was much
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FIGURE 4.5 – Predictive ability in two settings for 15 traits with lme4GS: SNPs:
GP; wood+leaves: PP with two variance-covariance matrices, for wood and
leaf NIRS, for “2 years” NIRS BLUPs derived after der1 pre-process. Prediction
models were fitted with lme4GS. Error bars correspond to the 95% confidence

interval around the mean, based on CV repetitions.

more variable among traits, with an increase for vigour, clucomp, vermatu and samplday,
and a decrease for mal.ripe, tar.ripe, shik.ripe, shiktar.ripe, maltar.ripe, nbclu, mcl and
mcwi (Figure S8B).
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FIGURE 4.6 – Predictive ability of phenomic against genomic prediction. A: in
the diversity panel, B: in the half-diallel. The regression formula corresponds to
the following linear model: PA of PP ∼ PA of GP, with 15 observations (traits).
In the half-diallel, PA was averaged across the ten crosses, hence standard error
around each point is displayed. The red line is the regression line and the gray

dashed line is the identity line.

4.4 Discussion

So far, PP has only been implemented in a reduced number of species and traits. This study
provides the first use of PP in grapevine, within two complementary populations: a diversity
panel and a half-diallel. Besides, we tested PP for 15 traits, belonging to four categories:
berry composition, phenology, morphological traits and vigour. We first showed that NIRS
variability was partly of genotypic origin. We then tested several parameters (mean vs BLUP,
tissue, year, method), to optimize both PP and GP. Finally, we found that PP could yield PA
values close to or even higher than GP ones.
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4.4.1 NIRS variance components and co-inertia with SNPs

Genotype and derived interaction variables had a fairly moderate impact on total variance
observed between spectra (Figure 4.1). The genotypic effect was best captured in single-
tissue analyses. This was not surprising, because the genetic signal at a given wavelength
relies on molecules specific to each tissue. Then, mixing both tissues into a single model
led to no overall genetic effect and to strong geno:tissue interaction. This tendency was also
observed, to a smaller extent, in the multi-year analyses. This also suggests that different
tissues bring non redundant genetic information. This was confirmed by co-inertia analysis,
which evidenced that NIRS matrices from wood and leaves were more correlated to the SNP
matrix than to each other.

Interestingly, co-inertia analysis showed that multi-year NIRS BLUP matrices were slightly
more correlated with the GRM than single-year ones, despite lower genotypic variance. This
implies that the genotypic part of NIRS estimated by multi-year analysis could be more re-
lated to the genetic signal. Thus, genetic signal ignoring genotype-by-environment interac-
tions could be better captured when several years are combined, this was also the case in
Galán et al. (2021) for which multi-year spectra resulted in higher PA values.

Comparatively to genotype-related effects, among non-residual variance components, “x”
effect displayed a large variance along wavelengths (Figure 4.1). This effect actually cor-
responds to a row effect and might be due to the experimental design. Indeed, leaf discs
and wood shoots were both sampled and scanned row by row. However, we cannot deter-
mine whether this “x” effect comes from the tissue sampling, i.e., sampling time (over a day),
soil heterogeneity; or from the NIRS measurement step, i.e., device calibration, differential
storage time, air humidity. Our results underline the importance of accounting such experi-
mental effects in order to improve the genetic signal capture and thus prediction. In further
experiments, one could increase the number of spectra per plot and randomize NIRS mea-
surements, in order to determine if the "x” effect observed here was due to measurement or
sampling and to reduce it. Other studies that fitted a linear model for each wavelength did
not introduce field coordinates as effects (e.g. (Galán et al., 2020; Krause et al., 2019; Lane
et al., 2020). But the first and last studies were based on hyperspectral images taken with
aircraft flights, that is with an experimental design less prone to plot location effect, and the
second study fitted a linear model with only block and environmental effects.

Galán et al. (2020) found a mean heritability value of 0.73 for wavelength reflectances, which
is substantially higher than the values we observed (Figure S1). However, we did not use the
same heritability formula. Montesinos-López et al. (2017b) also reported overall higher heri-
tability values ranging from 0.6 to 0.8 for most time points, with strong variations depending
on the environment (water condition) and time-point.

We found higher heritability and genetic variance in the diversity panel than in the half-
diallel. Yet, PA were generally higher in the half-diallel. In Rincent et al. (2018), genetic
variance estimates per wavelength between wheat and poplar were consistent with PA in
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these species, i.e., they evidenced higher PA values in wheat than in poplar. On the opposite,
our results on co-inertia analysis were consistent with PA values: correlation between SNP
and NIRS BLUPs matrices was higher in the half-diallel than in the diversity panel (Figure
4.2). This suggest that co-inertia analysis is more relevant to compare modalities for NIRS
BLUP than variance components.

The higher correlation observed between SNP and NIRS BLUP in the diallel with respect to
the diversity panel is likely to be explained by the higher genetic structure in the half-diallel,
or because the half-diallel is in better health than the diversity panel, which is older and over-
grafted. Actually, it was surprising that NIRS could capture genetic structure, i.e., in our case
the subpopulation effect in the diversity panel and the cross effect in the half-diallel. Although
variance components for subpopulation and cross remained moderate (Figure 4.1), adding the
corresponding BLUP effects to genotypic effects led to a sharp increase in correlation between
NIRS and SNP matrices (Figure S2). Further in-depth studies are required to better under-
stand whether this observation could be specific to some subpopulations or families.

4.4.2 Optimizing PP

Among the parameters tested, some had substantial impact on PA, while others had only
negligible impact. Namely, using NIRS via BLUP analysis instead of merely average spectra
per genotype led to a strong increase in PA (Figure 4.3). This was probably associated with the
strong x effect we observed in variance analysis. Such a difference had never been reported
before, as studies obtained PP results either from base (such as Cuevas et al. (2019), Rincent et
al. (2018)) or BLUE (such as Krause et al. (2019), Lane et al. (2020)) spectra, without comparing
both modalities.

Surprisingly, the prediction method also had notable impact on PA: using RR-BLUP or HBLUP
/ GBLUP models gave different PA in the half-diallel, while differences in PA between meth-
ods were lower in the diversity panel (Figure 4.3). Yet, HBLUP/GBLUP and RR-BLUP mod-
els are expected to perform similarly when the regularization parameter in ridge regression
is equal to σ2

e /sigma2
g (Habier et al., 2007). In our analysis, this parameter value was cho-

sen by cross-validation using cv.glmnet function. The higher relatedness between genotypes
within the half-diallel than within the diversity panel (Brault et al. (2021b), Figure 1a) may
boost HBLUP and GBLUP models compared to RR-BLUP in this population. In future inves-
tigations, one could use variable selection method such as LASSO to select the most relevant
wavelengths for computing the relationship matrix from NIRS BLUP. Such variable selection
was performed by Galán et al. (2020) and resulted in higher PA.

On the opposite, using single-year, single tissue, multi-year, or multi-tissue NIRS BLUPs and
all pre-processes except smooth gave very similar results over all traits and crosses (Figure
4.4), with a slight superiority of multi-year modality overall. This was consistent with the
results of co-inertia analysis (Figure S3). In Rincent et al. (2018), the multi-tissue analysis for
wheat with leaf and grain combined gave similar PA as for single-tissue analysis. As the
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combination of two tissues for PP was only done in one other study (Rincent et al., 2018),
further work needs to be done to assess these conclusions.

For a given trait, both tissues tested gave similar PA for the diversity panel (Figure S5A).
For the half-diallel, more differences were observed between tissues, and much larger differ-
ences were observed between crosses (Figure S5B). However, no cross was consistently well
or poorly predicted for all traits, suggesting a strong cross x trait interaction. These large dis-
parities among crosses were consistent with the GP results obtained in the same population
by Brault et al. (2021b).

4.4.3 Comparison between PP and GP

PP is supposed to better account for GxE than GP. However, it was shown in Rincent et al.
(2018) that PP could still reach good PA values when NIRS for TS were taken in an environ-
ment different from the one in which VS was phenotyped, i.e., when accounting for GxE was
not possible. In this study, we could not assess whether PP accuracy partly relied on location-
related GxE, because phenotypes and NIRS came from a single location. Nevertheless, phe-
notypes were measured in 2011-2012 and 2013-2017 in the diversity panel and half-diallel
populations, respectively, whereas NIRS were measured in 2020-2021 in both populations.
Vintage (year) effect is also part of GxE and it is likely that 2020 or 2021 could display some
differences in terms of weather with phenotyping years. For training and validation model,
we used genotypic BLUPs of both phenotypic data, thereby removing year and geno:year
effects. We found that PA seemed not to be impacted by NIRS year for all traits studied,
suggesting that vintage has a negligible effect on PA when genotypic BLUPs are used.

As a prospect, one could specifically extract genotype x year and genotype x location variance
components from phenotypic and NIRS data and test if PP could be useful to predict this GxE
part. Montesinos-López et al. (2017a) studied GxE using spectra and they compared models
including or not GxE and wavelength-by-environment interaction. They reported that the
inclusion of GxE provided no increase of PA while including wavelength-by-environment
interaction was the best modality.

We found that PP could compete with GP for some traits in both populations, despite mod-
erate genetic variance estimated from NIRS. However, the number of traits for which PP
outperformed GP remained low. These results were close to those of Rincent et al. (2018) on
poplar. In our case, one explanation could be that NIRS came from tissues sampled in 2020
and 2021, while phenotypes were measured in 2011-2012 and 2013-2017 in the diversity panel
and half-diallel, respectively. Thus, we couldn’t take into account for GxE from vintage effect.
As a perspective, it would be interesting to compare PA when spectra are measured the same
year as phenotyping or not. In such case, one could explicitly model vintage effects in spectra
to further increase PA.

Nevertheless, even when PP does not outperform GP, it may still be interesting in breeding,
because of its lower cost and increased throughput compared to genotyping. Moreover, when



4.4. Discussion 103

a trait was well-predicted with GP, we found that it was also well-predicted with PP, with a
global shift of –0.2 in PA (Figure 4.6). This suggests that PP PA truly relies on genetic vari-
ability and that PP could be applied indifferently for all traits. Even though this study is the
first one implementing PP on so many traits (15), these conclusions remain to be confirmed
on other species and traits. Based on data from Rincent et al. (2018) and on the relative GP
and PP reliability that we observed, we are still expecting a positive genetic gain by switching
from GP to PP.

We implemented that setting, in order to test whether combining NIRS and SNP could in-
crease PA compared to GP, by taking other genetic effects into account. However, as we used
NIRS BLUPs, we only maximized the genetic variance part of spectra, we thus intentionally
excluded GxE. Therefore, the fact that adding NIRS to GP model did not result in any increase
in PA is consistent with our spectra processing. Cuevas et al. (2019) and Galán et al. (2020)
found slight to noticeable improvement in PA when NIRS was added to the model, compared
to GP model with SNPs only; difference in PA was at most 0.01 in Cuevas et al. (2019) and up
to 0.1 in Galán et al. (2020). Both studies are however so different than ours that it is difficult
to explain these different behaviors.

As a conclusion, we provided the first implementation of PP in grapevine. The number of
traits studied allowed us to put forward a correlation between PA of GP and PP, suggesting
that PP relies on a genetic basis. Such a correlation was never reported before. We expect
that the shift of PA between PP and GP of –0.2 would be reduced if year of phenotyping and
spectra measurement are the same. Still, PP has shown its interest for breeding over a wide
range of traits.
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Chapter 5

General discussion

Over chapters 2, 3 and 4, I applied various GP and PP models to three complementary pop-
ulations for a range of traits. The overall goal was to provide guidelines for improving selec-
tion of new grapevine varieties by using genomic or phenomic prediction. More specifically, I
found that (i) multivariate GP methods only provided a slight increase in PA over univariate
ones, (ii) decoupling PA into cross mean and within-cross predictions was a requirement to
better understand which parameters affect across-population PA, (iii) using NIRS instead of
SNP markers allowed estimating genetic relatedness and predicting phenotypes with slightly
and consistently lower PA over the studied traits. Overall, I found that both GP and PP could
be useful to speed up grapevine breeding programs.

5.1 Strengths and weaknesses of the three populations and pheno-
typic data studied

In my thesis, I analyzed data from three complementary grapevine populations: (i) a bi-
parental population, from a reciprocal cross between Syrah and Grenache, hereafter referred
to as SxG, (ii) a multi-parental population, from a half-diallel mating design between five
parents, Syrah, Grenache, Cabernet-Sauvignon, Pinot Noir and Terret Noir, (iii) a diversity
panel, composed of 279 varieties chosen to be representative of V. vinifera L. genetic diversity.
I used SxG in chapter 2 and the two other populations in chapters 3 and 4. Here I discuss
and compare the interest of each population and the associated available phenotypic data for
evaluating the potential interest of genomic and phenomic prediction in grapevine breeding.
These three populations were planted and phenotyped before my thesis and I tried to take
advantage of the best of each population to answer my research questions.

5.1.1 SxG progeny

The advantage of a bi-parental population is its genetic homogeneity, with no genetic struc-
ture. Therefore, this population was adapted to the statistical design and comparison of GP
methods in a simple context with controlled genetic parameters. Besides, segregating alleles
at QTLs are necessarily coming from one of the two parents, which makes it easier to dis-
sect genetic architecture. Indeed, I also used this population for QTL detection and candidate
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gene exploration in chapter 2. It was therefore adapted for studying the genetic basis of many
traits of interest in grapevine breeding. Moreover, with its large size (N = 188) and narrow
genetic diversity (only full-sibs), this population was well-suited for assessing maximum po-
tential PA by within-population cross-validation.

However, QTLs found and marker effects estimated in this population cannot easily be ex-
trapolated or transferred to other breeding populations. Some desirable alleles might not be
present in Syrah and Grenache, thus extending prediction to other parents and crosses was
required.

5.1.2 Half-diallel

The half-diallel population (5 parents) corrects the main drawback of SxG, since it has a higher
genetic diversity, with potentially more alleles at each locus, and therefore more possibilities
for transferring QTLs results and prediction equations to other breeding populations. In
particular, the half-diallel design allowed to test prediction between half-sibs, which can be
interesting in some breeding schemes (see 5.5.1). Moreover, the differences between crosses
were very interesting to study and model, especially given that the five parents displayed
varying genetic relatedness with each other.

However, its large size (N = 622) might be prohibitive for setting up trials. On the other hand,
each cross of the half-diallel had between 64 and 70 offspring, making it difficult to apply
within-cross CV. Indeed, evaluating PA in these small-sized crosses may be questionable, be-
cause of sampling bias in small samples. It is noteworthy that one of the ten families is a cross
between Syrah and Grenache, with different individuals from those of the SxG population.
PA in these two populations could be compared to assess the extent of this sampling bias in
PA estimation.

5.1.3 Diversity panel

This population was designed to bear high genetic diversity, each grapevine subpopulation
was balanced, thus reflecting the small genetic structure existing within V. vinifera (Bacilieri
et al., 2013). This population of 279 individuals is closer to what we expect from a universal
TS, which should encompass all genetic diversity. Nevertheless, the relatedness of the current
wine breeding programs, i.e., bi-parental crosses from WW subpopulation, with this panel is
lower than with the half-diallel. And LD was much lower in the panel, leading to lower PA
given the number of markers available. Still, this panel was useful to estimate the interest of
new potential crosses.

A new population is currently being developed to correct some drawbacks of the diversity
panel as a universal TS, by specifically including parents of current breeding programs. This
new population (SelGenVit panel) consists mostly in wine varieties, with the latest INRA-
ResDur (as presented in 1.1.3) varieties bearing several resistance genes, as well as other
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varieties with new sources of resistance to Pierce’s disease or black rot (Rex et al., 2014; Riaz
et al., 2009), and varieties adapted to climate change.

5.1.4 Comparison between these three populations

Each of the three populations presented above have advantages and drawbacks for their use
in genetics and breeding (Figure 5.1).

FIGURE 5.1 – Comparison of the three grapevine populations studied. Ap-
plicability refers to the usefulness of each population for the future grapevine

breeding programs for wine.

Concerning traits measured in the different populations, the diversity panel had the high-
est number of traits (128), many of which were related to anthocyanins and tannins. The
SxG population was phenotyped in a high-throughput phenotyping platform under semi-
controlled conditions, with water stress applied to part of the plants. In SxG and diversity
panel field trials, water stress was also applied to half of the blocks in some years. The half-
diallel population had the fewer number of traits phenotyped (26). The 15 traits in common
between the half-diallel and diversity panel populations have been studied. This number of
traits allowed us to shed light on interesting correlations in chapters 3 and 4, even though
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they remain to be confirmed with a larger number of traits. More traits are thus available for
some populations and could be added in further analyses.

5.2 Comparison of results with other published studies

5.2.1 Specificities of grapevine for genetics and breeding

Quantitative genetics and genomic selection have been widely applied to cattle and cereal
species. Methods have been specifically developed to work on these species, e.g., adapting to
heterozygous genome in cattle, to homozygous genome in wheat, or to hybrid development
in maize. Unlike most cultivated plant species, grapevine has a highly heterozygous genome
with strong inbreeding depression, thus back-crossing and homozygous line development is
not possible. Moreover, grapevine is a perennial species, with a generation time of three to
four years, compared to a few months for some cereals. This implies that field trials require
much more time, but also space and money to get the same amount of phenotypic data.
However, once a population is planted in the field, phenotypic data can be collected over
several years. Grapevine is a plant with vegetative propagation, clones of a genotype can
thus be tested in different environments and crossing may involve varieties that have been
existed for centuries, unlike cattle individuals.

These fundamental differences partly explain why genetic gain is lower in grapevine than in
other species. However, a few authors had already implemented GS in grapevine, and found
it promising to improve breeding (Flutre et al., 2020; Fodor et al., 2014; Migicovsky et al., 2017;
Viana et al., 2016), which I confirmed with more traits, populations and configurations. De-
spite its specificities, grapevine shares similarities with other heterozygous perennial species
such as fruit or forest trees.

5.2.2 Comparison of results with other species

Comparison between univariate and multivariate GP models

Previous studies reported better performance of multivariate GP models over univariate ones
(Calus & Veerkamp, 2011; Dagnachew & Meuwissen, 2019; Guo et al., 2014; Jia & Jannink,
2012; Jiang et al., 2015). In chapter 2, I found only minor improvement in PA when comparing
multivariate to univariate models on experimental data and no improvement on simulated
data. However, all the previously cited studies had a p/n ratio lower than the one I had in
SxG. These results suggest that TS size is a possible parameter to explain the relative per-
formance of multivariate models over univariate ones (Brault et al., 2021a; Obozinski et al.,
2011). As in grapevine, large TS sizes will probably never be common due to cumbersome-
ness of field trials, univariate methods were preferred in subsequent chapters.

The present study was the first large-scale study on the comparison of statistical methods for
GP in grapevine, in particular multivariate vs univariate ones, given the number of traits and
methods studied.
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Across-population genomic prediction

In chapter 3, I applied across-population GP, by using the diversity panel as TS and half-
diallel crosses as VS. Before comparing my results with other species, it is useful to outline
that I used the “across-population” term because there was no direct relationship between
TS and VS and because, of the three subpopulations of the diversity panel, only the WW one
was more related to the half-diallel.

Indeed, across-population GP results vary depending on species and how “population” is
defined. In cattle, “across-population” often refers to across-breed, these breeds being much
more differentiated than grapevine subpopulations. In other plant species, such differenti-
ated groups of varieties are called heterotic groups, as in maize. Crosses are made within
each heterotic group to produce lines which will then be crossed across heterotic groups to
give hybrids with superior phenotypes, taking advantage of heterosis. Thus, the PA values
I obtained with across-population prediction are hardly comparable with these species. Still,
comparison with other studies on heterozygous perennial species using a genetic resource
panel as TS is possible, as in apple with Roth et al. (2020) and Cazenave et al. (2021).

The present study is the first so far focused on across-population GP on experimental data in
grapevine for several different traits. Besides, analyzing separately cross means and within-
cross genotypic values was not done in many studies before. Finally, the search for parame-
ters affecting PA and TS optimization for cross mean prediction had never been done before
in grapevine.

Phenomic prediction

To the best of my knowledge, PP results have only been published for wheat (Cuevas et al.,
2019; Krause et al., 2019; Rincent et al., 2018), rye (Galán et al., 2020, 2021), maize (Lane et al.,
2020) and poplar (Rincent et al., 2018). Overall PA values reported in chapter 4 for grapevine
were slightly lower than those for these species, except for poplar (Rincent et al., 2018).

In chapter 4, I provided for the first time a thorough characterization of genetic signal in
spectra with estimation of variance components and co-inertia analysis between SNPs and
NIRS matrices, showing that NIRS capture a large part of genetic signal. I also evidenced
that using BLUPs of spectra instead of base spectra gave notably better PA, which had never
been reported before.

5.3 Components of the predictive model and prediction optimiza-
tion

The predictive model used in chapters 2, 3 and 4 was: y = Xβ + ε (RR-BLUP version), with
y the vector of BLUPs of genotypic values from phenotypic data, X the design matrix for
marker data for GP or reflectance for PP, β the vector of marker or reflectance effects and
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epsilon the residual vector. I will describe in what follows these components and how they
were modified or optimized in my thesis.

5.3.1 Phenotype measurement

Phenotyping remains the strongest bottleneck in breeding (Crossa et al., 2021), especially in
grapevine, due to cumbersomeness of field trials, long juvenile phase and highly transformed
final product. However, precise phenotyping is crucial for genetic determinism studies and
prediction accuracy. In grapevine, a given population is planted for several years. Hence,
phenotypic data are often measured during several years on each vine. I used BLUPs of geno-
typic values for each trait, by fitting a model including both design and year effects. Thus,
compared to other species, we often have phenotypic data on less individuals per genotype
(for a given year), but this is compensated by the fact that phenotypic data are collected over
several years.

