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Abstract 

Background: Top‑soil microbiomes make a vital contribution to the Earth’s ecology and harbor an extraordinarily 
high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such 
as the African continent. While several recent studies have documented patterns in global soil microbial ecology, 
these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of 
other regions where there is low data coverage. This is the case for sub‑Saharan Africa, where the number of regional 
microbial studies is very low in comparison to other continents.

Results: The aim of this study was to conduct an extensive biogeographical survey of sub‑Saharan Africa’s top‑soil 
microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. 
In this study, we sampled 810 sample sites across 9 sub‑Saharan African countries and used taxonomic barcoding to 
profile the microbial ecology of these regions. Our results showed that the sub‑Saharan nations included in the study 
harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted 
from the same sites, we demonstrated that the top‑soil microbiome is shaped by a broad range of environmental 
factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also 
developed a model to predict how soil microbial biodiversity in sub‑Saharan Africa might be affected by future 
climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be 
negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will 
benefit from the increase in annual precipitation.

Conclusion: This study represents the most extensive biogeographical survey of sub‑Saharan top‑soil microbiomes 
to date. Importantly, this study has allowed us to identify countries in sub‑Saharan Africa that might be particularly 
vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of 
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Introduction
The top-soil microbiome has been recognized for more 
than a century as a crucial part of the Earth’s ecology [1]. 
Not only are soil microorganisms ubiquitous across most 
terrestrial environments [2, 3], but they also play impor-
tant roles in the maintenance of soil fertility through nutri-
ent cycling as well as carbon and nitrogen sequestration 
[4–6]. Major studies, led by the Earth Microbiome Pro-
ject [7], have attempted to map both the microbial diver-
sity and functional capacity of soil microbial communities 
across the globe by using a combination of sequence-based 
approaches, including taxonomic marker gene (e.g., 16S 
rRNA gene and ITS) DNA-barcoding approaches and 
more in-depth next-generation sequencing of total soil 
DNA (see Fierer (2017) for a comprehensive review [8]). 
These and many other more localized studies [9–13] have 
shown that a small percentage of microbial taxa dominate 
global soil microbial communities, with phyla such as the 
bacterial Acidobacteriota and Proteobacteria, the archaeal 
Crenarchaeota, and the fungal Ascomycota [14–17] being 
commonly found within soil microbiomes. However, 
contrary to the popular Baas-Becking hypothesis which 
states that “everything is everywhere, but the environment 
selects” [18], microecological surveys have shown that dif-
ferent biomes harbor distinct microbial communities that 
are shaped by both deterministic processes such as envi-
ronment selection, as well as more stochastic events such 
as dispersal limitation [19–21].

The heterogeneity of soil conditions, even at the cen-
timeter-scale [22], results in similarly heterogeneous 
microbial patterns within and between soils that defy the 
concept of a “typical” soil microbiome across any specific 
environment [8]. In addition to this spatial variability, the 
plurality of sampling and analysis methods employed by 
the microbiology research community have made it diffi-
cult to reach a holistic model of the interactions between 
microbial communities and their environments. For 
instance, some studies on the global soil microbiome have 
identified pH as the best predictor of microbial variability 
[23, 24], while others have highlighted carbon availability 
[25], as well as salinity [26], as strong drivers of micro-
bial community structure. The differences between these 
results might be due to different spatial scales, differences 
in the range of soil physical, and chemical conditions, as 
well as methodological differences.