In some cases, I used traits derived from a combination of phenotypes, e.g., malic / tartaric
acids in chapters 3 and 4, or the normalized difference in chapter 2. In some cases, it resulted
in an increase in broad-sense heritability, which could be explained because the resulting trait
is actually closer to a physiological response.

We used NIRS instead of genotyping in PP, but a much more classical use of NIRS is as a high-
throughput phenotype, i.e., as a proxy for a trait of interest difficult to measure (Crossa et al.,
2021). Using hyperspectral imaging is interesting for predicting cereal yield (Rutkoski et al.,
2016). In grapevine, traits of interest are mainly cluster and berry composition traits. Still,
the use of portable spectrometer on cluster is relevant for high-throughput fruit phenotyping
(Diago et al., 2015). Another way to improve phenotyping throughput at the wine level is to
use new micro-vinification devices (Ducasse et al., 2019).

We found in chapters 2 and 3 that broad-sense heritability was a major driver of PA for
within-population GP. Thus, increasing phenotyping precision is a substantial lever for get-
ting higher PA, even though when TS and VS were less related, other parameters were also
involved in determining PA. Increasing heritability could be done by raising the number of
clone and block replicates, the number of years, or by refining trait measurement.

5.3.2 Input matrix structure

Genomic matrix

In chapter 2, I directly used a genomic design matrix based on SSRs or SNPs, without de-
riving a genomic relationship matrix. I did not find any improvement in PA when includ-
ing dominance allelic effects into this matrix together with additive ones. However, mod-
elling both additive and dominance effects in a single matrix prevents from using different
variances for additive and dominance allelic effects, which could hamper PA. Other statis-
tical models, multi-kernel or multi-matrix based, allow to handle several different variance-
covariance matrices. I used such methods in chapter 4 with lme4GS (Caamal-Pat et al., 2021),
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when I fitted NIRS matrices from two tissues or combined NIRS and SNP data in the same
model. Dominance effect could thus be tested again using such models. Non-additive effects
such as dominance and epistasis can be incorporated in GP models using non-linear meth-
ods. Indeed, I tested to estimate marker effects with Gradient Boosting but it did not give
higher PA in chapter 2. However, this does not imply that non-additive effects are negligible
(Ubbens et al., 2021). Other ways of incorporating non-additive effects in GP models include
the reparametrization of the genomic relationship matrix (Vitezica et al., 2013; Vitezica et al.,
2017).

In chapter 2, I also estimated specific additive effects for each of four imputed alleles at a
given locus, but this did not result in higher PA compared to using a bi-allelic matrix coded
additively. Using haplotypes is another approach for taking into account both allelic diver-
sity and LD extent, which could be interesting when training GP models in diversity panels;
however, it resulted in no or very small increase in PA in previous studies (Ballesta et al.,
2019; Hess et al., 2017; Won et al., 2020).

Another manner of improving PA is to add QTLs as cofactors in the prediction model, so that
allelic effects associated with these QTLs could have a greater variance (Fodor et al., 2014;
Nsibi et al., 2020). This resulted in these two studies in an increase in PA up to 0.3 for traits
under simple genetic architecture. However, this implies to detect QTLs within TS and that
these QTLs also segregate in VS. In fact, I tested to add QTLs as cofactors in the prediction
model in data simulated in chapter 1, but it did not increase PA compared to other marker
selection methods as EN or LASSO (results not shown). Likewise, Campbell et al. (2021)
proposed to compute trait-specific genomic relationship matrix (TGRM), by adding weights
computed from loci effects on the phenotype, based on prior high-throughput phenotyping,
and thus increased inter-population PA by about 0.05.

Using whole-sequence data, MacLeod et al. (2016) proposed to a priori split SNP markers into
three categories depending on their potential impact on phenotype, based on prior biolog-
ical information, such as candidate genes or missense variants for example. The resulting
BayesRC method fits a GP model with varying genetic variance attributed to each marker
category.

Phenomic matrix

In PP, the genotyping matrix is replaced by a phenomic matrix, with reflectance measured
across wavelengths on a given tissue for all genotypes. As this matrix is numeric, I used the
same statistical methods as with GP. In terms of matrix structure, the phenomic matrix dis-
plays high auto-correlation between close wavelengths and even at a longer range. To some
extent, this is similar to the LD observed between loci. For the phenomic relationship matrix,
I observed a lower structure compared to the GRM (data not shown), and this was confirmed
by Galán et al. (2021). Besides, Galán et al. (2020) increased PA by selecting wavelengths with
LASSO, this raises the question of how many wavelengths are necessary to capture all useful
information in spectra.
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One advantage of using NIRS is its lower dimension compared to SNPs; for example, in
chapter 4 I used 2,101 wavelengths for PP, compared to 32,894 SNPs for GP. For hyperspec-
tral imaging, one spectrum is available for each pixel and the number of pixels depends on
the resolution. Studies that applied PP averaged spectra over pixels, in order to reduce the
dimension to one spectrum per plot (Galán et al., 2020; Krause et al., 2019).

Use of other omics?

The association of genotype to phenotype remains challenging, because of GxE and due
to complex genomic interactions. To address these issues, several studies proposed to use
downstream omics such as transcriptomics or metabolomics (Guo et al., 2016; Schrag et al.,
2018; Wade et al., 2021; Westhues et al., 2017; Xu et al., 2016). They included transcriptomic
and metabolomic data alone or in combination with genomic data. For combining several
types of omics, some studies used a multi-matrix model, as I did in chapter 4, while others
concatenated predictor matrices. Wade et al. (2021) established that information redundancy
between SNP markers and transcriptomics was a key factor explaining the usefulness of ge-
nomics and transcriptomics combination. Similarly in chapter 4, redundancy between SNP
markers and NIRS matrix could explain why I did not find any superiority of adding NIRS
into the GP model. Transcriptomic data for a few genes are available in SxG progeny and
could be tested in the future (Huang et al., 2013; Huang et al., 2014).

With the drop of sequencing costs, it is conceivable that genome sequence could be directly
used in GP model instead of array data for example. In grapevine, a set of 3,000 varieties is
currently being sequenced at low resolution in the frame of an international research consor-
tium. This raises the question of the effective usefulness of whole genome sequencing (short
reads) vs genotyping in GP, despite the proven theoretical interest due to adding more causal
polymorphisms for inter-population prediction (MacLeod et al., 2016). Using simulated data,
Pérez-Enciso (2014), Pérez-Enciso et al. (2017) found no advantage of using sequence over ar-
ray genotypic data, which might be due to the lower quality of markers from sequencing than
from genotyping. Still, genome sequencing is useful for marker imputation for increasing
SNP density (Pégard et al., 2019), which is expected to increase PA when using the diversity
panel as TS.

Thanks to long reads sequencing methods, other areas of research become possible, as studies
on the pangenome, which is the entire set of genes found for a species (Tettelin et al., 2005).
The specific part of pangenome includes structural variants (SVs) such as copy number vari-
ation, transposable elements or presence-absence variation. Structural variants are suspected
to play a role in phenotypic plasticity (see Wellenreuther et al. (2019) for a review), and in
grapevine, SVs are associated with domestication traits, such as sex determination (Zhou
et al., 2019). Whole genome sequencing is a promising prospect to account for SV(s), with
adapted prediction models (Kosugi et al., 2019).
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5.3.3 Statistical estimation of variable effects

I mostly used frequentist methods, because they were fast, easy to implement and to opti-
mize. In chapter 2, I compared several univariate GP methods and some of their multivariate
counterparts, showing no substantial advantage of the latter ones with our population size.
I also re-analyzed simulated data from Jia and Jannink (2012) and found that multivariate
BayesA provided higher PA than multivariate LASSO. In chapter 4, I implemented two GP
methods and kept PA from the best one in order to get rid of the variation due to the method.
Retrospectively, I should also have used the GBLUP model for the half-diallel population in
chapter 3, because it resulted in the highest PA within this population in chapter 4. How-
ever, differences between RR-BLUP and GBLUP were small in the diversity panel, and in
scenario 2, GP model was trained in this population. Therefore, we expect close results for
this scenario, when switching from RR-BLUP to GBLUP.

I showed that GP method performance depends on (i) the genetic architecture (chapters 2
and 3), (ii) the prediction scenario (chapter 3), (iii) the input matrix structure (chapter 4). All
these parameters are in interaction with each other. Therefore, there is no best GP method
that could be used universally, which is consistent with Azodi et al. (2019).

These findings suggest that GP methods generally have small impact on PA and that opti-
mizing input data and phenotyping would have greater impact on PA.

5.4 Accounting for GxE

In my thesis, I did not consider GxE interactions, because I had data only for a few years and
only from one site for most populations. However, GxE is an issue in grapevine breeding
because it is admitted in France, with the PDO system, that each variety should be grown in
specific environments. An alternative to multi-site trials for studying GxE is to apply abiotic
stress on one replicate of the population at a single location. This was done in chapter 2 with
water stress applied both in a high-throughput phenotypic platform and in the field.

5.4.1 Impact of site and year on phenotypic variation

In grapevine, several studies evidenced the effects of GxE and GxY on phenotypic data
(Gonçalves et al., 2016; Gonçalves et al., 2020; Migicovsky et al., 2021; Rasoli et al., 2015;
Rustioni et al., 2019). In the statistical analysis of phenotypic data in these studies, GxE was
most of the time significant and could affect yield from –8.2 to +33.5% for example.

In the sense of variance decomposition, environmental effects encompass location character-
istics such as soil composition, precipitation and temperature across seasons. Thus, account-
ing for GxE in prediction models requires prior climatic recordings of environments for the
training and prediction sets. However, local environmental characteristics may vary across
years, at least for temperature and precipitations. These yearly variations cannot be predicted
in advance. Then, the breeder needs to account for genetic response to macro-environment,



114 Chapter 5. General discussion

with average climate characteristics, while mitigating genetic response to year-to-year varia-
tions (Gonçalves et al., 2020).

From our data in a single site, I have derived multi-year BLUPs. Since only a few years are
involved, it was not possible to estimate climatic components. However, for traits with signif-
icant genotype-by-year interactions (GxY), one could train a GP or PP model with phenotypes
of a given year and predict phenotypes of another year, to test the robustness of prediction
across years.

5.4.2 Traits related to drought tolerance

Drought is a highly complex stress, thus grapevine response to drought is also highly com-
plex and involves several polygenic traits (Coupel-Ledru et al., 2016; Coupel-Ledru et al.,
2014; Marguerit et al., 2012; Trenti et al., 2021), as I confirmed in Article I. Depending on the
environmental scenario considered, i.e., extreme, severe or moderate drought, grapevine ge-
netic response will vary (Tardieu, 2012; Tardieu et al., 2018). In chapter 2, I used phenotypic
data measured in a phenotypic platform under semi-controlled conditions. However, results
from this experiment are likely to diverge from experimental measurements of response to
drought in the field, as environmental variables are different, as well as the managing system.
Moreover, using a high-throughput platform severely limits the number of varieties that can
be phenotyped at a time. It would thus be valuable to have a proxy of these traits that can
be measured in the field. Proxys of physiological traits can be measured with spectra and
is already routinely used for the biochemical characterization of plant tissues (Grzybowski
et al., 2021; Osborne, 2006). For most of traits, I found a low broad-sense heritability for traits
related to response to drought in part 2.4, thus suggesting low GxE for these traits, except for
δ13C.

5.4.3 Statistical models for handling GxE

One way of studying GxE is to measure the same trait under different environments. In this
case, we expect some genetic correlation between these phenotypes, that could be handled by
using multivariate models. In chapter 2, I tested multivariate methods on several correlated
traits related to water deficit. Concerning the computational burden and the limited number
of traits that can be handled together, I decided to focus on univariate GP methods for the
next chapters since they are more transferable to breeding.

I also could have tested trait-assisted prediction, a scenario in which a multivariate GP model
is fitted with VS partly phenotyped for secondary traits in another environment (Fernandes
et al., 2018; Jia & Jannink, 2012; Nsibi et al., 2020). This option could help reducing pheno-
typing costs, but genetic correlation must be high between target and secondary traits. In
grapevine, such a configuration would be valuable with berry composition traits, by using
NIRS wavelengths measured on clusters. Some multivariate methods such as in Runcie et
al. (2021) are specifically adapted for handling both multi-environment trials (METs) with
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incomplete design and secondary traits. However, one must be careful when comparing uni-
variate and such multivariate GP models using secondary traits, because most of the time,
secondary traits are measured on VS individuals. Thus, these individuals share the same
non-genetic variance, which leads to an over- or under-estimation of PA, and may lead to a
wrong choice of GP model, as demonstrated in Runcie and Cheng (2019). This pitfall could
be avoided by correcting the estimation of accuracy, or by using clones of VS genotypes to
measure secondary traits.

Another approach is to combine ecophysiological mechanistic modeling and QTL detection
or GP to find alleles associated with a response parameter to environmental factors (Mar-
guerit et al., 2012; Vivin et al., 2017). Leveraging such biological information that includes re-
sponse to the environment from crop growth model or from phenological stages allows to in-
crease PA when predicting across-environments (Messina et al., 2018; Millet et al., 2019). Bur-
gueño et al. (2012) conceived a method to model similarities between environments through
a covariance structure. Models such as AMMI (additive main effect and multiplicative inter-
action) or GGE (genotype main effect plus genotype-by-environment interaction) use pheno-
types from METs to fit G and GxE based on principal component decomposition (Yan et al.,
2007).

5.4.4 The use of PP for specifically handling GxE

As spectra reflect the biochemical composition of a tissue, it is expected that spectra vari-
ability partly reflects genotypic and GxE variances. But many questions remain unanswered
concerning GxE in spectra. What is the extent of GxE captured by spectra? I had spectra from
one location over two years. Thus, I could only assess the GxY variance, which was moder-
ate in the mixed model. In Rincent et al. (2018), several environments were available and the
proportion of GxE depended on the tissue analyzed, with large variability for leaves (wheat)
and wood (poplar) and a more stable proportion of GxE variance for grain (wheat). Overall,
the magnitude of GxE in this study was higher than the proportion of variance I found for
GxY in this work. In chapter 4, I fitted a mixed model for each wavelength reflectance and
further retained only BLUPs for genotype and cross or subpopulation effects, thus exclud-
ing GxY effect. If we had phenotypic data measured during the same years as spectra, we
could test the possibility to use specific GxY BLUPs to predict phenotypes from the same year.
Likewise, if we had different locations with phenotypes and spectra, we could test whether
using genotype-by-location interaction in spectra results in higher PA for the environment
considered.

In Montesinos-López et al. (2017a), authors reported that models integrating GxE resulted
in similar PA than models without GxE. However, integrating wavelength-by-environment
interaction increased PA.
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5.5 Practical guidelines for present and future grapevine breeding
programs

In this section, I will first provide guidelines for the Inter-Rhône breeding program which is in
progress, then I will advise on how future grapevine breeding programs could be conducted,
according to my results.

5.5.1 Present breeding programs: Inter-Rhône example

Program characteristics

The aim of this program is to conceive new cultivars for Vallée du Rhône, by crossing emblem-
atic varieties from this region with polygenic resistant cultivars.

For that purpose, new genotypes were produced in 2016-2017-2018 by crossing Syrah and
Grenache with 4 genotypes bearing two resistance genes to PM and DM. The 155 remaining
genotypes after MAS for major genes were planted in 2018-2019-2020 at domaine de Piolenc
(Orange, South of France). Phenotypes will be available over the next few years and it is
planned to genotype these individuals with GBS.

Genotypic value prediction

If we retain the GP option (the alternative PP option being described in 5.5.2), this progeny
should be genotyped using the same enzyme for GBS as in the three populations studied in
the thesis. Then, we could use phenotypic data from the half-diallel population with crosses
related to Syrah or Grenache, depending on the target population, to train the GP model,
thus approaching what I coined scenario 1b. In chapter 3, this scenario gave an average
PA of 0.39 across traits, with PA superior to 0.4 for acid traits at ripe stage except for malic
acid. However, in scenario 1b, three crosses were used to train GP model for each parent,
VS being the fourth cross with one common parent, while for Inter-Rhône progenies, we can
directly use the four crosses with Syrah and the four crosses with Grenache. Thus, compared
to scenario 1b, one more cross will be used to train the GP model. On the one hand, we expect
that adding one more cross compared to chapter 3 will increase PA, but on the other hand, the
other parents of Inter-Rhône crosses are inter-specific resistant hybrids that are less related to
the TS compared to other half-diallel parents, a configuration that will likely decrease PA.

Predicting genotypic values can only be done for traits that have been measured in the TS.
My results can thus be integrated into this breeding program in four ways. (i) If traits are
already available in the half-diallel, such as yield, berry composition (sugar/acid balance)
or phenology, they can be used directly for prediction. (ii) If some traits are missing in the
half-diallel, they must be phenotyped in the following years in the adequate populations of
the half-dialell. (iii) If these traits are available in the diversity panel or SxG populations, they
could be used for prediction, but with expected loss in PA. (iv) If they are not, the phenotyp-
ing of missing traits and related prediction can be done after a first selection of individuals
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for already available traits. In the latter case, enough genotypes must be retained, for keeping
some genetic variability for yet unphenotyped traits.

After having predicted genotypic values for all candidates, the final choice between indi-
viduals remains to be done. The selection index theory proposed to put weights on traits
depending on their relative importance (more details about selection index are given in part
5.5.3).

5.5.2 Future breeding programs

I established guidelines and advices for future grapevine breeding programs. A summary of
breeding steps is in Figure 5.2.

FIGURE 5.2 – Future grapevine breeding schemes involving GP and/or PP.

Prediction of future crosses with genotyping

In future breeding programs, crosses to be made are not yet determined. Since we are still
seeking for resistant genotypes, it is likely that future crosses will include as parents geno-
types resistant to PM, DM and possibly other diseases on the one hand and genotypes known
for their wine quality on the other hand.
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The choice of crosses to be done could be determined by GP, using RR method. I showed
in chapter 3 that the average of parent’s observed genotypic values was different from the
observed average offspring value. Conversely, cross mean GP was very accurate, especially
in scenario 1b. This means that cross mean prediction implementation is a crucial step for im-
proving grapevine breeding scheme. To do so, a reference population and candidate parents
have to be genotyped with the same SNPs and the reference population must be phenotyped
for the target traits. Then, GP model is trained within the reference population and cross
mean predicted based on the average parental genotype, defined for each cross as in chapter
3. When I used the diversity panel as reference population, PA was lower than in scenario
1b but still satisfying for breeding. In particular, I found that per cross PA of cross mean was
highly correlated with the genetic distance between parents (on a PCA projection), crosses
with the closest parents yielding the most accurate predictions of cross mean, and that TS op-
timization improved PA for the least accurately predicted crosses. If these results were to be
confirmed with more crosses and more than 15 traits, this implies that predicting cross mean
should be applied to crosses with fairly related parents, while for crosses between distant
parents, TS should be optimized. Other crosses could be done for genetically distant parents
to avoid the risk of missing a good cross due to low prediction accuracy.

Prediction of cross variance is also possible, despite a lower accuracy for scenario 1a (see
chapter 3), which could help selecting crosses altogether with cross mean and deciding on
the number of offspring to generate for each cross.

After the achievement of the most promising crosses, MAS should be applied for traits con-
trolled by major genes, to retain only seedlings with polygenic resistance for example. Then,
two options are possible for further selecting individuals within crosses, as described in Fig-
ure 5.2. The choice between PP and GP will depend on additional results which will confirm
or refute the interest of PP.

Option 1: applying genomic prediction

Based on the results from chapter 2, I found that within-full-sibs GP gave the highest PA,
but it is not the most desirable configuration for breeding, as it requires to wait for pheno-
typing part of the population to be predicted. Still, this configuration is currently applied in
other grapevine breeding programs (called Martell and Edgarr) for Cognac and Rosé wines,
respectively. Scenario 1b from chapter 3 resulted in only a small decrease in PA compared
to scenario 1a but it requires phenotyping several half-sib families related to the cross to be
predicted. Therefore, if the selected crosses involve parents of the half-diallel and the tar-
get traits have been phenotyped in the half-diallel, one could use half-sib families from this
population to train the GP model, as described for Inter-Rhône program. Otherwise, I advise
to use the SelGenVit panel, which has been specifically conceived for GP in future breeding
programs (see 5.1.3). This panel is being planted in three locations in 2021 and 2022 and first
phenotypic data will thus be available starting from 2024. The advantage of using a single



5.5. Practical guidelines for present and future grapevine breeding programs 119

reference population is that phenotyping effort is concentrated on one population. Hence, it
may be worth to measure costly traits in this population.

In chapter 3, I found that RR method more often resulted in higher PA than LASSO for across-
population prediction. Therefore, I advise to use RR rather than LASSO for GP. In chapter
4, I found that GBLUP method was better than RR-BLUP method for GP within the half-
diallel and hypothesized that the difference was due to structure within the genomic matrix.
Within the diversity panel, both methods yielded similar PA. Within the SelGenVit panel,
we expect that GBLUP will also be better than RR-BLUP, due to potentially more structure
than in the diversity panel. I would thus recommend to use GBLUP rather than RR-BLUP.
However, the relative performance of these methods is susceptible to change from within-
to across-population GP, but this will be easy to test with the data available on the diversity
panel.

In a nutshell, GP model using GBLUP could be trained with phenotypic and genotypic data
from the reference panel (half-diallel or SelGenVit panel) to predict genotypic values of off-
spring within crosses.

Option 2: applying phenomic prediction

In chapter 4, I found that PP provided PA values close to those given by GP, with an average
decrease of –0.2. Nevertheless, PP could still result in more genetic gain than GP because
NIRS is much cheaper and high-throughput than genotyping (see Rincent et al. (2018) for an
estimation of the potential comparative gain). Indeed, switching from GP to PP would allow
to save money, that can be reinjected into more individuals to be phenotyped and/or more
phenotyping precision. These variables are actually present in the breeder’s equation and
increasing their value would provide larger genetic gain.

However, there is an overall lack of knowledge for applying PP in grapevine breeding pro-
grams. In particular, I have not tested across-population PP. If we apply within-population
PP, the population to be predicted must be partly phenotyped in order to train the PP model
and predict the genotypic values of selection candidates. Such a configuration would re-
quire to wait for phenotypic data, which will drastically reduce the genetic gain of PP op-
tion. Therefore, I advise to test across-population PP before implementing this option into
grapevine breeding programs. This will be quick since data are available. Actually, Galán
et al. (2021) provided encouraging results in rye by using more or less related genotypes be-
tween TS and VS, and found that across-population decrease in PA was lower for PP than for
GP.

Conception of breeding cycles

After having performed the final selection of candidates to be released, these individuals
should be integrated into the reference panel, and another breeding cycle should be per-
formed the same way. If GP option is selected, released candidates must be genotyped, and
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phenotypic data are already available, coming from field trials. These released candidates
should also be added to the pool of potential parents. This breeding cycle is expected to
last nine years, which implies that every two cycles the reference panel should be replanted,
incorporating by the way the released candidates.

One may also use pre-breeding steps to introduce new alleles for disease resistance. Sources
of resistance against Pierce’s disease or black-rot are already characterized and should be
introgressed into breeding material (Rex et al., 2014; Riaz et al., 2009). Using microvine (Chaïb
et al., 2010) would be highly beneficial for this purpose, as its generation time is reduced from
3 to 1 years.

Switching to GP or PP instead of pedigree and phenotyping selection will induce a quicker
loss of genetic diversity and increase in homozygosity (Colleau et al., 2017; da Silva et al.,
2021). Furthermore, switching from within-family selection alone to combined across- and
within-family selection will reduce genetic diversity (da Silva et al., 2021). As we know that
grapevine suffers from strong inbreeding depression and that a decrease in genetic variance
will decrease genetic gain, it is important to tackle this issue. One possibility is to include a
constraint for maintaining genetic diversity when choosing crosses to be done (Allier et al.,
2019; Fernández et al., 2021).

5.5.3 Defining grapevine ideotype and associated selection index

In my thesis, I developed tools for accelerating the selection of new grapevine varieties, based
on already available phenotypic data. For the full implementation of my work, grapevine
ideotype should be clearly identified by wine-growers and wine-growing corporations so
that selected genotypes meet their expectations. Such an ideotype was conceived by Viviane
Bécart at Inter-Rhône. This ideotype comprises nine traits under four categories. Traits were
late harvest date, wilting, defoliation, index of growth stop, yield and yield stability, high
acidity in must, anthocyanin content and wine appreciation. This work should be contin-
ued in partnership with ecophysiologists and enologists for grapevine response to drought
and for wine quality, respectively. Once traits for ideotype have been defined, phenotyping
reference panel populations must be a priority.

The ideotype is not an addition of traits, we must consider genetic correlation between these
traits. For example, within the half-diallel population, we found negative correlations be-
tween tartaric acid and harvest date, or between harvest date and vigor (data not shown).
This was also confirmed with another study on a bi-parental population, that total acidity
was negatively correlated with date of ripening (Bayo-Canha et al., 2012). Restricted selec-
tion indices have been developed to handle such cases and allow to select for a target trait,
while holding other traits at their initial value (Kempthorne & Nordskog, 1959). Other indices
are useful to impose more complex constraints on ideal trait value (Itoh & Yamada, 1988; Lin,
2005).
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Beyond selection index, selection intensity must also be determined as a function of accuracy
for reaching a desired genetic gain from the breeder’s equation.

5.6 Further research prospects

In this section, I will propose some research avenues worth exploring to further optimize
genotypic value prediction in grapevine, in addition to more specific prospects already in-
cluded throughout general discussion.

5.6.1 Incorporating non-additive genetic effects

Concerning dominance effects, most studies focused on species commercialized as F1 hy-
brids, for which dominance is expected due to hybrid vigor. In heterozygous species such
as grapevine, dominance is inevitable but its extent remains to be studied, depending on the
trait. In the half-diallel, I observed transgressive segregation patterns for many traits, thus
suggesting non-additive genetic effects.

Incorporating additive and dominance effects into the prediction model does not always lead
to an increase in PA, as shown in Chapter 2 and discussed in 5.3.2. For example, Yamamoto
et al. (2021) in strawberry reported transgressive segregation but additive and dominant GP
models did not increase PA. Similarly, Resende et al. (2017) in Eucalyptus found a superiority
of the additive plus dominance model only for one trait out of the three studied, despite a
documented dominance effect. It is likely that the superiority of such models would also
depend on statistical modelling, e.g., using a dominance genomic relationship matrix or a
design matrix for coding additive and dominance effects as in 2.2.2 .

In the long term, using GP models that only include additive effects will increase allelic fre-
quency of alleles with positive additive substitution effects, thus leading to a decrease in
heterozygosity (Werner et al., 2020). Hence, even if GP models including only additive or
all genetic effects provide identical PAs, it would be beneficial in the long term to include
non-additive effects into the GP model.

Testing models including non-additive effects using an adapted genomic relationship matrix
(Vitezica et al., 2013; Vitezica et al., 2017), could be quite straightforward as a prospect of my
work, as data are already available.

5.6.2 Designing trials for studying GxE

The diversity and SelgenVit panels are currently planted in different locations. Once pheno-
typic data will be available, the magnitude of GxE could be measured and specific models
integrating GxE could be tested.

Other research groups have created, phenotyped and genotyped grapevine populations for
QTL detection (Vezzulli et al., 2019). As the availability of data after publication becomes
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more and more the norm, one could use these data and integrate them into GP models. How-
ever, most of the time, the number of genotypes in common over different locations is limited,
making the use of this data statistically challenging. On the other hand, several grapevine
varieties (not from created populations) are planted and studied in many places around the
world and could be used to broadly estimate GxE on a restricted set of genotypes, extending
published results such as those of Rustioni et al. (2019).

Across-environment prediction could be classified into three scenarios. We could have phe-
notypic data for a population in a given environment and predict phenotypic data for the
same genotypes in a new environment. Another possibility is to predict unknown genotypes
in unknown environments. Finally, an intermediate scenario would be to have an incomplete
design with genotypes measured in one or two different environments and predict missing
combinations. In the first scenario, ecophysiological and crop growth models will be more
adapted than genetic models, because a combination of location and year can be considered
as an environment. The second case is the most challenging one; to handle both new environ-
ments and new genotypes, one needs to combine GP with ecophysiological modelling, as has
been done in Millet et al. (2019). Finally, the last scenario is the most classical one in breeding,
and multivariate modelling could allow to handle such cases (Runcie et al., 2021).

5.6.3 Optimizing the use of spectra

Using spectra to replace genotyping for GP

Whalen et al. (2020) proposed a new original way of using spectra in breeding. As reflectance
at a given wavelength is genetically determined, they hypothesized that reflectance at each
wavelength could be modelled as a trait with a complex genetic architecture. Thus, each vari-
ation in allelic inheritance could be tagged by a QTL linked to reflectance variation. There-
fore, these high-throughput phenotypes (HTP) could be used to impute segregation states of
non-genotyped varieties in a progeny (parents need to be genotyped). Using simulated data,
Whalen et al. (2020) showed that imputation accuracy was dependent on HTP heritability
and genome size. Then, GP was implemented based on these imputed genotypic data. So far,
this method is a proof-of-concept and has only been adapted to inbred species. Further work
is needed before this could be applied to grapevine breeding.

Better understanding how PP works

We have seen in the previous paragraph that Whalen et al. (2020) hypothesized that re-
flectance at a given wavelength could be modelled as a trait under additive genetic architec-
ture, with QTLs distributed along the entire genome. Is this approximation far from reality?
Are there some genomic regions non "covered" by spectra? On the other hand, are there new
regions such as structural variants leading to phenotype variants that are captured by spectra
and not by traditional genotypic markers? Reflectance at a given wavelength is expected to
be linked to several loci. Thus, reflectance variation summarizes allelic variation across sev-
eral loci, which makes it nearly impossible to decipher the genetic determinism underlying a
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trait from spectra. In chapter 4, I found correlation between PA of PP and GP, meaning that
a trait well predicted under GP will also be well predicted under PP. However, this correla-
tion deserves to be confirmed with more traits, which could be done using available data not
included in this study (see 5.1.4). In particular, is PP working for simple genetic architecture
with major QTLs? I expect that PP would be more adapted to infinitesimal genetic architec-
ture. It is also anticipated that PP could better capture non-additive genetic effects, as it relies
on expressed genome.

In order to shed light on some of these issues, we could use simulation by using existing spec-
tra and simulating phenotypes from existing genotypes under various genetic architectures.
Thus, we could check whether PP at least partly relies on the genetic relatedness captured by
spectra, rather than on correlation between the trait and spectra or GxE.

Consequences of applying PP to breeding programs

Concerning the implementation of PP in breeding programs, some adaptations are needed
for PP compared to using GP. First, in chapter 4 I used mature leaves and wood to measure
spectra, but the advantage of GP is to save time. Thus, one needs to test PP with spectra
measured on young leaves on seedlings, as is done for genotyping in GP, or on wood after
only one year of growth.

In chapter 3, I used parental average genotype at each locus to predict cross mean, based on
allelic effects previously estimated with GP. It is likely that using the same procedure with
spectra will result in lower accuracy, because spectra are only partly related to SNP markers.
But the extent of the decrease needs to be characterized. However, predicting cross mean
using GP is not the costliest part, as only parents and reference panel need to be genotyped.

Unlike GP, PP does not primary relies on additive genetic effects. Then, it could more easily
take into account non-additive effects compared to GP. This has an impact on genetic variance
of selected genotypes and could be beneficial to genetic gain in the long term, as discussed
above (see 5.6.1).

As pointed out in the previous section, across-population PP should be tested, to know how
to practically implement PP in breeding programs.

Spectra modalities

So far, I only implemented PP using spectra from NIRS measured on dried samples. Many
other sensors are used for measuring spectra, such as Red-green-blue (RGB) imaging, hyper-
spectral imaging which could be integrated in an unoccupied aerial vehicle (UAV), or laser-
imaging detection and ranging which takes 3-dimensional images (Persa et al., 2021). All
these spectra have their own characteristics in terms of portability, range of wavelength and
dimensionality. So far, to the best of my knowledge, studies that implemented PP only used
one reflectance spectrum per plant. When several pixels were available from hyperspectral
imaging, spectra from all pixels were averaged at the plant level. Using multi-dimensional
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data remains statistically challenging but handling all these pixels in PP might increase PA as
more information is brought into the model. To do so, one could use multi-kernel models, or
deep-learning methods such as convolutional neural network (CNN), a method specifically
adapted for processing images (Jiang & Li, 2020).

Use of spectra to estimate phenomic relatedness

The aim of some grapevine breeding programs, such as the Inter-Rhône one, is to select va-
rieties phenotypically close to emblematic varieties with polygenic disease resistance. To
address that, we could use spectra that are reflecting endophenotypes, i.e., intermediate be-
tween genotypes and phenotypes. Within a bi-parental population, all full-sibs get the same
proportion of each parental genome, yet some individuals may share more phenotypic sim-
ilarities with one parent. This similarity could be better captured by spectra, by estimating
a "phenomic relatedness". This method is currently being tested on populations from local
French breeding programs.

5.7 Conclusion

I have investigated the interest of genomic and phenomic prediction on grapevine breeding,
by testing several parameters affecting PA, such as training population, genetic architecture
of traits or statistical method. In a nutshell, it emerges that GP and PP could be applied
in breeding programs, although PP requires more studies to be fully optimized. In order
to enhance PA, one could incorporate more biological or environmental information in the
predictive model, such as endophenotypes or environmental covariates.
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Chapter 6

Résumé en français

6.1 Introduction

6.1.1 A propos de la vigne

La vigne est cultivée sur 7,4 millions d’hectares dans le monde. La France arrive en cinquième
position en termes de surface cultivée avec 789 000 hectares représentant 3% de la surface
agricole cultivée (OIV, 2017). Néanmoins, la viticulture est un secteur économiquement ma-
jeur en France qui représente 31,2% des exportations agricoles (FRANCEAGRIMER, 2019).

La vigne cultivée correspond à l’espèce V. vinifera du genre Vitis qui contient environ 80 es-
pèces inter-fertiles. La vigne a subi une première domestication il y a environ 9 000 ans dans le
Caucase, puis une domestication secondaire, avec une spécialisation selon l’usage du raisin
(consommation fraîche, raisins secs ou transformation en vin). Cette domestication secon-
daire est à l’origine de la (faible) structuration génétique en trois groupes observée aujour-
d’hui chez la vigne cultivée : cuve est, cuve ouest et table est (BACILIERI et al., 2013 ; PÉROS

et al., 2011).

La vigne cultivée est une espèce diploïde avec une grande diversité génétique et un haut
niveau d’hétérozygotie (LAUCOU et al., 2011). Elle souffre de dépression de consanguinité, ce
qui rend difficile l’obtention de descendants issus d’autofécondation d’une variété.

Avec la possibilité de multiplication végétative, certaines variétés existent depuis des cen-
taines d’années, c’est le cas du Pinot Noir, du Chardonnay ou encore du Gamay qui existent
depuis le Moyen-Age, voire avant (BOWERS et al., 1999 ; LACOMBE et al., 2013).

A la fin du 19ème siècle, le mildiou, l’oïdium et le phylloxéra, ont été introduits en Europe.
Quasiment toutes les variétés de vigne cultivées sont sensibles à ces ravageurs. Des traite-
ments à base de soufre et de cuivre ont été développés pour lutter contre le mildiou et l’oï-
dium mais aucun traitement efficace n’existe contre le phylloxéra. Pour lutter contre le phyl-
loxéra, deux solutions sont possibles : d’une part l’hybridation avec des sources de résistance
génétique issues d’autres espèces du genre Vitis et d’autre part l’utilisation de variétés de
porte-greffe résistantes, issues d’autres espèces de Vitis. La première option a conduit à la
création des hybrides producteurs directs et leur abandon quasi complet pendant la seconde
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moitié du XXème siècle, alors que la seconde option est toujours en vigueur aujourd’hui dans
une très grande majorité de vignobles de par le monde.

Aujourd’hui, la vaste majorité des variétés cultivées sont toujours sensibles au mildiou et à
l’oïdium et nécessitent donc de nombreux traitements phytosanitaires. Pour réduire l’utili-
sation de produits phytosanitaires, la sélection de variétés résistantes est une voie promet-
teuse. Dans ce contexte, le programme d’amélioration génétique français INRA-ResDur vise
à combiner plusieurs sources de résistance au mildiou et à l’oïdium pour plus de durabilité
(SCHNEIDER et al., 2019a). Néanmoins, les étapes de sélection pour les autres caractères im-
pliquent toujours le phénotypage des descendants issus de ces croisements, ce qui prend six
à sept ans pour la vigne. La durée totale du cycle de sélection est actuellement de 15 ans.

Un idéotype correspond à une variété idéale, c’est-à-dire, à la variété qui remplit les objectifs
de sélection pour tous les caractères.

Comme nous l’avons vu, la résistance au mildiou et à l’oïdium est un critère majeur chez
la vigne pour diminuer l’utilisation de produits phytosanitaires. Toutefois, la vigne est éga-
lement sensible à beaucoup d’autres maladies comme les maladies du bois ou encore les
insectes qui attaquent la vigne et transmettent des virus.

L’autre menace qui pèse sur la vigne est le changement climatique. Même si la vigne est
notamment cultivée dans des régions au climat relativement chaud comme le Sud du pour-
tour méditerranéen, les projections climatiques prévoient une augmentation des sécheresses,
l’augmentation globale des températures et une plus grande probabilité des événements cli-
matiques extrêmes (IPCC et al., 2021). Les conséquences du changement climatique sur la
vigne sont une augmentation du stress hydrique, l’avancée des stades phénologiques, et plus
particulièrement de la date de récolte, et le changement de la composition des baies avec no-
tamment une augmentation du degré d’alcool et une baisse de l’acidité. Toutefois, les cépages
cultivés actuellement ne représentent qu’une faible partie de la diversité génétique existante
chez V. vinifera et la sélection génétique devrait pouvoir permettre d’atténuer les effets du
changement climatique (MORALES-CASTILLA et al., 2020 ; MYLES, 2013).

6.1.2 Prédiction de la valeur génétique

Avant la prédiction génomique, la variation phénotypique était caractérisée au niveau mo-
léculaire à l’aide de QTL (Quantitative Trait Loci), c’est-à-dire des zones du génome statis-
tiquement associées à la variation d’un caractère. Une fois les QTL identifiés, le caractère
d’intérêt pouvait être prédit à l’aide de marqueurs moléculaires associés aux QTLs via la sé-
lection assistée par marqueurs (SAM). Cette méthode est par exemple utilisée actuellement
pour suivre les gènes de résistance au mildiou et à l’oïdium chez la vigne. Néanmoins, cette
méthode devient rapidement inapplicable lorsque le nombre de QTL à suivre augmente. De
plus, la majorité des caractères quantitatifs sont contrôlés par un grand nombre de QTL avec
chacun de petits effets, ce qui rend l’application de cette méthodologie impossible (certains
QTL ne sont pas détectés et il y a trop de QTL à suivre).
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La sélection génomique (SG), permise par l’accès au génotypage haut-débit, a été proposée
par MEUWISSEN et al. (2001) pour répondre à ces limites. Le principe est d’utiliser une popu-
lation d’entraînement phénotypée et génotypée pour estimer les effets statistiques associés
aux marqueurs moléculaires et d’utiliser ces estimations pour prédire les valeurs génoty-
piques de la population de sélection sur la base du génotypage uniquement.

Plusieurs méthodes statistiques existent pour l’estimation des effets des marqueurs, les plus
populaires sont le RR-BLUP ou GBLUP, les méthodes à inférence bayésienne comme le BayesB,
Bayes Cpi, BayesR, ou encore les méthodes non-linéaires comme le random forest, ou le
RKHS (de los CAMPOS et al., 2013). Les premières méthodes permettent uniquement d’es-
timer des effets alléliques additifs de substitution, donc une reformulation du modèle est
nécessaire pour estimer la dominance ou l’épistasie. Les méthodes non-linéaires sont plus à
même de capturer des effets non-linéaires (et donc non-additifs) mais ils demandent plus de
temps de calcul et des jeux de données plus importants. Selon l’architecture génétique des
caractères, le classement entre les méthodes peut varier mais les performances globales des
différentes méthodes sont proches (AZODI et al., 2019).

Les principales variables qui affectent la précision de prédiction génomique sont : l’appa-
rentement entre les populations d’entraînement et de validation, le type de marqueurs mo-
léculaires associé à la densité de génotypage, et le phénotypage associé à la structure de la
population. Ces paramètres interagissent entre eux et avec la méthode utilisée pour la SG.

Globalement, la SG permet d’accélérer le cycle de sélection, avec une prédiction des valeurs
génétiques à un stade précoce. Ce point est particulièrement important chez la vigne où le
temps de génération est très long et les essais phénotypiques coûteux. De plus, la SG permet
d’augmenter la précision de sélection et de gérer la diversité génétique sur le long terme
(CONSORTIUM et al., 2021).

Malgré des avancées considérables, le prix du génotypage peut constituer un frein à l’appli-
cation de la SG dans les programmes d’amélioration, où des milliers d’individus doivent être
génotypés. C’est pourquoi, RINCENT et al. (2018) ont proposé la sélection phénomique (SP),
comme alternative à la SG. Le principe repose sur l’hypothèse que les spectres mesurés sur les
tissus des plantes dépendent de leur composition en différentes molécules, qui est détermi-
née génétiquement. Les spectres reflètent donc le génome des individus, en interaction avec
l’environnement. Cette méthode a été testée avec succès sur le blé et le peuplier et quelques
autres espèces mais reste nouvelle et de nombreuses questions demeurent.

6.1.3 Problématique de la thèse

Cette thèse résulte d’un partenariat entre l’interprofession viticole Inter-Rhône, l’IFV (Institut
Français de la Vigne et du Vin) et INRAE. Elle s’est déroulée au sein de l’UMT GénoVigne et
de l’équipe DAAV de l’UMR AGAP Institut. L’objectif était de répondre aux problématiques
d’Inter-Rhône en termes de création variétale pour accélérer la sélection de nouvelles variétés
de vigne résistantes au mildiou et à l’oïdium.
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Si la SG a démontré son utilité dans les programmes d’amélioration des animaux et de di-
verses espèces végétales (CONSORTIUM et al., 2021), son application chez la vigne reste limitée
à quelques études préliminaires restreintes. L’objectif de ma thèse était donc d’implémenter
la SG et la SP dans des configurations variées et sur un grand nombre de caractères pour étu-
dier leurs intérêts respectifs en vue d’optimiser la sélection de nouvelles variétés de vigne.
Pour cela, j’ai utilisé trois populations de vigne déjà génotypées et phénotypées.