More recently, much attention has been focused on 
the shifts in the global soil microbiome as a result of 

climate change [27–29]. Human-driven climate change 
has already resulted in drastic changes in the microecol-
ogy of some of Earth’s most climate-sensitive biomes, 
such as polar deserts and semi-arid arable lands [30]. The 
recent rise in global temperatures, caused by the accu-
mulation of greenhouse gasses, has driven the acceler-
ated thaw of permafrost soils in the Arctic, which results 
in a rapid shift in the diversity and functional profile of 
permafrost microbial communities [31, 32]. This shift has 
been characterized by the increased decomposition of 
soluble organic carbon and increased production of the 
greenhouse gases  CO2 and  CH4, which generate a feed-
back loop for stimulated global warming [33]. Similarly, 
increased drought as a consequence of altered precipita-
tion patterns is predicted to drive the accelerated deser-
tification of semi-arid and arid regions [34] and result in 
the decreased productivity in the soil microbiome [35]. 
Furthermore, drought is thought to have a long-lasting 
impact on soil microbial communities due to shifts in 
vegetation to more drought-tolerant plant species, which 
drive significant changes in the composition of root-asso-
ciated microbial communities [36].

Sub-Saharan Africa is particularly vulnerable to climate 
change. There is evidence that the African continent is 
warming at a faster rate than the rest of the globe [37] 
and that drought/flood disaster events, which already 
constitute 25% of disasters on the continent [38], are 
projected to increase due to effects of climate change 
[39]. As a result, many sub-Saharan African countries 
are expected to face increased water stress and scarcity 
by 2025 [38, 40], putting a severe strain on the largely 
rain-fed agricultural economies in these regions and 
consequently on human livelihoods [41]. Additionally, 
increased drought periods combined with soil erosion 
from anthropogenic land misuse will further increase 
the rate of land desertification [42, 43], which has already 
been shown to have a detrimental impact on both macro- 
and micro-ecology of affected areas [44, 45]. Considering 
the importance of the top-soil microbiome in providing 
a broad range of ecosystem services [46–48] and main-
taining soil health [27, 49, 50], the loss of soil biodiversity 
and function associated with desertification will likely 
exacerbate the challenges to ecology and soil productivity 
already felt in sub-Saharan Africa. However, despite the 
relevance of the soil microbiome to the ecology and soil 
health of sub-Saharan Africa, to date, there has been no 
comprehensive survey of the top-soil microbiome in this 

many economies in the region on rain‑fed agriculture, this study provides crucial information to support conservation 
efforts in the countries that will be most heavily impacted by climate change.
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region [51]. This gap in the knowledge of global micro-
ecology has led us to perform an extensive microbial 
community survey of the soils across sub-Saharan Africa, 
with three specific aims: (1) to document the microbial 
biodiversity across sub-Saharan Africa, (2) to determine 
how the environment affects soil community biodiversity 
and structure in this region, and (3) to infer the potential 
impacts of environmental change on the biodiversity and 
composition of the sub-Saharan Africa top-soil microbi-
ome. We hypothesize that the soil microbial ecology will 
be significantly distinct across the different regions of 
the sub-continent and will be shaped by a combination 
of soil chemistry variables and climate. In addition, we 
hypothesize that the effects of climate change will have 
a measurable impact on the diversity and composition of 
sub-Saharan soil microbiomes. This study also provides 
a much-needed baseline for future analyses aimed at 
assessing the qualitative and quantitative impacts of cli-
mate change on soil microbiomes.

Results and discussion
African nations have distinct soil physicochemical 
properties
In this study, we obtained surface soil samples from 
an extensive area across sub-Saharan Africa, span-
ning 9 countries and multiple biomes. Of the total of 
810 soil samples collected, the majority of samples 
were from South Africa (236), followed by Namibia 
(141) and Botswana (89) (Fig. 1, Table S1). In addition 
to the countries of origin, sample sites were assigned 
to biomes, based on their vegetation land cover (LC) 
(Figure S1, Table S1). None of the sampled coun-
tries was dominated by a single biome, but Namibia 
and Botswana contained the highest percentage of 
bare and poorly vegetated soils, while South Africa 
and Kenya showed the highest diversity of sampled 
biomes. The diversity of biomes in Kenya is particu-
larly striking, considering that the sample size and 
area covered in this country are considerably smaller 
than in South Africa, where one would expect to have 
a higher diversity of biomes [52, 53]. Soil chemistry of 
the samples and climatic data taken from the sampling 
sites revealed that countries could be significantly 
distinguished (p-value < 0.01, R2 = 0.63) based on soil 
nutrient composition, soil pH, vegetation cover, and 
precipitation (Fig. 2A, Figure S2). These results reflect 
the distribution of distinct biomes across sub-Saharan 
African countries, which are themselves defined by 
differences in nutrient composition, pH, and climate.