Dans un premier temps, j’ai comparé plusieurs méthodes de prédiction génomique dans une
population bi-parentale, en testant notamment si des méthodes multivariées (multi-caractères)
pouvaient avoir un intérêt (Chapitre 2) . Dans un second temps, j’ai appliqué la SG dans un
contexte plus proche de celui des programmes de sélection, c’est-à-dire en inter-population,
avec une population d’entraînement plus ou moins apparentée avec la population de valida-
tion (Chapitre 3). Enfin, j’ai testé l’implémentation de la SP, en comparant sa précision à celle
de la SG (Chapitre 4). Enfin, une discussion générale a permis de discuter certains points de
mes travaux, de proposer quelques pistes d’application en sélection, et des perspectives de
recherche.

6.2 Prédiction génomique univariée et multivariée appliquées à une
population bi-parentale

La modélisation statistique multivariée permet d’analyser conjointement plusieurs carac-
tères. Jusqu’à présent, il a été montré que cette modélisation permettait d’obtenir une meilleure
précision de prédiction des phénotypes en prenant en compte les corrélations génétiques et
non génétiques entre les caractères e.g., JIA et JANNINK (2012). Par ailleurs, certaines mé-
thodes de prédiction génomique font de la sélection de variables (effets alléliques) ; on peut
donc s’en servir pour l’étude du déterminisme génétique des caractères (détection de QTL).
J’ai comparé plusieurs méthodes de SG (ridge regression, elastic net, LASSO, gradient boos-
ting, et régression pénalisée structurée) avec des méthodes classiques de détection de QTL
par cartographie d’intervalle (SIM pour Simple Interval Mapping et MIM pour Multiple Inter-
val Mapping).

Dans ce contexte, j’ai utilisé une population bi-parentale de 188 individus, issue d’un croi-
sement réciproque entre les variétés Syrah et Grenache. Cette population a été phénotypée
en conditions semi-contrôlées (plateforme PhenoArch) pour 7 caractères liés à la tolérance
au déficit hydrique (la transpiration diurne et nocturne spécifique, le potentiel hydrique fo-
liaire, la différence de potentiel hydrique entre sol et feuille, la conductance hydraulique, la
différence de production de biomasse et l’efficience d’utilisation de l’eau) (COUPEL-LEDRU

et al., 2016 ; COUPEL-LEDRU et al., 2014). Cette même population a été plantée au champ, un
stress hydrique a été appliqué sur un des deux blocs, et 7 caractères agronomiques ou liés à
la tolerance à la sécheresse ont été étudiés (le poids de bois de taille, le poids de baie, la date
de véraison, la fertilité, le rendement, le nombre de grappes et le δC13 qui reflète le stress
hydrique subit par la plante au cours de la saison).
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Pour tester le potentiel intérêt de la modélisation multivariée, et des méthodes de SG pour
la détection de QTL, j’ai construit une nouvelle carte génétique dense avec des marqueurs
SNP (Single Nucleotide Polymorphism), et j’ai simulé deux caractères avec une corrélation
génétique, en faisant varier l’architecture génétique et l’héritabilité. Par ailleurs, j’ai utilisé les
données expérimentales obtenues en champ et en plateforme de phénotypage pour valider
les résultats de prédiction et détecter de nouveaux QTL.

Sur les données simulées, les résultats de prédiction génomique ont montré que certaines mé-
thodes étaient particulièrement sensibles à l’architecture génétique avec une baisse de pré-
cision lorsque l’architecture génétique était complexe (50 QTL), plus particulièrement pour
SIM et MIM. D’une manière générale, une meilleure précision de prédiction était associée
à une plus grande héritabilité. Pour les méthodes multivariées, les précisions de prédiction
n’étaient pas supérieures aux meilleures méthodes univariées. Pour la détection de QTL, les
méthodes de SG faisant de la sélection de variable surpassaient SIM et MIM en termes de pré-
cision de sélection lorsque 50 QTL étaient simulés. Toutefois, l’utilisation de méthodes de SG
pour la détection de QTL requiert que la valeur du paramètre de pénalisation soit adaptée à
la sélection de variable et non à la prédiction. Ceci a été rendu possible grâce à des extensions
de ces méthodes comme la Stability Selection ou le marginal False Discovery Rate.

Sur les données expérimentales obtenues en plateforme de phénotypage, les méthodes de
SG avaient les meilleurs résultats pour la prédiction, avec une très légère supériorité globale
des méthodes multivariées. Les précisions de prédiction obtenues variaient de –0.1 à 0.68
selon les caractères et les méthodes, avec une moyenne de 0.38 pour la meilleure méthode
(elastic net multivarié). Ces valeurs sont encourageantes pour l’application de la SG sur des
caractères liés à la tolérance à la sécheresse. (COUPEL-LEDRU et al., 2016 ; COUPEL-LEDRU

et al., 2014) avaient déjà appliqué une détection de QTL sur ces données. En comparaison, j’ai
utilisé de nouvelles méthodes pour la détection de QTL, qui ont prouvé leur utilité sur des
données simulées ; de plus, j’ai utilisé une carte génétique plus dense. Ces nouveautés m’ont
permis de réduire les intervalles de confiance des QTL et de trouver de nouveaux QTL pour
ces caractères.

Sur les données expérimentales obtenues au champ, j’ai appliqué les meilleures méthodes
précédemment définies pour la SG. Le classement entre les méthodes était similaire à celui
observé sur les données de la plateforme de phénotypage. Pour chaque caractère, j’ai cal-
culé la différence normalisée entre modalités (présence vs absence de stress hydrique) pour
chaque génotype, considérant cette différence comme un nouveau caractère reflétant la ré-
ponse au stress. La précision de prédiction de la réponse au stress hydrique était faible pour
tous les caractères et pour toutes les méthodes testées.

6.3 Prédiction génomique inter-population

La SG est souvent appliquée au sein d’une population génétiquement homogène à la fois
pour entraîner et valider le modèle. Cependant, cette configuration correspond rarement à
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celle d’un programme d’amélioration, où la population de sélection correspond à des croise-
ments qui ne sont pas encore réalisés et qui n’ont pas servi à entraîner le modèle. Dans cette
partie, j’ai donc testé la SG dans des configurations plus réalistes en création variétale. Pour
cela, j’ai testé l’utilisation d’un panel de diversité, composé de 279 variétés représentant l’en-
semble de la diversité génétique de Vitis vinifera, comme potentielle population d’entraîne-
ment universelle. La population de validation était composée de 622 individus répartis en 10
populations bi-parentales équilibrées issues des croisements entre 5 variétés, chacune de ces
5 variétés étant impliquée dans 4 croisements (plan de croisement appelé demi-diallèle). Ces
deux populations ont été phénotypées différentes années et génotypées avec des SNP, dont
32 894 sont en commun entre ces deux populations. Les quinze caractères communs étudiés
sont classés en quatre catégories : caractères morphologiques pour le poids, la largeur, la lon-
gueur, la compacité de la grappe, le nombre de grappes et le poids des baies ; caractères de
composition des baies pour le malate, le tartrate et le shikimate au stade mûr et des ratios
associés ; caractères de phénologie avec la date de véraison (début de la maturation), la date
de récolte et l’intervalle entre les deux, et le caractère de vigueur.

J’ai décomposé mon étude en deux sous-objectifs. Dans un premier temps, j’ai prédit la
moyenne des descendants d’un croisement, ce qui correspondant à la première étape de sé-
lection des parents pour réaliser les meilleurs croisements ; puis j’ai prédit les valeurs des
individus au sein de chaque croisement, ce qui correspond à la seconde étape de sélection
une fois les croisements réalisés. Pour chaque étape, j’ai mesuré la précision de prédiction
avec deux méthodes de SG : ridge regression (RR) et LASSO. La performance relative de ces
deux méthodes dépendant de l’architecture génétique du caractère, j’ai gardé la valeur de la
prédiction de la meilleure méthode afin de s’abstraire de cet effet. J’ai conçu trois scénarios de
prédiction : dans le scénario 1a, le modèle est entraîné et validé au sein du demi-diallèle par
validation croisée ; dans le scénario 1b, trois populations issues de croisement avec un parent
en commun sont utilisées pour entraîner le modèle, la prédiction se faisant dans le quatrième
croisement du demi-diallèle impliquant ce même parent. Enfin, dans le scénario 2, le panel
de diversité est utilisé pour entraîner le modèle et les croisements demi-diallèle servent à sa
validation. Le scénario 1a correspond à la précision de prédiction maximale, le scénario 2 cor-
respond à ce qui pourrait être implémenté dans un programme de sélection et le scénario 1b
est un intermédiaire entre ces deux scénarios. Enfin, j’ai testé différents paramètres pouvant
expliquer la précision de prédiction obtenue à chaque étape.

L’analyse des données phénotypiques montre que les populations du demi-diallèle affichent
des moyennes et des variances différentes selon les caractères. Au niveau génétique, l’appa-
rentement entre le demi-diallèle et le panel de diversité est partiel, avec 1/3 des individus du
panel (de la sous-population cuve ouest) étant plus apparentés avec le demi-diallèle que les
autres (des sous-populations cuve est et table est).

Pour la prédiction de la moyenne des descendants des croisements, la distribution des préci-
sions de prédiction étaient diférentes selon que l’on considérait les moyennes par croisement
tous caractères confondus ou les moyennes par caractère tous croisements confondus. Par
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croisement, les précisions de prédiction étaient autour de 0.6 pour les scénarios 1a et 1b et
beaucoup plus variables (de –0.3 à 0.72) pour le scénario 2, avec une forte corrélation néga-
tive avec la distance génétique entre les parents des croisements.

Pour la prédiction des performances des individus au sein de chaque croisement, le scenario
1a permettait d’obtenir la meilleure précision de prédiction, cette dernière diminuant avec
le scénario 1b et le scénario 2, ce qui était attendu. Les précisions de prédiction demeuraient
toutefois très variables selon le croisement et le caractère considérés. Pour les scénarios 1a
et 1b, le paramètre le plus déterminant pour la précision de prédiction était l’héritabilité,
alors que pour le scénario 2, les paramètres les plus déterminants étaient l’héritabilité, la
différentiation entre les croisements pour chaque caractère, et le modèle de prédiction (RR ou
LASSO).

Pour améliorer la précision de prédiction et étant donné le faible apparentement global entre
le panel de diversité et les croisements du demi-diallèle, nous avons échantillonné dans le
panel les individus les plus apparentés avec chaque croisement pour constituer une nouvelle
population d’entraînement optimisée. Cette optimisation a permis d’améliorer la prédiction
de la moyenne des croisements, lorsque qu’ils étaient mal prédits. Pour la prédiction de la
valeur des individus au sein d’un croisement, l’optimisation de la population d’entraînement
n’a permis qu’une légère amélioration de la précision de prédiction en comparaison avec un
échantillonnage aléatoire.

Par ailleurs, nous avons également implémenté la prédiction de la variance des populations
issues des croisements du demi-diallèle, dans le scénario 1a. En effet, les croisements les plus
prometteurs pour un caractère donné sont ceux produisant des descendants avec à la fois
une moyenne et une variance élevées, ce qui permet d’augmenter la probabilité de générer
les meilleurs individus. La prédiction de la variance s’est avérée moins précise que celle de la
moyenne, avec une corrélation de 0.58 entre la variance prédite et la variance observée.

En conclusion, il s’agit de la première étude sur la prédiction génomique en inter-population
chez la vigne utilisant des données expérimentales et impliquant plusieurs croisements. Les
précisions de prédiction obtenues pour la moyenne des croisements et les valeurs des indivi-
dus dans chaque croisement sont prometteuses pour une implémentation pratique de la SG
chez la vigne.

6.4 Intérêt de la prédiction phénomique comme alternative à la pré-
diction génomique chez la vigne

Dans ce chapitre, j’ai testé l’utilisation de spectres au lieu des marqueurs moléculaires pour la
prédiction des phénotypes. Cette méthodologie a été originellement proposée par RINCENT

et al. (2018) et je l’ai appliquée pour la première fois chez la vigne. L’intérêt de l’utilisation
de spectres est qu’ils sont moins chers et plus rapides à acquérir que les données de génoty-
page. L’hypothèse sous-jacente est que la réflectance à une longueur d’onde donnée dépend
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de la composition biochimique dans le tissu considéré et que cette composition est détermi-
née génétiquement. Cette hypothèse a été testée avec succès sur le blé et le peuplier dans
la première étude de RINCENT et al. (2018). Ces résultats ont été confirmés pour plusieurs
autres espèces céréalières mais la prédiction phénomique est une nouvelle méthodologie et
beaucoup d’interrogations demeurent. Pour mieux comprendre l’intérêt de la prédiction phé-
nomique comparativement à la prédiction génomique, nous avons mesuré en 2020 et 2021 des
spectres en proche infra-rouge sur des échantillons séchés de feuilles et de bois, dans le demi-
diallèle et le panel de diversité précédemment étudiés. J’ai ainsi pu tester plusieurs modalités
d’utilisation des spectres. D’abord, j’ai ajusté un modèle linéaire mixte pour la réflectance à
chaque longueur d’onde, afin d’en extraire la composante génétique. Ce modèle était modifié
selon que les deux années et/ou les deux tissus étaient inclus ou non. A partir des valeurs gé-
nétiques extraites à chaque longueur d’onde, j’ai construit une matrice d’apparentement phé-
nomique, et je l’ai comparée à la matrice d’apparentement génomique. Les résultats montrent
que l’année ou le tissu ne modifie presque pas la corrélation (ou co-inertie) entre ces matrices.
L’analyse des composantes de la variance par longueur d’onde montre que l’ajustement d’un
modèle unique pour les deux tissus conduit à une variance génétique très faible. J’ai donc
écarté ce modèle pour la prédiction phénomique. La prédiction phénomique a été implémen-
tée au sein du demi-diallèle et du panel de diversité pour les 15 caractères précédemment
étudiés dans le Chapitre 3. Deux méthodes de prédiction ont été comparées : RR-BLUP et
GBLUP. La première se base sur une matrice de marqueurs SNP pour la SG et une matrice de
réflectance pour la SP. La seconde se base sur la matrice d’apparentement génomique ou phé-
nomique précédemment calculée. J’ai comparé l’utilisation de la moyenne des spectres bruts
et l’utilisation des BLUP de réflectance issus des modèles linéaires mixtes décrits ci-dessus.
L’utilisation des BLUP de réflectance a conduit à une augmentation drastique de la précision
de prédiction. Cette conclusion n’avait jamais été mise en évidence auparavant. En revanche,
de manière générale, l’année, le tissu et le pré-traitement des spectres avaient un effet négli-
geable sur la précision de prédiction. Toutefois, utiliser des spectres issus de deux années et
combiner les deux tissus dans un modèle multi-matriciel donnait globalement la meilleure
précision de prédiction. J’ai comparé les meilleures précisions de prédiction ainsi obtenues
pour la prédiction phénomique, avec celles de la prédiction génomique. Pour quelques ca-
ractères dans quelques croisements, la précision de prédiction phénomique était supérieure
à celle de la génomique mais en moyenne elle était de –0.2. De façon intéressante, j’ai observé
dans les deux populations une corrélation significative entre les deux précisions de prédic-
tion, avec une pente de régression proche de 1. Cela suggère que le rang des précisions de
prédiction est conservé entre la prédiction génomique et phénomique, quel que soit le carac-
tère.

Enfin, j’ai combiné dans un même modèle de prédiction les matrices d’apparentement géno-
mique et phénomique, en testant les différents tissus (bois, feuille ou bois + feuille). Globale-
ment, l’addition des matrices phénomiques conduisait à un léger gain de précision de prédic-
tion dans le panel de diversité et à une légère diminution dans le demi-diallèle, comparé à la
prédiction génomique seule. Ceci peut s’expliquer par le fait que j’ai cherché à maximiser la
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variance génotypique des spectres et à exclure les autres composantes de la variance. De plus,
comme les phénotypes ont été mesurés plusieurs années avant les spectres, la précision de
prédiction ne peut reposer que sur la composante génétique seule, et non sur le lien entre la
nature du spectre et le caractère à prédire, comme l’utilisation de spectres pris sur bois pour
prédire la vigueur.

6.5 Discussion générale

6.5.1 Données et populations étudiées

Cette thèse avait pour objectif de proposer des optimisations de la sélection de nouvelles
variétés de vigne en faisant appel à la prédiction génomique ou phénomique. Bien que la
prédiction génomique ne soit pas une méthodologie nouvelle (la publication de référence
date de 2001), les premières applications chez la vigne datent de 2014 et il y a eu assez peu
de travaux publiés. Pourtant, la SG gagnerait d’autant plus à être appliquée que le temps de
génération est long et que la taille des essais phénotypiques chez la vigne devient vite un pro-
blème. Pour mesurer l’intérêt de l’implémentation de la SG dans les programmes d’améliora-
tion vigne, j’ai d’abord comparé plusieurs méthodes de SG, dans une population bi-parentale
homogène génétiquement. Les avantages de cette population sont : 1) que l’apparentement
théorique est identique et maximal pour tous les individus, 2) que cette descendance a été
phénotypée pour de nombreux caractères relatifs à la réponse au stress hydrique, à la fois en
conditions semi-contrôlées et au champ. Ensuite, je me suis placée dans un cadre plus proche
de celui rencontré dans les programmes d’amélioration, avec une population d’entraînement
génétiquement plus éloignée de la population de validation. Pour cela, j’ai utilisé un panel de
diversité comme population d’entraînement et des populations bi-parentales apparentées en
demi-diallèle comme populations de validation. Ces populations ont été phénotypées pour
15 caractères en commun. L’avantage de ces populations est que les résultats obtenus sont
plus facilement extrapolables à d’autres croisements puisque la diversité génétique explorée
est plus grande, même si les précisions de prédiction obtenues sont moins élevées. Enfin,
dans une optique de baisse de coût et d’augmentation du débit, j’ai testé la sélection phéno-
mique comme alternative à la sélection génomique. Pour simplifier l’analyse, j’ai implémenté
la SP seulement en intra-population, en utilisant les populations et les caractères étudiés dans
la partie précédente.

6.5.2 Décomposition du modèle de prédiction

Nous pouvons discuter les résultats obtenus en analysant pour chacune des composantes
du modèle de prédiction, ses caractéristiques et modifications possibles pour augmenter la
précision de prédiction. Le modèle de prédiction global est : y = Xβ + ε, avec y le vecteur
des phénotypes ajustés pour un caractère donné, X la matrice génotypique des SNP ou la
matrice phénomique des réflectances pour chaque longueur d’onde, pour chaque individu,
β les effets estimés des SNP ou des réflectances, et ε le vecteur de la résiduelle.
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Les données phénotypiques sont une composante majeure de l’équation de prédiction. No-
tamment, nous avons démontré que l’héritabilité du caractère était un paramètre déterminant
de la précision de prédiction en intra-population. L’héritabilité peut être améliorée en aug-
mentant le nombre de répétitions, ou en décomposant le caractère en ses composantes phy-
siologiques pour diminuer la complexité du caractère. Néanmoins, le coût de phénotypage
constitue encore un goulot d’étranglement dans de nombreux programmes d’amélioration.

La matrice d’entrée du modèle peut prendre des formes différentes. En SG, il s’agit, pour
chaque individu et SNP, du nombre d’allèles en commun avec la séquence de référence, ainsi
les valeurs possibles sont 0, 1 et 2. En SP, il s’agit de la réflectance pour un individu à une
longueur d’onde donnée, soit une valeur numérique comprise entre 0 et 1. D’un point de vue
génétique, les populations issues des croisements du demi-diallèle et les sous-populations du
panel sont plus différenciées dans la matrice d’apparentement génomique que phénomique.

La méthode d’estimation des effets des variables (estimation du vecteur β) est susceptible
d’impacter la précision de prédiction, en interaction avec les autres facteurs mentionnés. A
titre d’exemple, j’ai comparé plusieurs méthodes univariées et multivariées dans le chapitre
2, et montré dans le Chapitre 4 la supériorité de GBLUP sur RR-BLUP dans le cas d’une
population plus structurée.

6.5.3 Recommandations pour améliorer les programmes d’amélioration vigne

Dans le cadre de la sélection de variétés résistantes à Inter-Rhône, les cépages Syrah et Gre-
nache ont été croisés avec 4 génotypes résistants au mildiou et à l’oïdium. Parmi les descen-
dants, 155 individus ont une résistance polygénique à ces deux maladies et sont génotypés
par la technologie GBS (SNP). Pour ce programme spécifiquement, je conseille de prédire
précocement les valeurs génétiques des individus avec la SG, en utilisant comme populations
d’entraînement les croisements du demi-diallèle apparentés à Syrah ou à Grenache. Ainsi, on
peut s’attendre à ce que les précisions de prédiction soient proches de celles obtenues dans le
scénario 1b du chapitre 3.

Pour les futurs programmes d’amélioration vigne, un nouveau panel créé dans le cadre du
projet ANR SelGenVit pourra être utilisé. Il est composé de 132 variétés et inclut des individus
avec des gènes de résistance au mildiou, à l’oïdium mais aussi à la maladie de Pierce ou au
black-rot, provenant d’autres espèces de Vitis.

Prédiction de la moyenne des croisements Dans le chapitre 3, nous avons vu que la moyenne
observée des descendants ne correspondait que rarement à la moyenne observée des parents.
Néanmoins, la moyenne des descendants d’un croisement peut être facilement prédite par SG
si les parents sont génotypés. La précision de prédiction est variable selon la proximité géné-
tique des parents mais de bonnes précisions peuvent être atteintes si celle-ci est grande. Cette
étape requiert qu’un panel de référence soit génotypé et phénotypé pour estimer les effets
associés aux marqueurs. La prédiction peut se faire sur tous les croisements possibles entre
les variétés de ce panel. En pratique, les programmes auront probablement comme objectif
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d’utiliser au moins un parent résistant aux maladies. Dans ce cas, lorsque les croisements sont
réalisés, une sélection assistée par marqueurs fait un premier tri parmi les descendants pour
les caractères avec un gène majeur (Figure 5.2).

Option 1 : prédiction génomique Une fois que les individus résistants des populations
ont été sélectionnés, une option est d’appliquer la SG. Pour cela, les descendants résistants
doivent être génotypés. Si le panel de référence est utilisé, les précisions de prédiction atten-
dues sont de l’ordre de celle obtenues dans le scénario 2 du chapitre 3.

Option 2 : prédiction phénomique Pour cette seconde option, les descendants ne sont plus
génotypés mais des spectres seront mesurés. Ces mesures devront également être faites dans
le panel de référence. Jusqu’ici chez la vigne, la SP n’a pas été testée en inter-population.
Il faudra d’abord s’assurer que la diminution de précision de prédiction attendue en inter-
population ne soit pas trop forte pour la SP par rapport à celle de la SG.

Gestion du cycle de sélection Les individus prédits au sein de chaque croisement par la SP
ou la SG feront l’objet d’un index de sélection combinant les objectifs de sélection pour les
différents caractères cibles, pour ne conserver que les individus les plus prometteurs. Ainsi,
des essais en champ seront ensuite réalisés pour un nombre réduit d’individus en vue de
l’inscription au catalogue. Ces individus pourront être incorporés au modèle de prédiction
dans le panel de référence pour les prochains cycles de sélection. Au fur et à mesure des
cycles, la diversité génétique va diminuer, ce qui va impacter le progrès génétique sur le
long terme. Il faut être vigilant lors de l’étape de sélection des croisements, pour conserver
des génotypes peu apparentés, malgré la plus faible précision de prédiction associée. Des
contraintes peuvent être ajoutées au modèle de prédiction pour gérer la consanguinité.

6.5.4 Perspectives

La prise en compte de l’interaction GxE est capitale pour les futurs programmes d’amélio-
ration. Pour cela, il est nécessaire d’avoir une population phénotypée plusieurs années dans
plusieurs environnements. Certains modèles statistiques sont spécifiquement adaptés pour
prendre en compte ces effets, en estimant des covariances entre environnements, en étudiant
des normes de réaction à une variable environnementale ou en utilisant un modèle multiva-
rié, où chaque caractère correspond à un phénotype dans un environnement donné.

Dans ma thèse, j’ai utilisé des spectres mesurés dans le proche infra-rouge sur des échan-
tillons séchés en laboratoire mais il existe d’autres dispositifs pour mesurer des spectres.
Dans la même gamme de longueur d’onde, il existe des spectromètres portables qui peuvent
être utilisé au champ. Sinon, des spectromètres peuvent être embarqués sur des drones pour
mesurer des images hyper-spectrales. Toutefois, les spectres issus de ces modalités sont pro-
bablement plus bruités que ceux que nous avons utilisés, il faut donc trouver un compromis
entre le débit et la qualité des données. Plusieurs interrogations demeurent quant à l’impact
de l’utilisation de la SP dans les programmes d’amélioration. La SP est-elle adaptée à tous
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les types d’architecture génétique? Est-ce qu’il y a des zones du génome qui ne sont pas
couvertes par les spectres? Est-ce que la SP permet de mieux prendre en compte les effets
génétiques non-additifs ? L’utilisation de simulations permettrait de répondre à certaines de
ces questions.
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Appendix Chapter 1

A.1 Book chapter phenomic selection

This book chapter has been written by Pauline Robert*, Charlotte Brault*, Vincent Segura and
Renaud Rincent. It has been accepted for publication in a book entitled "Genomic prediction
of complex traits", edited by Springer Nature, series Methods in Molecular Biology.

* equal contribution of these authors



Phenomic selection: a new and efficient alternative to genomic selection

Abstract

Recently, Rincent et al. (1) proposed to switch molecular markers to near-infrared (NIR) spectra 

for inferring relationships between individuals and further performing phenomic selection (PS), 

analogous to genomic selection (GS). The PS concept is similar to genomic-like omics-based 

(GLOB) selection, in which molecular markers are replaced by endophenotypes, such as 

metabolites or transcript levels, except that the phenomic information obtained for instance by 

near-infrared spectroscopy (NIRS) has usually a much lower cost than other omics. Though  

NIRS has been routinely used in breeding for several decades, especially to deal with end-

product quality traits, its use to predict other traits of interest and further make selections is new.

Since the seminal paper on PS, several publications have advocated the use of spectral 

acquisition (including NIRS and hyperspectral imaging) in plant breeding towards PS, potentially

providing a scope of what is possible  In the present chapter, we first come back to the concept 

of PS as originally proposed and provide a classification of selected papers related to the use of

phenomics in breeding. We further provide a review of the selected literature concerning the 

type of technology used, the preprocessing of the spectra, and the statistical modelling to make 

predictions. We discuss the factors that likely affect the efficiency of PS and compare it to GS in 

terms of predictive ability. Finally, we propose several prospects for future work and application 

of PS in the context of plant breeding.

Key Words: plant breeding, phenomic selection (PS), genomic-like omics-based (GLOB) 

selection, genomic selection (GS), near infrared spectroscopy (NIRS), hyperspectral imaging
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Introduction: the concept of phenomic selection and its relationship with other uses of 

spectra in breeding 

In their recent publication, Rincent et al. (1) proposed to replace genomic information by 

phenomic information, such as near infrared spectra, to predict quantitative traits and further 

perform what they coined “phenomic selection” (PS). The use of spectroscopy in agriculture and

plant breeding is not novel, however, its use as an alternative to molecular markers to build 

relationship matrices and further predict individual performances in the context of selection is 

new. PS is similar to genomic-like omics-based (GLOB) selection, in which molecular markers 

are replaced by endophenotypes such as transcriptomics, metabolomics, or any other omics (2-

8). Endophenotypes are generally measured once and for all in controlled conditions, and used 

to build a predictive model for field agronomic traits. This approach is thus similar to genomic 

selection (GS) with genotyping in the lab replaced by endophenotypic characterization in 

controlled conditions. In these publications, models such as G-BLUP or multi-BLUP were 

generally used with the kinship matrix replaced by relationship matrices estimated with the 

omics data, and the predictive abilities obtained were generally similar and sometimes higher 

than those obtained with GS. Even if endophenotypic characterization remains costly, improved 

efficiency to capture non additive effects (epistasis, genotype by environment interaction - GEI) 

can be highly valuable. To decrease and scale both cost and throughput, Rincent et al. (1) 

proposed to replace genotyping or omics characterisation by NIRS. They illustrated that NIR 

sectra were indeed able to capture genetic similarities, and thus resulted in accurate 

predictions, even for traits unrelated to the tissue on which NIR spectra were measured. A 

GLOB selection approach based on NIR spectra acquired in one given environment was for 

instance able to accurately predict yield in other environments, as long as the calibration set 

was phenotyped in these environments. Note, that PS, and in particular GLOB selection, is 

radically different from the classical NIRS use. In the classical use, NIRS predicts the chemical 
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composition of the analyzed tissue. In PS and GLOB selection, NIR spectra (or other phenomics

data) are used to capture the genetic similarities between the genotypes, which allows accurate 

predictions of any polygenic trait.

Spectroscopy techniques, such as NIRS, measure the emission or reflection of light on a 

sample for a given wavenumber range, e.g. for NIR from 780 nm to 2500 nm. Various chemical 

bonds absorb light at different wavelengths, and this can be used in a quantitative manner. 

NIRS provides a non-destructive and high-throughput measurement of living samples (where 

water absorbance bands do not overlap) as well as dried or crushed tissues. Absorption or 

reflectance values at a given wavelength are proportional to molecule concentrations, as 

depicted in the Beer-Lambert law. Thus, spectra variations are due to the combination of 

molecules in the tissue and their respective absorption bands. This chemical property has been 

widely used in agriculture and forestry in many species to predict traits of interest, such as those

related to grain composition for cereals (9), milk composition for dairy cattle (10), wood 

properties for forest trees (11), quality traits for fruits and vegetables, (12). 

Apart from this classical use of NIRS, which can be exploited in breeding to make selections on 

traits related to end-product composition, other use of NIRS in breeding have been reported in 

the litterature, which can be  classified into four main categories as proposed in Table 1: NIR 

spectra as proxy of the target trait, NIR spectra as a secondary trait, PS within environments 

and PS across environments as a particular case of GLOB selection. In the following 

paragraphs, we provide a definition of each of these four categories.

The first category concerns the use of NIR spectraas a proxy of complex traits such as grain 

yield, water stress or chlorophyll content with vegetation indices (VIs), which are based on a few

wavelength bands. Several indices were successively developed across years, the most famous

3
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one being NDVI (normalized difference vegetation index). These indices are strongly correlated 

with photosynthetic activity and sometimes with yield (13) and are still widely used to reflect 

biomass or yield of the analyzed plants or plots (14-16,24,26). The advantage here of using NIR

spectra as a proxy trait is to avoid expensive phenotyping and to enable indirect selection of 

target traits before harvest.

In the second category, we have gathered studies that combined NIRS measurements with 

molecular markers to increase the accuracy of genomic prediction. In that case, NIR spectrum 

was considered as a secondary trait to be associated with the target trait in a multivariate 

prediction model (17-19). It is worth mentioning that such studies report two distinct examples of

application: one based on canopy reflectance (17, 19), which relates to the overall plant health ; 

and the other based on grain NIRS (18),  which relates to the end product or cumulative energy 

accumulation of the plant. In any case, this approach is particularly valuable when the predicted 

set is phenotyped with NIRS (trait-assisted prediction). Other authors have used NIR 

measurements to specifically account for GEI in the genomic prediction model (20, 21), but this 

requires NIRS data for each environment to be measured.

The third category includes studies that have investigated using NIR spectra to build a 

(hyper)spectral relationship matrix between plots/individuals, referred to as H matrix, and 

integrated it in the prediction equation with or without the genomic relationship matrix (kinship), 

referred to as G matrix (20-22, 25). The NIRS-based similarity between two plots/individuals

H (i , j ) can be estimated with the following formula:

H (i , j )=
∑
k=1

nw

[S (i , k )×S ( j , k ) ]

nw

,

with S (i , k ) the preprocessed absorbance or reflectance (see hereafter) measured on the ith 

plot/individual for the kth wavelength. S is centered and scaled for each wavelength and has the 
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dimension n (number of plots/individuals) times nw (number of wavelengths). In matrix notation

H= SS '
nw

. This PS approach resulted in promising accuracies,

however, in these publications, predictions were still made for a specific site-year trial, and so 

NIR spectra have to be measured on each plot in each environment, with the strong limitation 

that all varieties have to be grown in each environment. 

Thus, we propose here a fourth category to further make a distinction between PS applied to the

plots on which NIR spectra were acquired (previous category) and PS predictions across-

environments with NIR spectra measured in a reference site only, a particular case of what we 

called GLOB selection (scenario S2 in Rincent et al. (1) and Figure 1). In GLOB selection, we 

suppose that NIRS captures genetic similarities, which means that it is sufficient to acquire the 

spectra once and for all in one single environment. The derived H similarity matrix is then used 

in replacement of the G matrix in the classical GS models.

To date, we have found only two publications  (Rincent et al., Lane et al. (23)), that performed 

GLOB selection with NIRS , and they both resulted in accurate predictions, often more accurate 

than GS and with dramatically reduced costs. These publications and the results obtained with 

GLOB selection obtained with other kinds of omics prove that variations other than DNA 

markers can efficiently capture genetic similarities between genotypes and result in accurate 

predictions.

Literature review on the use of spectra in selection
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Following previous definitions, we have selected a number of papers illustrating each of the four

categories of use of NIRS in the context of breeding . The main features of these papers are 

summarized in Table 1, and further presented and detailed hereafter, with respect to the type of

technology employed to obtain spectra, the statistical pretreatments of the spectra and the 

statistical model applied for phenotype prediction. We also provide in Table 2 a comparison of 

the relative performances of phenomic and genomic predictions for the very few papers which 

enable such a comparison. Finally, we discuss the factors that affect the predictive ability of PS.

A. Types of technology   

Traditionally, NIR measurements are conducted in laboratories under controlled conditions for 

either dried vegetative tissue (e.g. forages) or dried reproductive tissue (e.g. grain). This kind of 

data displays many advantages: measurements are robust, low-cost and routinely applied by 

breeders to predict quality traits. There are also a number of disadvantages, there is substantial 

extra effort needed to bring these materials from the field to the lab, and to dry them so that 

water absorbance (which overlaps other chemical bond absorbance) is minimized. In these 

laboratory conditions, spectra are constituted of many wavelengths possibly from the visible and

near infrared  (400 to 2500 nm approximately), constituting a dataset of hundreds of variables 

(9).

With the rise of high-throughput phenotyping, spectrum measurements have benefited from 

technological developments which enables the direct collection of spectra in the field possibly at

several time points, like hyperspectral imaging from Unoccupied Aerial Vehicle (UAV) or direct 

measurements of fresh material with portable (micro-)spectrometers. Hyperspectral imaging 

takes images with several wavelengths for each pixel, possibly at multiple time points in the 

visible and in a small portion of the NIR spectrum. A reflectance measure is attributed to some 

groups of wavelengths (bands) or to individual wavelengths directly. The measurements at the 

pixel level can be integrated at the microplot level to characterize a unique variety (20, 21, 24, 
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25). Portable (micro-)spectrometers have also been developed to measure the reflectance 

directly in fields on undestroyed fresh material covering the visible and NIR spectrum (26). 

Wavelengths can be used directly as variables in predictive models or they can be derived in 

several indexes, like VIs (20, 24). VIs describe vegetation properties by summarising the 

information of large amounts of data to facilitate processing of camera and satellite images. 

However, in Aguate et al. (24) the use of all the hyperspectral bands achieved better prediction 

than using VI individually.

Technologies used to collect NIR spectrum are numerous, each with advantages and 

disadvantages. On the one hand, the use of NIR spectrometers in laboratory conditions is a 

robust method but can be time consuming due to collection and possibly preparation of 

samples. On the other hand, UAV and portable (micro-)spectrometers are quick techniques to 

collect NIRS but the number of wavelengths available is usually reduced and measurements 

can be affected by environmental noise which, is harder to control in the field than in the 

laboratory. Depending on the application, trade-offs must be found between labor intensity, 

costs and spectrum quality.

To date, very few studies have tried to compare the predictive ability of different spectrum 

measurements, especially in the context of plant breeding. Recently, Zgouz et al. (27) have 

reported a dataset of spectra collected on 60 sugarcane samples with 8 visible/NIR 

spectrometers including handheld micro-spectrometers. Such a dataset is very useful to 

compare different tools, although results might be context dependent, i.e. the most accurate 

model for different traits and species might be obtained with different spectrometers. Still, 

quantifying the gain or the loss of predictive ability for each technique will be helpful to guide in 

using one technique rather than another for a specific objective. Other techniques could be used

to facilitate measurement, for example to combine hyperspectral images and laboratory spectra.

Instead of using a spectrometer to measure samples one by one, hyperspectral images can 
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measure several samples at the same time. This would enhance robustness of spectra 

collection and reduce time of measurements. Beyond technical issues, it is also important to 

consider practical organizational questions, such as the period at which spectra are measured, 

to make sure that the predictions are available before the sowing of the next season.

B. Preprocessing NIR spectra   

In ideal conditions, NIR spectra are based on the Beer-Lambert law and the sample absorbance

is directly linked to the concentration of chemical compounds of the sample. But in practice, 

many factors (independent from the sample composition) will influence the measured 

absorbance. This is the case for instance of temperature or granulometry, which will deform the 

final spectrum, biasing spectra comparison. To deal with external effects, a mathematical 

correction or preprocessing can be applied as illustrated in Figure 2 for spectra collected on 

bread wheat grains. Mainly two external effects usually need to be corrected: additive and 

multiple effects. In additive effects, noise affects spectra irrespectively of the wavelength and 

usually yields a baseline shift which can be corrected with a detrend (28) or a derivation (Figure

2C) typically carried out through a Savitzky-Golay filter which consists in a polynomial 

smoothing (29). The baseline shift appears when the absorbance increases with the wavelength

due to the increased light intensity. Multiplicative effects typically affect spectra differently 

depending on the wavelength and are usually linked to an increase of the distance crossed by 

the photons (due to different granulometry for example). They can be corrected by a 

normalization (Figure 2B). This effect is present when for low absorbances at a wavelength, the

variability is also low and for high absorbances at a wavelength, the variability is high. Other 

preprocessing techniques have also been proposed to specifically deal with an external 

parameter known to bias spectra such as temperature or hygrometry. This is the case for 

instance of the method called External Parameter Orthogonalization (EPO, (30)). 
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The preprocessing methods briefly introduced in the previous paragraph have been previously 

developed in the chemometrics literature. This preprocessing is routinely and widely used when 

applying NIRS in the classical way, i.e. to predict the composition of end-products. In the 

context of breeding and PS, further preprocessing taken from the breeding literature can be 

carried out to improve the ability of the spectra to predict genetic values. Such preprocessing 

includes building a model on the absorbance or reflectance at each wavelength taking into 

account the effects of the experimental design (e.g. blocks or spatial effects) together with 

genetic effects to further extract genotypic values (23 , 25). Genotypic values may be BLUEs or 

BLUPs depending on whether the genotype effect is considered as fixed or random in the 

model. This preprocessing typically comes from the fact that PS is carried out at the genotype 

level rather than at the individual or plot level, and consequently one needs to obtain a unique 

NIRS matrix at the genotype level for model training and prediction. It is interesting  to note that 

if the entire spectrum is considered rather than absorbance or reflectance at given wavelengths,

such corrections are related to the orthogonalization approaches from the chemometrics 

literature. Indeed, recently Ryckeweart et al. (31)proposed to make use of spectra replicates, 

typically obtained when characterizing plants under genetic trials, to reduce the repeatability 

error. They developed a new preprocessing technique based on orthogonalization after an 

ANOVA–simultaneous component analysis (REP-ASCA). 

The filters mentioned previously are not an exhaustive list but have been the most commonly 

used in NIRS chemometric prediction. Preprocessing can be done in numerous ways, as shown

across different studies, suggesting that no one standard preprocessing approach exists. We 

have noticed that PS predictions  were influenced by the preprocessing applied on spectra, 

consequently we recommend testing different filters on a subset of data to cross-validate filters 

efficiency, before carrying out deeper analysis. 

C. Statistical models for phenotype prediction   
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NIRS reflectances or absorbances are quantitative variables, like bi-allelic markers usually 

coded numerically with allelic dosages, basically all models developed or used in the frame of 

genomic selection can also be used for PS, from the “infinitesimal” model to Bayesian models 

with various prior distributions or machine learning methods. 

One such reference model for PS is the H-BLUP, similar to G-BLUP but with a similarity matrix 

(H) estimated with NIRS (1, 21, 25). Different kernels can be used within such a framework, 

including Gaussian kernel or arc-cosine kernel (22). As with molecular markers, this model can 

be equivalent to a ridge-regression on the wavelengths, provided the H matrix is computed 

accordingly, as demonstrated hereafter. The predictive ability of the H-BLUP model can be 

measured with cross-validation, as with G-BLUP or other GS models.

The H-BLUP model is defined as: y=μ+u+e, with var ( y )=H σu
2+ I σ e

2, and where y is a vector 

of phenotypes, H is the NIR similarity matrix as defined above, μ is the intercept, u and e are 

random genetic and residual effects, respectively. The RRN-BLUP model (Ridge Regression 

NIRS BLUP) is defined as: y=μ+Sv+e, with var ( y )=SS ' σS
2+ I σe

2, and where S is the matrix of 

preprocessed, centered and scaled NIRS as defined above. The mean of y is equal to μ in both 

models, thus H-BLUP and RRN-BLUP are equivalent if H σu
2=SS ' σ S

2, which is for instance the 

case when H=
SS '
nw

 and σ S
2=
σ u
2

nw
.

Functional regression models seem particularly interesting for PS, as they model the linear 

trend of the spectra (20). Different kinds of functional regressions were proposed such as 

functional B-Spline, functional Fourier (20) and Bayesian functional (32). H-BLUP and functional

regression models have proven to yield accurate predictions while reducing computational time 

by diminishing the number of parameters to estimate. This could be important if several spectra 

from different environments are available, resulting in a high number of predictors.
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Partial Least Squares (PLS) regression, classically used in chemometrics, or variable selection 

approaches (such as LASSO or BayesB) can also be used to tackle multicollinearity and high 

dimensionality. PLS regression consists of condensing the information contained across all 

wavelengths into a few orthogonal variables that maximize the covariation between the predictor

matrix and the response variable. In LASSO and Bayes B, it is assumed that only a portion of 

the variables has an effect on the trait. Variable selection seems promising for PS, because the 

spectrum could be restricted to its most heritable parts (25, 33). However, it should be noted 

that the preselection of wavelengths using vegetation indices or with knowledge on the genomic

heritability of the wavelengths generally result in lower prediction accuracies than when using 

the full spectrum (24-25).

In GSthe choice of the prediction model can be guided by the expected genetic architecture of 

the predicted trait. The choice of a PS model adapted to a given trait cannot yet rely on such 

assumptions, and it is not clear how the optimal prediction model can be related to the trait 

characteristics. The various models tested in the literature sometimes resulted in contrasted 

prediction accuracies, but in general sophisticated models were not better than a simple H-

BLUP. Models relying on a mixture of distributions such as BayesR (34) are accurate for 

contrasted genetic architecture in GS, it would be interesting to test them in PS. In any case, 

alternative prediction models should be compared using cross-validations within the calibration 

set.