Many of the measured soil chemistry and climatic 
variables were found to be correlated and therefore 
could be considered as co-dependent (Fig.  2B, C). 
For instance, mean annual precipitation (MAP) was 

negatively correlated with pH and positively correlated 
with the soil vegetation index (EVI2) as well as both 
organic carbon and nitrogen content. As expected, 
MAP was also strongly correlated with the level of veg-
etation, with more vegetated biomes exhibiting higher 
levels of MAP. These results are consistent with the 
well-documented role of precipitation as an important 
driver of plant growth and soil fertility [54–56]. MAP 
also decreased with decreasing latitude, a trend that 
has been previously documented as an effect of climate 
change [57]. In turn, the vegetation index was positively 
correlated with soil nutrients, which is expected as EVI2 
is often used as a proxy for plant productivity [58].

Another relevant relationship observed across sub-
Saharan African countries was the inverse correlation 
between temperature seasonality and MAP, soil veg-
etation, and soil nutrients. Temperature seasonality is 
defined as the amount of temperature variation across the 
year [59], and extreme temperature seasonality has been 
shown to be one of the more debilitating effects of climate 
change, leading to severe decreases in ecosystem biodi-
versity and functionality [60, 61]. Temperature seasonality 
was also found to be more severe at lower latitudes, again 
highlighting the high vulnerability of lower latitude sub-
Saharan African countries to the effects of climate change.

Ecologically important phyla are ubiquitous 
in sub‑Saharan African soils
Several large-scale microbial surveys have docu-
mented the dominance of a relatively small number of 
prokaryotic phyla across global soil microbiomes [8, 
23, 26]. This study has revealed a broadly similar pat-
tern for sub-Saharan African soils, with only 13 of a 
total of 63 prokaryotic phyla representing the domi-
nant fraction (i.e., phyla represented by more than 
1% mean relative abundance across samples) of the 
soil microbiome (Fig.  3). Twelve of these were also 
distributed across the majority (> 98%) of samples, 
further highlighting their classification as ubiquitous 
taxa. The most abundant of these was Actinobacteria 
(synonym for Actinobacteriota) (22.5% mean relative 
abundance), followed by Proteobacteria (20.1% mean 
relative abundance), Acidobacteriota (11.8% mean 
relative abundance), Chloroflexi (8.8% mean relative 
abundance), and the archaeal phylum Crenarchaeota 
(7.5% mean relative abundance). In an analysis of 
the prokaryotic composition of the soil communities 
atthe Class level (Table S2), taxa of possible ecologi-
cal importance could be identified in the dominant 
fraction of the microbiome. These included the 
ammonia-oxidizing archaeon Nitrososphaeria (7.4% 
mean relative abundance) and the photoautotrophic 
classes Chloroflexia (3.6% mean relative abundance) 
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and Cyanobacteria (2.1% mean relative abundance). 
In addition, fourteen rare phyla (i.e., representing less 
than 1% of ASVs across samples) were also found in 
more than 50% of the samples and are therefore well 
represented across sub-Saharan African soils. These 
include the predatory bacterial phylum Bdellovibri-
onota, previously classified as members of the class 
Oligoflexia [62], members of which have been pro-
posed to be biocontrol agents in marine environments 
[63], and Fribrobacteres, a phylum that includes sev-
eral cellulose-degrading genera [64]. Another rare 
phylum identified in 589 (of 810) samples, Eremiobac-
terota (previously known as WS-2), includes several 

members capable of anoxygenic phototrophy [65] and 
has been recently associated with the ability to use 
trace gases such as hydrogen and carbon monoxide as 
energy sources in exothermic reactions capable of sus-
taining life in extreme environments [66, 67].