Contrary to molecular markers in GS, in PS several spectra corresponding to different replicates

of genotypes possibly across different environments can be available to build predictive models.

In this case, one possibility for calibration is to test each spectrum in order to determine the one 

which yields the most accurate predictions. Another possibility is to make use of all the available

spectra. Lane et al. (23) proposed in the frame of the H-BLUP model to compute the mean of 

the relationship matrices calculated from each spectrum individually. It is noteworthy that this 
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proposition is equivalent to computing the relationship matrix from a large combined spectra 

matrix, providing that the individual spectra matrices have the same number of wavelengths, as 

shown hereafter.

The similarity matrix HT (i , j )computed with the combined spectra matrix ST(in which all spectra 

matrices are included one next to the other) is given by:

HT ( i , j )=
∑
k=1

nt

[ST (i , k )×ST ( j , k ) ]
nt

HT (i , j )=
∑
p=1

nw

[S1 (i , p )×S1 ( j , p ) ]+...+∑
p=1

nw

[Snl (i , p )×Snl ( j , p ) ]
nl×nw

HT (i , j )= 1
nl
×

HT (i , j )= 1
nl
×

ST  has dimension n (number of individuals) times nt=nl×nw, with nlthe number of spectra (e.g. 

number of environments in which NIRS was acquired) and nwthe number of wavelengths of 

each spectrum (we consider that all spectra have the same wavelengths). Sud (i , k ) is the 

absorbance or reflectance measured on the ith individual for the kth wavelength in the uth NIR 

preprocessed spectrum. Sud has the dimension n (number of individuals) times nw(number of 

wavelengths). H u ( i , j )is the similarity between individuals i and j estimated with one given u 

spectrum.

D. Relative performance of PS versus GS  
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There are very few studies that compare PS (and in particular GLOB selection) with GS (Table 

2). Although Lane et al. (23) was one of the two studies that implemented GLOB prediction with 

spectra following our definition, it could not be included in this comparison because they did not 

apply  GS. Table 2 illustrates that PS and GLOB selection have been mainly implemented on 

cereal species, probably because of the widespread and routine use of NIR measurements on 

grains to predict protein content. Krause et al. (21) and Galan et al. (25) reported similar 

accuracies for GS and PS, while Cuevas et al. (22) showed lower accuracies for PS compared 

to GS (0.37 and 0.46, respectively). The highest PS accuracy compared with GS was observed 

in Rincent et al. (1) in wheat. The lowest PS accuracy compared to GS was observed in Rincent

et al. (1) in poplar for which NIR spectra were collected on wood for a reduced range of 

wavelengths. From these data, it is apparent that PS had comparable or higher accuracies than 

GS in most cases. Even in cases where PS is less accurate than GS, as NIR measurements 

are high-throughput and low-cost compared to genotyping, PS could still provide higher genetic 

gains than GS, as demonstrated in Rincent et al. (1). In our ongoing research we compared GS 

and PS at different generations of elite bread wheat selection. We found that PS could be as 

accurate as GS and even better when applied to early generations. Further work on other 

species is clearly needed to deepen this comparison and provide valuable information on the 

factors and conditions (e.g. tissue, environment) that determine the predictive ability of NIRS. 

By considerably reducing the costs of implementation, PS is a tool of choice to improve the 

balance between costs and benefits in comparison with GS. PS would be particularly valuable 

for orphan crops for which genotyping is expensive, or for major crops for which phenomic data 

are already routinely collected (e.g. maize and wheat). In the latter case, phenomic prediction 

already opens new possibilities in existing breeding programs without any additional cost, and 

with predictive abilities similar to those obtained with genomic prediction (1).

E. Factors affecting PS predictive ability  
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In the past, several kinds of omics were used to make genomic-like predictions with promising 

results (8). NIRS captures an integrative signal, and is biologically more difficult to interpret than

other omics, which describe each molecule individually (e.g. transcriptomics, proteomics, 

metabolomics). However, because prediction models do not necessarily need to be interpreted 

biologically, NIRS can be used to make predictions using “black-box” models.

There are two factors that contribute to the predictive ability and consequently to the success of 

PS: (i) the ability to capture target trait proxies, and (ii) the ability to infer genetic relatedness. 

The former depends on the physiological connectedness between the target trait and the 

composition and features of the tissue analyzed with NIRS. This is for example the case when 

NIR spectra collected on wood powder is used to predict wood properties, or when NIR spectra 

collected on fruits is used to predict fruit composition. In these cases, PS should be nearly 

equivalent or superior to the traditional way of using NIRS (prediction of the tissue composition),

the only difference being that when doing PS we usually work at the genotype level because we

aim at ranking and selecting the best genotypes while in the traditional use of NIRS we make 

predictions at the plot or plant level (23). But we could think of more indirect relationships 

between the target trait and NIR spectra to explain its predictive ability, for instance in wheat the

good predictive ability of PS for yield could be due to the fact that NIRS is a very good predictor 

of grain composition, that is often negatively correlated to yield. This could also be the case for 

maturity: the spectra are influenced by the maturity of the plants, and this maturity is sometimes 

correlated to yield (21). However, it is important to stress that even in the absence of any direct 

relationship between the predicted trait and the tissue analyzed with NIRS, PS can still be 

accurate. It was for instance shown in Rincent et al. (1) that NIR spectra collected on leaves in 

one environment could be used to estimate a covariance matrix resulting in accurate prediction 

of yield in a completely independent environment. In this particular example, the correlation 

between yield in the environment in which NIR spectra were obtained and yield in the predicted 
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environment (by cross-validation within the predicted environment) was as low as 0.16, whereas

PS predictive ability was above 0.5. This means that NIRS derived relationship matrices were 

able to capture genetic relatedness between lines valuable for predicting yield. This was further 

demonstrated by the fact that genomic heritability was significant for many wavelengths. A 

further demonstration could be done with a simulation study, by estimating the predictive ability 

of PS for traits simulated with genotype data. In this case, the predictive ability of PS averaged 

over a large number of simulated traits would provide an evaluation of the ability of NIRS to infer

genetic relationships for predicting quantitative traits unrelated to the tissue composition. 

PS is a recent research topic, and further investigations are required to use it in an optimal way. 

One can expect that, as for genomic selection, prediction accuracy will be strongly dependent 

on the target trait and its heritability, as well as the size and composition of the training set. In 

comparison to GS, prediction accuracy obtained with PS can also be affected by the origin of 

the spectrum (tissue, environments, kind of sensors). This is similar to the choice of a SNP 

array and marker filtering in GS, but the effect of the origin of the spectrum appears to be more 

pronounced. First results suggest that NIR spectra collected under plant stress conditions are 

more efficient (1, 23), but other experiments are required before it can be understood if this is 

the rule or the exception. An interesting result is that, in practice, the combination of different 

NIR spectra (collected on different tissues or different environments) leads to predictive abilities 

at least as good as those obtained with the best NIR spectrum taken alone (1, unpublished 

results). This means that in some cases it is not necessary to identify the best conditions to 

obtain NIR spectra, but simply to aggregate all the spectra collected (e.g. spectra obtained on 

the same genotypes at the different steps of the breeding program). As shown in the present 

review, aggregating NIRS matrices prior to computing the H matrix is equivalent to averaging H 

matrices estimated with individual NIRS matrices and is thus quite straightforward. But, in any 

case, the choice of the tissue, timing and sensors could and should also be optimized. We can 
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think that NIR spectra collected on homogeneous, representative samples (leaf powder, seed 

sample or flour) are more useful than NIR spectra obtained on a tiny area of raw material. The 

way NIR spectra are collected should also be optimized in terms of practical feasibility. For 

instance in wheat, it would be much more feasible to measure NIR spectra during the growing 

season, than on seeds after harvest, because the few weeks between harvest and sowing of 

the next generation is labor intensive and so NIR spectra acquisition would be difficult during 

this period.

Prospects

As introduced above, there are numerous ways of using PS in breeding. We particularly foresee

several applications to be addressed with PS and that we detail hereafter. Some of them are 

quite direct applications, which can already be deployed in breeding programs (A-F), while 

others are prospects which deserve research investments prior to their adoption in breeding in a

relatively longer term (G). Although many of the prospects presented here are also shared with 

GS, we have tried in what follows to underline their specificity with respect to PS.

A.  Prebreeding: screening diversity collections at low cost

Gene banks are a reservoir of genetic diversity in which genes of tolerance to biotic or abiotic 

stress can be discovered. These collections will become crucial as the genetic diversity in the 

breeding program will not be sufficient to face upcoming changes due to the evolution of 

management practices or climate change. However, the identification of promising genes or 

individuals require the phenotyping of the collection for the target trait, which could be too 

expensive given the number of accessions stored in these collections. Yu et al. (35) and Crossa

et al. (36), have proposed to run GS to screen these collections. However, this requires 

genotyping the full collection, which is also expensive considering the large size of the gene 

banks. Another option would be to measure NIR spectra on each accession, phenotype a 
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subset, and predict the remaining accessions using PS. In most genebanks, accessions are 

regularly sown in nurseries to produce new seeds, as the germination rate decreases with time. 

NIRS could thus either be collected on seeds directly in gene banks or on other tissues in these 

nurseries. The same approach could also be extended to other species like perennials which 

are usually not conserved as seeds but as living plants in the field.
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B. Sparse testing: experimental design optimization in breeding programs  

For most species, selection candidates are evaluated in multi-environment trials to estimate 

their stability and productivity in contrasted environments. This is an expensive step as the 

number of variety/environment combinations can rapidly become very high. To increase the 

number of environments or varieties with the same costs, one option would be to run a sparse 

testing design, in which all varieties are evaluated at least in one environment, but with a given 

proportion of varieties/environments not tested. Sparse testing is sometimes imposed to 

breeders because part of a trial is accidentally destroyed, or not harvested for some reason. 

Sparse testing is a scenario for which genomic predictions are particularly accurate, in 

comparison to predicting a completely new variety or a new environment (37-39). Our 

proposition is to use PS to predict the unobserved variety/environment combinations. In wheat, 

this approach is already applicable as NIR spectra are usually collected in nurseries the year 

before the multi-environment trials. Our first unpublished results on sparse testing show that the 

prediction accuracy of PS under this scenario can be as high as to the one obtained with GS.

C. Combining reduction of generation time (speed breeding) and performance prediction   

(PS) to increase genetic progress

One challenge in breeding is to accelerate programs to quickly release new varieties. Breeding 

is often constrained to one to two generations per year for annual crops, which limits genetic 

progress. Several methods have been proposed to reduce generation time, including recently 

“speed breeding” (40). Speed breeding consists in controlling photoperiod and temperature to 

get optimal growing conditions and accelerate the time elapsed from seed to seed, allowing up 

to six spring wheat generations per year. Thus, a great number of segregation and 

recombination events can occur in a short time, allowing to rapidly produce varieties combining 

favorable alleles. PS could have two applications that could work particularly well if combined 
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with speed breeding. The first application could be implemented in the speed breeding process 

itself. During this process, each plant is unique and is phenotypically quite different from what it 

would look in the field, which makes direct selection impossible except for phenology, height 

and some disease resistance traits. But molecular markers or NIR spectra could be measured 

on the plants or on the seeds which would allow predicting performance traits using GS (41), or 

at a lower cost PS. This would considerably increase genetic progress by reducing both the 

generation interval (speed breeding) and the phenotyping process (partially replaced by 

predictions). The second application would be to apply PS to reduce the field trials size after the

speed breeding process. Thousands of genotypes can be produced by speed breeding, and it 

would be difficult to phenotype all of them in field experiments (after multiplication in the 

nurseries). As NIR spectra can be collected at the end of the process or in the nurseries, PS 

could be used to predict genotype performance in the nurseries or with sparse testing in the 

following field experiments as described above.

D. GEI prediction  

Unlike molecular markers, NIR spectra are directly influenced by the response of the plants to 

the environmental conditions. This seems likely to result in a  lack of stability of the spectra in 

different environments.  It also may mean that the spectra are able to capture the genetic 

responses to a given environment (GEI), as illustrated in Rincent et al. (1), which opens new 

perspectives of application for PS. This GEI variance could be exploited to enhance predictive 

ability of local adaptation. One possibility to improve the GEI prediction models is to use NIRS 

collected in each environment to estimate environment specific covariance matrices. Krause et 

al. (21) compared different models (single and multi-kernel) using molecular marker, pedigree or

NIR spectra, to predict wheat grain yield in multi-environment trials. They found that the best 

multi-kernel integrating GEI was the one with the hyperspectral matrix. Using NIRS enhanced 

predictive accuracy of GEI compared to models that use molecular markers or pedigree. Similar
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results were observed by Montesinos et al. (20) and Lane et al. (23) where the interaction 

between NIR bands and environments was integrated in the models. The introduction of NIR 

information in the prediction model allowed increasing GEI prediction accuracy, which was not 

the case with molecular markers.

This multi-kernel method requires collecting the spectra of all genotypes in all the environments 

of the multi-environment trials, which is not possible with classical sparse testing designs. One 

possibility would be to grow a nursery in parallel of each trial, which would be much cheaper 

than a real trial. In this case, the trial will be dedicated to phenotype the training population, and 

the nursery to collect spectra on both training and predicted varieties. Krause et al. (21) 

proposed to reduce the size of the microplots, to measure NIR spectra on all varieties in all 

environments using a UAV. The objective is to find a compromise between the number of 

candidate varieties predicted with PS and the number of training varieties phenotyped for the 

target traits.

Another potential application would be to use NIR spectra collected in the different 

environments to estimate similarities between them, as proposed in Jarquin et al. (37) and 

Heslot et al. (42) with environmental covariates. In comparison to classical environmental 

covariates (e.g. temperature, hydric balance, radiation), NIRS has the advantage of capturing 

signals from the plant that could be influenced by the experienced stresses. GEI models 

enriched with NIRS would be particularly useful to make predictions in multi-environment trials. 

This application of PS could potentially allow making predictions in new environments (no other 

phenotype than NIR spectra are collected in these environments) by estimating the similarity 

between the new environment and the calibration environments. NIR spectra can also be used 

as a covariate in the predictive model to characterize the GEI. Lane et al. (23) proposed to take 

into account the GEI by using wavelengths as covariates in the predictive model through 

functional regression. They predicted yields of known hybrids in an unknown environment and 
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found that taking into account GEI with covariates worked better than regular H-BLUP. The 

different models tested in these studies underline that NIRS can be a good predictor of GEI, and

in many different ways. These results are very promising to enhance predictive ability in the 

context of multi-environment trials. 

E. Making use of historical NIRS data in prediction  

In GS the enrichment of the training set with historical data from multiple environments can 

improve predictive ability by increasing the size of the training set and by limiting the effect of 

atypical years that are difficult to predict with reduced and traditional datasets (43). The use of 

historical data might be more complicated with PS, as NIR spectra are likely to be more specific 

to the environment in which they are measured. To estimate the NIR similarity matrix (H) 

between historical varieties characterized with NIRS over successive years (the varieties 

changing from one year to another), the effect of environment and GEI should be accounted for 

and corrected from the spectra. One option would be to use check varieties for which NIR 

spectra would be collected each year to determine the transformation from the spectra collected

in one environment to the spectra collected in another environment. 

F. The case of perennials  

Genetic resources for perennials are usually conserved as collections in nurseries. These 

collections typically include individuals from different species, populations, genotypes as well as 

clones. In this case, we foresee several potential applications of PS. First, as already mentioned

in the case of genebanks, NIRS could be used to rapidly screen these resources for target traits

that are typically difficult to evaluate on a large number of individuals, such as fruit quality or 

phenology. Second, in a more advanced breeding context, one could imagine that progenies 

from controlled crosses could be planted near a well characterized reference panel of widely 

cultivated varieties. NIRS data could be collected at the same time on both reference and 
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candidate individuals to limit environmental heterogeneity between NIRS matrices from training 

and test sets, and a model could be trained by using phenotypic data potentially obtained in 

other sites for the reference panel in order to predict the performance of the candidates in these 

particular sites. This scenario corresponds to GLOB prediction, which proved to be quite 

efficient for some traits in wheat and poplar in Rincent et al. (1).

G. Other applications  

G.a. Genotype inference

Whalen et al. (44) described a new application of NIRS for breeding beyond PS: the use of 

High-Throughput Phenotypes (HTP) such as NIRS to infer genotypes. They illustrated their 

approach with simulations, in which spectra resulted from an additive genetic model, with 100 

QTLs per chromosome and heritability of wavelength ranging between 0.1 and 0.7. From that, 

they fit a model which links the segregation states at each locus with the HTP, for the training 

population. Then, this model was applied to predict the segregation states of non genotyped 

varieties. They concluded that under certain conditions it was possible to infer the genotypes of 

individuals derived from biparental crosses. The HTP-enabled genomic prediction (with 

genotypes inferred from HTP data) yielded higher accuracies than PS, the best accuracies 

being from classic genomic prediction models with real genotypes. However, it is important to 

note that PS does not only capture additive genetic effects, but also epistatic and GEI. This 

advantage of PS over GS could not be illustrated here, as only additive effects were simulated. 

Nevertheless this application seems very promising for breeding, especially for species with 

high genotyping cost.    

Furthermore, as PS relies on global relatedness between genotypes derived from NIRS, it could

be difficult to predict traits with mono- or oligogenic genetic architecture. Hence this transition 

proposed by Whalen et al. (44) from NIRS to marker data allows to apply GS but also QTL 
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detection. This shows that the use of NIRS instead of genotyping in breeding may be adapted to

contrasted genetic architectures. A demonstration of its usefulness with real data remains to be 

conducted.

G.b. Hybrid prediction

As NIR spectrum is a phenotype, it captures both additive and interaction effects. For this 

reason, it is possible that the NIRS covariance matrix could be used to predict hybrid 

performances, taking  into account both general and specific combining abilities. The idea would

be to collect NIR spectra on the hybrids to estimate a covariance matrix tacking interaction 

effects into account. One option would be to collect NIRS data on large collections of hybrids in 

nurseries, and phenotype only part of the hybrids in classical multi-environment trials, possibly 

with the sparse testing approach described above.

G.c. Progeny sorting

In some programs, breeders are interested in quickly characterizing progenies from controlled 

crosses with respect to their resemblance to their parents. This is typically the case when 

crossing an established widely-used variety with a donor genotype with the aim to introgress 

particular features from the donor to the variety. An example of this would be the case of 

grapevine for which a current challenge is to quickly breed varieties with resistance to biotic 

factors while maintaining some established quality for wine making. In this case when a given 

variety is crossed with a disease resistant genotype, it is usually quite straightforward using 

marker assisted selection to select with molecular markers the progenies that carry disease 

resistant genes, but for wine quality it is much more complicated. The goal would be to select 

among the resistant progenies those that are more similar to the parental wine-making variety, 

which using molecular markers is a very difficult task without considering prior knowledge on the
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genetic architecture of the traits. In this particular case NIRS could be useful to provide a 

distance between the resistant progenies and their parents.

Conclusion

We have reviewed the different approaches that have so far been proposed in literature to 

predict agronomic traits with NIRS, from prediction at the plot/individual level to PS and GLOB 

selection. NIRS has been intensively used to make predictions at the plot or genotype level, 

considering NIRS as a secondary trait or as a yield proxy. The originality of PS and GLOB 

selection as defined in Rincent et al. (1) is that NIR spectra are used in a similar way as 

molecular markers in GS. They indeed supposed that NIR spectra were able to capture genetic 

relationships between individuals. PS resulted in good predictive abilities (often similar or even 

higher than those obtained with GS), even when the predicted trait was completely independent 

from the tissue analyzed with NIRS (e.g. different environments). The high-throughput and low-

cost of this approach makes it interesting to increase breeding efficiency in comparison to GS, 

particularly for species for which genotyping is expensive, or for crops for which NIRS data are 

already routinely collected in the breeding programs. We have also proposed different promising

applications of PS in breeding and prebreeding among which some can readily be applicable, 

while others require further work in order to test and optimize this approach.
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Tables

Table 1. Selection of work using NIRS information in the context of breeding.  The papers 

are sorted according to the type of prediction made with NIRS information from NIRS as a proxy

trait to phenomic selection (PS). For details see the text. PLS-R: Partial Least Squares 

Regression, VI: Vegetation Index, UAV: Unmanned Aerial Vehicle, OLS: Ordinary Least 

Squares, G-BLUP: Genomic Best Linear Unbiased Prediction, LASSO: Least Absolute 

Shrinkage and Selection Operator, GLOB: Genomi-Like Omics-Based.

Reference Type of technology Statistical 

method

Type of 

prediction

Prediction setting

Ferrio et al.

(15)

NIR spectroscopy in the 

laboratory on milled grains, 

wavelength range: 1100-

2500nm.

PLS-R NIRS as a 

proxy trait

Plot/individual level

Hernandez

et al. (26)

NIR spectroscopy in the 

field on plant canopy, 

wavelength range: 350-

2500nm. 

VIs, Ridge 

regression

NIRS as a 

proxy trait

Plot/individual level

Aguate et 

al. (24)

Hyperspectral imaging in 

the field (UAV), wavelength 

range: 392-850nm

VIs, PLS-R,

OLS,

NIRS as a 

proxy trait

Plot/individual level
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BayesB

Hayes et 

al. (18)

NIR spectroscopy in the 

laboratory on grains, 

wavelength range: 400-

2498nm.

Multi-trait G-

BLUP

NIRS as a 

secondary 

trait

Plot/individual level

Rutkoski et

al. (17)

Hyperspectral imaging in 

the field (UAV)

Multi-trait G-

BLUP

NIRS as a 

secondary 

trait

Entry/genotype 

level within each 

site-year

Sun et al. 

(19)

Hyperspectral imaging in 

the field (UAV)

Multi-trait G-

BLUP

NIRS as 

secondary 

trait

Entry/genotype 

level within each 

site-year

Montesino

s-Lopez et 

al. (20)

Hyperspectral imaging in 

the field (UAV), wavelength 

range: 392.03-850.69nm

VIs, PLS-R, 

OLS, BAyes B,

functional 

regressions

PS Entry/genotype 

level within each 

site-year

Krause et 

al. (21)

Hyperspectral imaging in 

the field (UAV), wavelength 

range: 380-850nm

G-BLUP

Single & 

multikernel

PS Entry/genotype 

level within each 

site-year

Galan et 

al. (25)

Hyperspectral imaging in 

the field (UAV), wavelength 

G-BLUP

Single & 

PS Entry/genotype 

level within each 
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range: 410-993nm multikernel,

LASSO and 

EN for feature 

selection

site-year

Cuevas et 

al. (22)

NIR spectroscopy in the 

laboratory on grains, 

wavelength range: 400-

2500nm.

G-BLUP

Gaussian 

Kernel

Arc-cosine 

kernel

PS Entry/genotype 

level within a 

single environment

Lane et al. 

(23)

NIR spectroscopy in the 

laboratory on grains, 

wavelength range: 1000-

2500nm.

PLSR, G-

BLUP, 

Functional 

Regression

PS & 

GLOB

Plot/individual level

& entry/genotype 

level within and 

across 

environments

Rincent et 

al. (1)

NIR spectroscopy in the 

laboratory on milled leaves 

and grains for wheat 

(wavelength range: 400-

2500nm) and milled wood 

for poplar (wavelength 

range: 1250-2500nm)

G-BLUP, 

Bayesian 

LASSO

PS & 

GLOB

Entry/genotype 

level within and 

across 

environments
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Table 2. Comparative predictive ability reported for prediction based on G and H 

matrices. GY: grain yield, DTHD: days to heading date, DMY: dry matter yield, HD: heading 

date, HT: height, CIRC: circumference, BF: bud flush, BS: bud set, RUST: resistance to rust. 

ORL: Orléans site (France), SAV: Savigliano site (Italy). Several predictive abilities were 

available in the study of Krause et al. (2019), one per flying date. When several methods were 

tested, the one with the highest predictive ability was kept for each modality. When the 

prediction was made in several environments, years or on different tissues for PS, the range of 

predictive ability is indicated in brackets.

 

References Species Traits Mean predictive ability

G matrix H matrix

Krause et al. (21) Wheat GY (without 

DTHD 

correction)

0.41 (0.19-

0.6)

0.42 (0-0.75)

Galan et al. (25) Winter rye DMY 0.6 0.59

Cuevas et al. (22) Wheat GY 0.46 0.37

Rincent et al. (1) Wheat S1 HD

GY

0.57

0.38

0.84 (0.78-0.88)

0.51 (0.37-0.62)

Wheat S2 HD 0.61 0.78 (0.67-0.83)
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GY 0.46

0.44 (0.28-0.53)

Poplar HT.ORL

CIRC.ORL

CIRC.SAV

BF.ORL

BF.SAV

BS.ORL

BS.SAV

RUST.ORL

0.56

0.61

0.77

0.72

0.73

0.73

0.59

0.61

0.64 (S1) / 0.49 (S2)

0.72 (S1) / 0.48 (S2)

0.80 (S1) / 0.46 (S2)

0.15 (S1) / 0.33 (S2)

0.32 (S1) / 0.09 (S2)

0.53 (S1) / 0.44 (S2)

0.34 (S1) / 0.45 (S2)

0.45 (S1) / 0.33 (S2)
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Figures

Figure 1. 

Prediction of a target trait for the selection candidates in different environments with 

GLOB selection. Training population is phenotyped for the target traits (e.g. productivity)

in the target environments. Omics or phenomic data (e.g. NIR spectra) are collected on 

both the candidate and the training individuals in a same reference environment, for 

capturing a genetic similarity between individuals. Genotypic values of the selection 

candidates are predicted for the target traits in each target environment. 
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Figure 2. Visualization of different filters applied on a spectrum dataset. Each color 

represents a bread wheat variety. Spectra were collected on grains with a lab spectrometer 

NIRS 6500 FOSS. A. raw spectra (no preprocessing) ; B. normalization (standard normal 

variate) ; C. first derivative of raw spectra ; D. first derivative on normalized spectra.
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Harnessing multivariate, penalized regression methods   for genomic prediction and  
QTL detection of drought-related traits in   grapevine  
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Table of content:

Table S1 Conversion from genotypic class (in ab x cd segregation) to biallelic gene-dose. 

Figure S2 Comparison between published and re-computed genotypic BLUPs. 

Figure S3 Comparison between published and re-computed broad-sense heritability estimates. 

Figure S4 Correlation and distribution of BLUPs for experimental data. 

Figure S5 Nested cross-validation scheme. 

Figure S6 Hierarchical clustering of PhenoArch traits. 

Figure S7 Linkage Disequilibrium pattern in Syrah x Grenache progeny. 

Figure S8 Prediction accuracy for all methods on simulated data. 

Table S9 Genomic prediction performance on simulated data for all methods and configurations. 

Figure S10 Prediction accuracy with 100 and 1000 simulated QTLs. 

Figure S11 Prediction accuracy at different heritability values among traits. 

Figure S12 Prediction accuracy with simulated data from Jia & Jannink (2012). 

Figure S13 Partial Area Under the Curve for FPR up to 0.1. 

Table S14 Genomic prediction performance on experimental grapevine data for all traits and methods. 

Table S15 Results of marker selection for all traits and methods. 

Figure S16 Genetic position of selected markers per trait and for all methods.

Figure S17 Most reliable QTL intervals displayed along the genetic map. 

Table S18 Complementary information about most reliable QTLs. 

Figure S19 Distribution of genotypic BLUPs according to genotypic class for each highly reliable QTL.

Table S20 List of genes underlying the most highly reliable QTLs with their annotations.  

Table S21 List and functional classification of annotated genes underlying the highly reliable QTL 

detected on chromosome 4 for TrS_night.WD_LG4, TE.WW_LG4, TE.WD_LG4, 

DeltaBiomass.WW_LG4, DeltaBiomass.WD_LG4. 

Figure S22 Prediction accuracy according to False Positive Rate for EN and EN.mFDR. 
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segreg

coding_
ab

phase coding_phased AC AD BC BD gene.
dose.
AC

gene.
dose.
AD

gene.
dose.
BC

gene.
dose.
BD

lmxll abxaa {0-} abxaa aa aa ba ba 2 2 1 1

lmxll abxaa {1-} baxaa ba ba aa aa 1 1 2 2

nnxnp aaxab {-0} aaxab aa ab aa ab 2 1 2 1

nnxnp aaxab {-1} aaxba ab aa ab aa 1 2 1 2

hkxhk abxab {00} abxab aa ab ba bb 2 1 1 0

hkxhk abxab {01} abxba ab aa bb ba 1 2 0 1

hkxhk abxab {10} baxab ba bb aa ab 1 0 2 1

hkxhk abxab {11} baxba bb ba ab aa 0 1 1 2

Table S1: Conversion from genotypic class (in ab x cd segregation) to biallelic gene-dose.
Table used to convert imputed genotypic class from Lep-MAP3 to additive gene dose according to the initial 
segregation of markers.

Grenache is considered as the father and Syrah the mother for the whole progeny for map construction

FigureS2_BLUPs_comparison_old-new.pdf
Figure S2: Comparison between published and re-computed genotypic BLUPs
For each trait, we plotted the new BLUPs with the BLUPs from Coupel-Ledru et al. (2014, 2016). The grey 
dashed line is the bisector and the red line is the regression line. Correlation between new and previous BLUPs as
well as p-value are indicated.

Figure S3: Comparison between published and re-computed broad-sense heritability estimates
Broad-sense heritability values estimated by Coupel-Ledru et al. (2014, 2016) are reported in red. Recomputed 
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heritability values are reported in blue with the 95% confidence interval.

Figure S4:  Correlation and distribution of BLUPs for experimental data
Lower panel: pairwise comparison of genotypic BLUP distributions with bivariate scatterplots with fitted lines 
(with local polynomes). 
Upper panel: Pearson’s correlation values and significant p-values (“.” < 0.1, “*” < 0.05, “**” < 0.01, “***” < 
0.001).
Diagonal panel: distributions of genotypic BLUPs for each trait
Trait order: PsiM.WW, DeltaPsi.WW, TrS.WW, KS.WW, TrS_night.WW, TE.WW, DeltaBiomass.WW, PsiM.WD,  
DeltaPsi.WD, TrS.WD, KS.WD, TrS_night.WD, TE.WD, DeltaBiomass.WD.
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Figure S5: Nested cross-validation scheme
Procedure for cross-validation we applied on simulated and real data for prediction.

Figure S6: Hierarchical clustering of PhenoArch traits
Clusterisation was done with R/hclust function from stats package. Red bars were added and represent the three 
cluster of traits we have done.
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Figure S7: Linkage Disequilibrium pattern in Syrah x Grenache progeny
Linkage disequilibrium was calculated for each chromosome separately with the 3,961 SNP markers with 
estimLd function and plotted with plotLd function (both from rutilstimflutre R package). The purple line 
corresponds to the 95% quantile of the LD distribution (where r²=0.84).

Figure S8: Prediction accuracy for all methods on simulated data
Genomic prediction accuracy (Pearson’s correlation between predicted and simulated genotypic values) of 11 
methods applied to 3,961 markers and two simulated traits in a bi-parental population, with four heritability 
values and four QTL configurations (effect x distribution among traits). Major: 2 QTLs; minor: 50 QTLs; same:
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QTLs at the same positions for both traits; diff: QTLs at different positions between traits. For each heritability 
value and configuration, prediction accuracy was averaged over 100 values (2 traits x 10 simulation replicates x 5
cross-validation folds). The error bar corresponds to the 95% confidence interval around the mean. In comparison
with Figure 1, four methods are added: SIM, LASSO.GB, MTV_RR and spring.dir.ols. 

TableS9_results_all-methods.tsv

Table S9: Genomic prediction performance on simulated data for all methods and 
configurations
Genomic prediction performance, as measured by different metrics, of 11 methods applied to 3,961 markers and 
two simulated traits in a bi-parental population, with four heritability values and four QTL configurations (effect 
x distribution among traits). Major: 2 QTLs; minor: 50 QTLs; same: QTLs at the same positions for both traits; 
diff: QTLs at different positions between traits. Mean results are averaged over 2 traits, 10 simulation replicates x
5 cross-validation folds. For each metric measured, the standard error is also given (last columns, suffix “SE”).

This table can be downloaded at: supplementary.

Figure S10: Prediction accuracy with 100 and 1000 simulated QTLs
Genomic prediction accuracy (Pearson’s correlation between predicted and true genotypic values) of 11 methods 
applied to 3,961 markers and phenotypic data simulated in a bi-parental population with four heritability values 
and QTL configurations (effect x distribution among traits). minor100: 100 QTLs; minor1000: 1000 QTLs; 
same: QTLs at the same positions for both traits; diff: QTLs at different positions between traits. Results are 
averaged over 2 traits x 5 simulation replicates x 5 cross-validation folds. The error bar corresponds to the 95% 
confidence interval around the mean.
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Figure S11: Prediction accuracy at different heritability values among traits
Genomic prediction accuracy (Pearson’s correlation between predicted and simulated genotypic values) of seven 
methods applied to 3,961 markers and two simulated traits in a bi-parental population, with different heritability 
values (0.1 and 0.5), 20 or 200 QTLs, a genetic correlation of 0.5 and a genetic variance of 1. QTLs were the 
same for both traits. For each trait, results are averaged over 10 simulation replicates x 5 cross-validation folds.
The error bar corresponds to the 95% confidence interval around the mean.

Figure S12: Prediction accuracy with simulated data from Jia & Jannink (2012)
Genomic prediction accuracy (Pearson’s correlation between predicted and simulated genotypic values) of seven 
methods applied to simulated data from Jia and Jannink (2012). The simulated data comprised two traits, with 
500 observations for 2000 bi-allelic markers, 20 or 200 QTLs and 24 simulation replicates for each simulation 
parameter set. The two simulated traits had different heritability values (0.1 and 0.5), a genetic correlation of 0.5, 
and no error correlation.
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Figure S13: partial Area Under the ROC Curve for FPR up to 0.1
Partial area under the curve (pAUC), calculated from the ROC curve (Figure 2) for FPR ranging from 0 to 0.1,
for  five  methods with FPR reaching 0.1 applied to  3,961 markers  and two simulated traits  in  a  bi-parental
population, with two heritability values and four QTL configurations (effect x distribution among traits). 
major: 2 QTLs;  minor: 50 QTLs;  same: QTLs at the same positions for both traits;  diff: QTLs at different
positions between traits. 

TableS14_all_results_mean_real-data-pharch.tsv

Table S14: Genomic prediction performance on experimental grapevine data for all traits, and 
methods
Genomic prediction performance, as measured by different metrics, of 11 methods for 14 traits in a bi-parental 
grapevine population. Mean results are averaged over 10 cross-validation replicates x five cross-validation folds. 
As in Table S9, the standard error is also given (last columns, suffix “SE”) for each metric measured.

This table can be downloaded at: supplementary.

TableS15_selected_markers_pharch_all-resp_PVE.tsv
Table S15: Results of marker selection for all traits and methods
genetic.position : genetic position on the SNP map (in cM)
PVE: percentage of variance explained.  Marker selection is not extended to LD.

This table can be downloaded at: supplementary.

FigureS16_selection_all-resp.pdf
Figure S16: Genetic position of selected markers per trait and for all methods
Each marker selected by a given method is represented by a colored point, the color indicating the number of 
methods that have selected that specific marker. The boxes correspond to chromosomes and the x-axis to the 
position along the genetic map (in cM). Marker selection is not extended to LD.

This figure can be downloaded at: supplementary.
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FigureS17_MapGBS_most-reliable.pdf
Figure S17: Most reliable QTL intervals displayed along the SNP genetic map
SNP genetic map of the Syrah x Grenache progeny with QTL intervals represented with colored rectangles, 
hatched for traits under water deficit condition. Trait name and percentage of variance explained are indicated 
next to intervals. New QTLs are indicated by an asterisk before trait name.

This figure can be downloaded at: supplementary.

TableS18_reliable_QTLs_information.tsv
Table S18: Complementary information about most reliable QTLs
For each reliable QTL, the table indicates the genetic and physical position from which the QTL interval has been
defined, as well as physical and genetic QTL intervals. Methods which have selected the QTL and percentage of 
variance explained are indicated and we added a logical column (CIM SSR found) which report if the QTL has 
been published in Coupel-Ledru et al. (2014, 2016). If several markers were considered as highly reliable for the 
same QTL, the one with the largest PVE (from Table S15) was kept, then if several markers were at the same 
PVE, the first one was kept. An interval of physical position may be indicated corresponding to minimum and 
maximum of markers at the same genetic position.

This table can be downloaded at: supplementary.

FigureS19_boxplots_most_reliable_QTLs.pdf
Figure S19: Distribution of genotypic BLUPs according to genotypic class for each highly 
reliable QTL
Boxplot of genotypic BLUPs according to genotypic class in Syrah x Grenache progeny for the 25 most reliable 
QTLs. If several markers were considered as highly reliable for the same QTL, the one with the largest PVE 
(from Table S15) was kept, then if several markers were at the same PVE, the first one was kept. QTL position in
centiMorgan and percentage of variance explained are indicated. The red line represent the mean of the genotypic
BLUP. 

This figure can be downloaded at: supplementary.

 
TableS20_genes_highly_reliable_QTLs.csv

Table S20: List of genes underlying the most highly reliable QTLs with their annotations
qtl.id: unique identifier of the QTL defined its location chromosome, start and end position in bp.
traits.id: list of traits overlapping in this QTL.
trait.of.interest: trait for which the QTL was determined as highly reliable within the overlapping traits.
gene.loc.in.QTL.peak: yes if the gene is located into the peak of the QTL, no if not.
vitvi.geneid: gene name retrieved from the reference Vitis genome 12X.v2
refseq.geneid: ncbi.gene.id, other.alias: other identifiers for this gene, retrieved from the VCost.v3 annotation 
(Canaguier et al. 2017).
chr, start.IGGP12Xv2 and end.IGGP12Xv2: chromosome, start position (in bp) and end position (in bp) of the 
gene on the reference Vitis genome 12X.v2.
refseq.genedesc: putative function of the gene retrieved from NCBI, when available.
gene.name: gene name retrieved from TAIR and UniProt, when available.
TAIR.locus: locus in Arabidopsis for the gene’s homolog retrieved from TAIR and UniProt, when available.
full.description: complete description of the gene function, retrieved from TAIR and UniProt, when available.
mean.expression.leaves, min.expression.leaves, max.expression.leaves: mean, min and max expression of the 
gene in the leaves retrieved from GREAT. Mean, max and min were calculated from all RNA-seq data available 
on the platform for leaves samples. They are expressed in log(RPKM+1) expression of the gene in the shoots 
retrieved from GREAT. Mean, max and min were calculated from all RNA-seq data available on the platform for
shoots samples.

This table can be downloaded at: supplementary.
TableS21_genes_QTL_chr4.csv
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Table S21: List and functional classification of annotated genes underlying the highly reliable 

QTL detected on chromosome 4 for TrS_night.WD_LG4, TE.WW_LG4, TE.WD_LG4, 

DeltaBiomass.WW_LG4, DeltaBiomass.WD_LG4
qtl.id: unique identifier of the QTL defined its location chromosome, start and end position in bp.
traits.id: list of traits overlapping in this QTL.
vitvi.geneid: gene name retrieved from the reference Vitis genome 12X.v2
refseq.geneid: ncbi.gene.id, other.alias: other identifiers for this gene, retrieved from the VCost.v3 annotation 
(Canaguier et al .2017).
chr, start.IGGP12Xv2 and end.IGGP12Xv2: chromosome, start position (in bp) and end position (in bp) of the 
gene on the reference Vitis genome 12X.v2.
peak.info: information about the location of the peak of the QTL; “in peak” means that the gene falls into the 
peak of the QTL; “closest to peak” means that the gene is outside the peak of the QTL but is the closest gene to 
the peak.
refseq.genedesc: putative function of the gene retrieved from NCBI, when available.
gene.name: gene name retrieved from TAIR and UniProt, when available.
TAIR.locus: locus in Arabidopsis for the gene’s homolog retrieved from TAIR and UniProt, when available.
full.description: complete description of the gene function, retrieved from TAIR and UniProt, when available.
mean.expression.leaves, min.expression.leaves, max.expression.leaves: mean, min and max expression of the 
gene in the leaves retrieved from GREAT. Mean, max and min were calculated from all RNA-seq data available 
on the platform for leaves samples.
expression of the gene in the shoots retrieved from GREAT. Mean, max and min were calculated from all RNA-
seq data available on the platform for shoots samples.
integrated.function: integrated function at the organ or plant level, if it is explicitly quoted in the column 
“full.description”.
cell.or.mol.function: general cellular or molecular function of the gene, when relevant.
constituant.or.specific.molecule: when relevant, name of the constituent or specific molecule related to the 
cellular or molecular function.
activation.condition: condition triggering the gene activation, when explicitly quoted in the column 
“full.description”.

relation.to.traits.of.interest: « related » if related to the traits in this QTL (TrS_night, TE, DeltaBiomass),

“unrelated” if not.

This table can be downloaded at: supplementary.

Figure S22: Prediction accuracy according to False Positive Rate for EN and EN.mFDR
For each varying parameter for both methods (i.e. lambda for EN and mFDR for EN.mFDR), we reported the 
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False Positive Rate according to the prediction accuracy, calculated on simulated data, for the two minor 
configurations and the four heritability values.
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Figure S1 Additive relationship between half-diallel parents 
and diversity panel cultivars.
Additive relationship was calculated with the VanRaden (2008) method, with 32,894 SNPs. For each diversity 

panel genotype, its additive relationship with the five half-diallel parents was computed. Each point 

corresponds to one cultivar in the diversity panel, ordered by on the x-axis subpopulation (TE: Table East, WE: 

Wine East, WW: Wine West), and colored according to the corresponding half-diallel parent genotype.

trait years missing.data.percent transformation fixed.effects random.effects

mal.ripe 2015 38 NA none geno, cross, x

tar.ripe 2015 38 NA none geno, cross, x

shik.ripe 2015 42 log block geno, cross, x

shiktar.ripe 2015 42 log block geno, cross, x

maltar.ripe 2015 38 log none geno, cross, x

verday
2013, 
2014, 
2017

36 NA
block, year, 
block:year

geno, cross, x, 
geno:year, cross:year

samplday
2013, 
2014, 
2015

28 NA block, year
geno, cross, geno:year,
year:x

vermatu 2013 33 NA block geno, cross, x

clucomp
2013, 
2014, 
2015

30 NA
block, year, 
block:year

geno, cross, geno:year,
cross:year, year:x

nbclu
2013, 
2014, 
2015

28 sqrt
block, year, 
block:year

geno, cross, x:y, 
geno:year, cross:year, 
year:x

mcl 2013, 
2014, 

28 NA year geno, cross, x:y, 
geno:year, cross:year, 
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2015 year:x, year:y

mcwi 2013 32 NA block geno, cross

mcw
2013, 
2014, 
2015

29 log
block, year, 
block:year

geno, cross, x:y, 
geno:year, cross:year, 
year:x

mbw
2013, 
2014, 
2015

29 sqrt
block, year, 
block:year

geno, cross, x:y, 
geno:year, cross:year

vigour
2014, 
2015

16 log
block, year, 
block:year

geno, cross, x:y, 
geno:year, cross:year, 
year:x, year:y

trait var.geno var.cross H2 H2.low H2.high CV.geno CV.geno.low CV.geno.high var.cross.geno

mal.ripe 460 85.94 0.58 0.55 0.61 0.17 0.14 0.19 0.16

tar.ripe 230 50.68 0.70 0.68 0.73 0.16 0.14 0.18 0.18

shik.ripe 0.379 0.40 0.80 0.78 0.82 0.26 0.22 0.31 0.51

shiktar.ri
pe

0.377 0.43 0.84 0.82 0.86 0.09 0.08 0.10 0.53

maltar.ri
pe

0.042 0.02 0.74 0.71 0.76 0.73 0.55 1.00 0.31

verday 13.1 3.84 0.8 0.79 0.81 0.02 0.01 0.02 0.23

samplda
y

36.2 30.63 0.82 0.81 0.84 0.02 0.02 0.03 0.46

vermatu 48.0 19.30 0.65 0.63 0.68 0.18 0.15 0.20 0.29

clucomp 1.53 0.16 0.81 0.80 0.83 0.23 0.21 0.24 0.09

nbclu 0.742 0.15 0.84 0.83 0.85 0.20 0.18 0.22 0.17

mcl 2.25 0.53 0.80 0.78 0.81 0.12 0.11 0.13 0.19

mcwi 1.05 0.58 0.50 0.46 0.52 0.12 0.10 0.15 0.35

mcw 0.083 0.05 0.83 0.82 0.84 0.05 0.05 0.06 0.36

mbw 0.019 0.02 0.92 0.91 0.93 0.1 0.09 0.11 0.51

vigour 0.096 0.01 0.77 0.76 0.80 0.12 0.11 0.13 0.06

Table S1 Information on mixed model selection and 
genotypic BLUP estimation for 15 traits in the half-diallel 
population.
trait: see abbreviations meaning in Methods section.

years: years in which the trait was phenotyped.

missing.data.percent: percentage of missing raw phenotypic data, relative to the full initial design.

transformation: transformation applied to raw phenotypic data, before model selection and BLUP estimation 

(NA: none; sqrt: square root; log: neperian logarithm).

fixed.effects / random.effects: fixed and random effects kept in the final selected model, as defined in 

Methods section.
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var.geno: intra-cross genotypic variance estimate (534 to 624 levels, depending on the trait).

var.cross: cross variance estimate (10 levels)

H2 / H2.low / H2.high: broad-sense heritability estimate and its confidence interval bounds computed 

through bootstrapping.

CV.geno / CV.geno.low / CV.geno.high: estimated coefficient of variation of genotypic effect and its 

confidence interval bounds.

var.Cross.geno:  ratio, as defined in Methods section.

Figure S2 Per cross broad-sense heritability in the half-
diallel.
For crosses and traits, see abbreviation meaning in Methods section.
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Figure S3 Distribution of genotypic value estimates (BLUPs) 
for 15 traits, in each diversity panel subpopulation and each 
half-diallel cross.
Subpopulation or cross size is indicated below its name. All BLUPs were centered and scaled separately for 

each subpopulation or cross. TE: Table East, WE: Wine East, WW: Wine West. For traits, see abbreviations 

meaning in Methods section. Values of the parents are indicated by their initials as defined in Table S4.
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Figure S4 PCA applied to genotypic BLUPs for the 15 traits.
a: In the diversity panel population (TE: Table East, WE: Wine East, WW: Wine West); b: In the half-diallel 

population. For traits, see abbreviations meaning in Methods section.

Parent 1 
genotype

Parent 2 
genotype

Progeny genotypes (expected 
proportion in parenthesis)

Parental average 
genotype

0 0 0 (1) 0

0 1 0 (0.5) / 1 (0.5) 0.5

0 2 1 (1) 1
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1 1 0 (0.25) / 1 (0.5) / 2 (0.25) 1

1 2 1 (0.5) / 2 (0.5) 1.5

2 2 2 (1) 2

Table S2 Computation of parental average genotypes. 
For each cross and locus, parent genotypes (0, 1 or 2 for each parent) were used to derive the expected 

proportion of each genotype in the progeny under Mendelian segregation and from there, the parental 

average genotype. Probabilities are indicated in parentheses.

a:

Cross S1a-RR
S1a-
LASSO

S1b-RR
S1b-
LASSO

S2-RR S2-LASSO

CSxPN 0.33 0.03 0.4 0.38 0.22 0.35
CSxS 0.68 0.22 0.67 0.74 0.72 0.32
GxCS 0.52 0.43 0.42 0.45 -0.08 -0.23
GxPN 0.6 0.52 0.56 0.49 -0.45 -0.3
GxS 0.77 0.58 0.71 0.65 0 0.11
SxPN 0.29 0.06 0.37 0.42 0.61 0.35
TNxCS 0.57 0.15 0.61 0.59 0.41 0.63
TNxG 0.72 0.52 0.85 0.81 0.21 0.61
TNxPN 0.38 0.22 0.67 0.56 -0.02 0.01
TNxS 0.78 0.36 0.78 0.77 0.25 0.22

b:

Trait S1a-RR
S1a-
LASSO

S1b-RR
S1b-
LASSO

S2-RR S2-LASSO

mal.ripe 0.9 0.82 0.91 0.82 0.73 -0.01
tar.ripe 0.95 0.94 0.95 0.91 0.7 0.65
shik.ripe 1 1 0.98 0.99 0.19 0.96

shiktar.ripe 1 0.99 0.98 1 0.16 0.56
maltar.ripe 0.98 0.96 0.96 0.97 0.72 0.03
verday 0.93 0.95 0.92 0.9 0.66 0.81

samplday 0.99 0.99 0.98 0.98 0.82 0.59
vermatu 0.97 0.95 0.95 0.95 0.63 0.72
clucomp 0.84 0.55 0.87 0.75 0.26 0.55
nbclu 0.82 0.91 0.95 0.91 -0.64 -0.75
mcl 0.85 0.93 0.86 0.92 0.52 0.76
mcwi 0.94 0.94 0.94 0.92 0.77 0.83
mcw 0.93 0.79 0.96 0.96 0.74 0.81
mbw 0.96 0.94 0.96 0.97 0.83 0.63
vigour 0.85 0.67 0.86 0.77 -0.15 -0.09
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Table S3 Predictive ability of cross mean. 
Pearson’s correlation between the observed cross mean and the one predicted based on parental average 

genotypes. Values are reported for scenarios 1a, 1b and 2, with RR and LASSO methods. The best PA value for 

each scenario is indicated in bold.

a: per-cross PA (correlation based on 15 observations); b per-trait PA (correlation based on 10 observations).

Figure S5 Observed vs predicted cross means for each trait 
in the half-diallel
Observed vs predicted (based on parental average genotypes) cross mean for each trait in the half-diallel, 

according to four prediction modalities: with allelic effects estimated in the half-diallel or in the diversity 

panel (S1a and S2, respectively) and with RR or the LASSO. The dashed line indicates the perfect fit (with 

slope=1 and intercept=0), points deviating from this line indicate bias. 
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Figure S6 Observed vs predicted individual genotypic values 
for 15 traits.
Comparison between scenarios 1a (left) and 2 (right). Each point represents one offspring of one cross. A 

linear regression was fitted for each cross, with standard error displayed in grey. For scenario 1a, predicted 

genotypic values were averaged over 10 cross-validation repetitions. Identity (y=x) is displayed with a dashed 

line. Genotypic values were predicted using RR method.
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Figure S7 Distribution of predictive ability for Mendelian 
sampling genomic prediction.
Boxplots of PA values, calculated for all individuals within a cross, for scenarios 1a (green), 1b (red) and 2 

(yellow), for the best method among RR and LASSO

a: distribution for each trait, b: distribution for each cross, 
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Figure S8 Correlation plot for PA of cross mean and potential 
explanatory variables.
PA S1a, PA S1b, PA S2 are PAs for the three scenarios 1a, 1b and 2, respectively.

a: per-cross PA and genetic variables. Prop non seg markers is the proportion of non-segregating markers in 

each half-diallel cross. AddRel TS VS is the mean additive relationship between TS and VS. Parents dist 1axis 

and parents dist 2axes are the pairwise distances between half-diallel parents on the PCA for the first axis or 

the first two axes, respectively. Parents Add Rel is the pairwise additive relationship between half-diallel 

parents. 

b: per-trait PA and trait-related variables. H2 diall and H2 p279 are broad-sense heritability in the half-diallel 

and the diversity panel, respectively. Var cross geno is the proportion of genetic variance due to differences 

between crosses, as described in Methods.
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Figure S9 Distribution of predictive ability for Mendelian 
sampling genomic prediction, after training set optimization.
Boxplots of individual PA values over all traits and crosses in scenario 2, for different TS sizes and optimization

methods, as described in Methods. “Random” method corresponds to random sampling of TS genotypes. 

“None" corresponds to the use of the whole diversity panel as TS. Optimization was performed for each cross 

of the half-diallel. The best predictive ability was kept between RR and LASSO for each trait and cross.

Figure S10 Mean offspring observed genotypic value vs 
parental average observed genotypic value in each half-
diallel cross for 15 traits
The grey dashed line corresponds to identity (x=y).
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Figure S11 PCA of predicted cross mean genotypic values for
all 38,781 possible simulated crosses between the 279 
varieties of the diversity panel
Prediction was based on parental average genotypes and marker effects estimated with RR in the diversity 

panel. For each simulated cross, the dot color corresponds to the combination of panel subpopulations from 

which the parents of the cross originate. Values of the half-diallel crosses were projected. 

Cross Female Male

SxPN NA PN: Pinot Noir

CSxPN CS: Cabernet-Sauvignon PN: Pinot Noir

GxPN G: Grenache PN: Pinot Noir

TNxPN NA PN: Pinot Noir

CSxS CS: Cabernet-Sauvignon S: Syrah

GxS G: Grenache S: Syrah

TNxS TN: Terret Noir S: Syrah

GxCS G: Grenache NA

TNxCS TN: Terret Noir NA

TNxG TN: Terret Noir NA

Table S4 Partial pedigree of half-diallel crosses used for 
marker imputation.
As the software Fimpute3 does not handle hermaphroditism, we declared a partial pedigree which maximizes 

the number of crosses with both parents defined.
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Training set
Training set sizes 
(depending on trait)

Validation set
Validation set sizes 
(depending on trait)

Scenario 1a
Random sampling 
of 9/10th of the 
half-diallel

min: 477
max: 558

The remaining 
1/10th of the 
half-diallel

min: 53
max: 62

Scenario 1b
Three bi-parental 
crosses with one 
common parent

min: 140
max: 193

The fourth cross 
with the same 
common parent

min: 40
max: 67

Scenario 2
The whole diversity 
panel

min: 234
max: 267

Each cross of the 
half-diallel

min: 531
max: 620

Table S5 Training and validation sets composition for each 
scenario used to assess genomic prediction

Figure S12 Observed vs predicted cross mean for 15 traits. 
Predicted values per cross are displayed for realized genotypes or parental average genotype, and for 

scenarios 1a (circle) or 2 (triangle). Observed cross mean is the averaged genotypic value over all offspring 

within a cross. Identity (y=x) is displayed with a dashed line. Predicted values were obtained with RR. 
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Supplementary information
Interest of phenomic prediction as an alternative to genomic 
prediction in grapevine

Charlotte Brault, Juliette Lazerges, Agnès Doligez, Miguel Thomas, Martin Ecarnot, Yves 
Bertrand, Gilles Berger, Thierry Pons, Pierre François, Loïc Le Cunff, Patrice This, Vincent 
Segura

Figure S1 Heritability distribution across wavelengths 
for each pre-process
Comparison of broad-sense heritability between the six NIRS pre-processes, displayed for both 
populations, three year and three tissue modalities.
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Figure S2 Co-inertia analysis between SNP and multi-
year wood and leaves NIRS matrices
A, B, C: in the diversity panel
D, E, F: in the half-diallel
A, D: mixed model with only genotype effect, resulting NIRS matrix of genotype BLUPs
B, E: mixed model with genotype and subpopulation or cross effects, resulting NIRS matrix of 
genotype BLUPs only
C, F: mixed model with genotype and subpopulation or cross effects, resulting NIRS matrix of 
genotype + subpopulation or cross BLUPs
All mixed models were fitted after der1 pre-process.
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Figure S3 Co-inertia analysis between SNP, single and 
multi-year wood and leaves NIRS matrices
A: in the diversity panel
B: in the half-diallel
Suffixes “20”, “21”, “2y” correspond to 2020, 2021 and multi-year NIRS, respectively. All mixed 
models were fitted after der1 pre-process.

Figure S4 Distribution of phenomic prediction predictive
ability per pre-process and per trait
A: in the diversity panel with rrBLUP method (implemented with glmnet); B: in the half-diallel with 
HBLUP method (implemented with lme4GS).

Distribution of predictive ability is displayed across two tissue x three year modalities, times ten 
crosses in the half-diallel.
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Figure S5 Predictive ability of phenomic prediction with 
a single vs both tissues
For “2 years” NIRS BLUPs derived after der1 pre-process. A: in the diversity panel, B: in the half-
diallel. Predictive ability values are displayed per trait for both populations, and also per cross in the 
half-diallel. Prediction models were fitted with glmnet in the diversity panel (except for wood+leaves
configuration) and with lme4GS in the half-diallel. Error bars correspond to 95% confidence intervals 
around the mean, calculated for the ten CV repetitions. 

D.1. Supplementary information for article III 249



Figure S6 Comparison of methods for genomic 
prediction
A: in the diversity panel; B: in the half-diallel. Predictive ability values are displayed per trait for both 
populations, and also per cross in the half-diallel. Error bars correspond to 95% confidence intervals 
around the mean, calculated for the ten CV repetitions.
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Figure S7 Distribution of phenomic prediction predictive
ability over 15 traits in each half-diallel cross
For “2 years” NIRS BLUPs derived after der1 pre-process. Average PA per cross is displayed above 
each cross and with a red cross. Prediction models were fitted with lme4GS and included both wood 
and leaves NIRS relationship matrices.
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Figure S8 Predictive ability of combined vs genomic 
prediction models
A: in the diversity panel (error bars correspond to 95% confidence intervals around the mean, 
calculated for the ten CV repetitions); B: in the half-diallel (distribution over 10 crosses and 10 CV 
repetitions). Prediction models were fitted with lme4GS and included as relationship matrices: SNPs, 
SNPs and leaves NIRS, SNPs and wood NIRS or SNPs, wood and leaves NIRS. Wood and leaves NIRS 
BLUPs were derived from a mixed model including both years, after der1 pre-process
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Abstract

Grapevine breeding needs to address two main issues over the next few years: reducing pesti-
cide use and adaptating to climate change. If the selection of new resistant grapevine cultivars
has been accelerated, breeding remains a long and costly process for a perennial species such as
grapevine. That is why I tested and compared different methodologies for optimizing the breed-
ing of new grapevine varieties. The first is genomic prediction (GP), which relies on the use of
molecular markers to train a model to predict genetic values. The second is phenomic prediction
(PP), which relies on the use of spectra measured on plant tissues, which is cheaper and more
high-throughput than genotyping. I used GP and PP under different configurations to evaluate
their interest in breeding programs. For that, I used three grapevine populations with contrasted
relatedness, both genotyped and phenotyped. First, I compared univariate and multivariate GP
models in a bi-parental population (N=188), on 14 traits related to drought. Multivariate meth-
ods did not perform better than univariate ones, and ranking between methods depended on the
genetic architecture and heritability of the trait. Secondly, I tested across-population GP (a more
applicable configuration for breeding) for 15 traits, by training the prediction model in a diversity
panel (N=277) and using 10 bi-parental families of a half-diallel (N=622) as validation sets. For
that, I first predicted the average genetic value of each family (for the first selection step of future
crosses to be made) and then the genetic values of individuals within each family (for the second
selection step of offspring within crosses once they have been realized). Prediction accuracy for
these two steps appeared to be satisfying for the application of GP in breeding programs, com-
pared to within-population prediction accuracy. Finally, I tested for the first time the application
of PP in grapevine, by using near-infrared spectra measured on wood and leaves. Prediction ac-
curacies were encouraging, despite a suboptimal framework because phenotypes and spectra were
not measured in the same years. In conclusion, these results provide a good overview of methods
and configurations that could be applied to optimize the selection of new grapevine varieties. For
this optimization to be effective, it will be necessary to define the varietal ideotype and to have a
reference population genotyped and phenotyped in several environments. My results allowed me
to propose a new breeding scheme that comprises two steps, the selection of crosses to be made
with GP and the selection of individuals within crosses with GP or PP. Such a scheme would allow
to increase genetic gain while decreasing the cycle length from 15 to 9 years.



Résumé

La sélection génétique de la vigne doit répondre à deux enjeux majeurs dans les prochaines années :
la réduction de l’utilisation de produits phytosanitaires et l’adaptation au changement climatique.
Si la sélection de variété résistantes a été grandement accélérée, la sélection de caractères d’inté-
rêt complexes reste un processus long et coûteux pour une plante pérenne comme la vigne. C’est
pourquoi j’ai testé et comparé différentes méthodologies pour optimiser la sélection de nouvelles
variétés de vigne. La première est la prédiction génomique (PG), qui repose sur les marqueurs
moléculaires pour entraîner un modèle de prédiction des valeurs génotypiques. La seconde est la
prédiction phénomique (PP), qui repose sur l’utilisation de spectres mesurés sur les tissus de la
plante, plus rapides et moins chers à obtenir que le génotypage. J’ai utilisé la PG et la PP dans
différentes configurations pour mesurer leur intérêt pratique dans les programmes d’amélioration.
Pour cela, je me suis basée sur trois populations de variétés de vigne avec des apparentements gé-
nétiques contrastés, préalablement génotypées et phénotypées. J’ai d’abord comparé des modèles
de PG univariés et multivariés dans une population bi-parentale (N = 188), sur 14 caractères relatifs
au stress hydrique. Les précisions de prédiction étaient bonnes pour les caractères héritables, les
méthodes multivariées n’étaient pas meilleures que les méthodes univariées, et le classement entre
les méthodes dépendait de l’architecture génétique du caractère. Dans un second temps, j’ai testé
la PG inter-population (configuration plus applicable en sélection) pour 15 caractères, en entraî-
nant le modèle de prédiction dans un panel de diversité (N = 277) pour prédire dans 10 familles
bi-parentales connectées en demi-diallèle (N = 622). Pour cela, j’ai prédit d’abord la moyenne des
familles (pour la sélection des futurs croisements à réaliser), puis la valeur des individus au sein de
chaque famille (pour la sélection d’individus au sein des croisements un fois qu’ils ont été réalisés).
Pour ces deux étapes, les précisions de prédiction en inter-population restaient satisfaisantes (par
rapport à l’intra-population) pour l’application de la PG dans les programmes d’amélioration. Fi-
nalement, j’ai testé la PP pour la première fois chez la vigne, en utilisant des spectres dans le proche
infrarouge obtenus sur bois et sur feuilles. Les précisions de prédiction en PP se sont révélées en-
courageantes, malgré un cadre suboptimal car les spectres et les phénotypes n’ont pas été mesurés
les mêmes années. En conclusion, ces résultats donnent un bon aperçu de ce qui pourrait être ap-
pliqué pour optimiser la sélection de nouvelles variétés de vigne. Pour que cette optimisation soit
effective, il faudra cependant bien définir l’idéotype variétal et avoir à disposition une popula-
tion de référence génotypée et phénotypée dans plusieurs environnements. Le nouveau schéma de
sélection que je propose sur la base de mes résultats comprend deux étapes : la sélection des croi-
sements à réaliser par PG et la sélection des individus au sein des croisements par PG ou PP. Un
tel schéma pourrait permettre d’augmenter le gain génétique par cycle et de diminuer la durée du
cycle de 15 à 9 ans.


	Introduction
	About grapevine
	Genotypic value prediction
	Thesis objectives

	Multivariate genomic prediction
	Summary of the chapter
	Preliminary tests
	Article I: Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine
	Application of some GP methods on field data
	Chapter general discussion

	Across-population genomic prediction
	Summary of the chapter
	Article II: Across-population genomic prediction in grapevine opens up promising prospects for breeding
	Variance prediction
	Chapter general discussion

	Interest of phenomic prediction as an alternative to genomic prediction in grapevine
	Introduction
	Material and Methods
	Results
	Discussion

	General discussion
	Strengths and weaknesses of the three populations and phenotypic data studied
	Comparison of results with other published studies
	Components of the predictive model and prediction optimization
	Accounting for GxE
	Practical guidelines for present and future grapevine breeding programs
	Further research prospects
	Conclusion

	Résumé en français
	Introduction
	Prédiction génomique univariée et multivariée appliquées à une population bi-parentale 
	Prédiction génomique inter-population
	Intérêt de la prédiction phénomique comme alternative à la prédiction génomique chez la vigne 
	Discussion générale

	Bibliography
	Appendix Chapter 1
	Book chapter phenomic selection

	Appendix Chapter 2
	Supplementary information for article I

	Appendix Chapter 3
	Supplementary information for article II

	Appendix Chapter 4
	Supplementary information for article III