In an analysis of lower eukaryote diversity, eight of the 
19 classified fungal phyla were identified as the domi-
nant fraction of sub-Saharan Africa soil fungal popula-
tions, with Ascomycota (62% mean relative abundance) 
and Basidiomycota (14.3% mean relative abundance) 
being the most abundant and widespread across samples 
(Fig. 3). These results are consistent with previous stud-
ies showing the prevalence of these phyla in other soil 

Fig. 1 Maps of the sub‑Saharan African showing the sites from which soils were extracted for this study and pie chart representing the distribution 
of samples according to the sampled countries. Sampled sites in the map are represented by dots which are colored according to the country of 
origin
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microbiomes [68, 69]. The plant-symbiont mycorrhizal 
phylum Glomeromycota [70] was widespread across all 
samples, with the class Glomeromycetes (5% mean rela-
tive abundance) being found in 642 soils across all sam-
pled countries.

Nations exhibit distinct microbial biodiversity 
and community structures
To assess whether the observed differences in soil com-
position between countries would result in distinct soil 
microbiomes, both biodiversity (alpha-diversity) and 

Fig. 2 A, B Principal component analysis (PCA) biplot of all soil samples according to their chemistry and climatic properties. The influence of each 
variable on sample distribution is represented by the arrows radiating from the center of the PCA plot. The sample clusters corresponding to the 
different countries are highlighted within the ellipses of the same color. C Pearson correlation between soil chemistry and climatic variables. Positive 
and negative correlations are displayed in blue and red, respectively, while the size and intensity of matrix circles is proportional to correlation 
coefficient between variables. The description and units for each variable code can be found in Table S8
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community structure (beta-diversity) of the soil samples 
were measured and compared.

We freely acknowledge that national boundaries are 
artificial anthropogenic constructs and not defined by 
ecological zones. Nevertheless, while the use of national 
boundaries as an explanatory factor for the differences 
in continental soil microbiome structure is ecologically 
inappropriate, it is highly relevant in terms of the rapidly 

developing concepts of biodiversity (including soil micro-
bial diversity) as a national genetic resource [71, 72].

Analysis of sample alpha-diversity revealed that 
“national” microbial communities exhibited significantly 
(p-value < 0.01) different levels of richness as indicated 
by the number of observed species (Fig.  4). Zimbabwe 
exhibited the highest bacterial biodiversity, while Cote 
d’Ivoire and Mozambique exhibited the highest mean 

Fig. 3 Mean relative abundances (expressed a fraction of total abundance) of prokaryotic and fungal phyla across all sub‑Saharan African soil 
samples, together with the number of samples in which they were identified. Dominant phyla, defined as phyla with more than 1% mean relative 
abundance, are highlighted in red above dashed gray lines, which represent the threshold between dominant and rare taxa

Fig. 4 Alpha‑diversity and beta‑diversity of microbial communities according to country of origin. Alpha‑diversity was calculated as observed 
number of species per sample and visualized using box‑plots for the different fractions of the community (bacteria/archaea/fungi). Beta‑diversity 
was calculated using the Bray–Curtis index and visualized as principal component analysis (PCoA) ordination plots. The different groups are 
highlighted by ellipses showing a 95% confidence range for the variation within each group. For both boxplots and ordination plots, samples were 
colored according to country of origin

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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number of fungal and archaeal species, respectively. 
These three countries exhibit a high density of forested 
areas (Figure S1) as well as high MAP (Figure S1). Con-
versely, Namibian samples exhibited the lowest number 
of bacterial and fungal taxa, indicating that microbial 
communities in Namibian soils contained a lower biodi-
versity relative to other sub-Saharan African countries. 
We suggest that this reflects the generally high aridity 
index and low nutrient status of most Namibian soils [73, 
74].

To further explore the differences in microbial com-
munity structures between samples, beta-diversity val-
ues were calculated using the Bray–Curtis index, and 
the resulting scores were presented as PCoA plots and 
compared using the PERMANOVA test of significance 
(Fig. 4). Clustering of samples based on the national ori-
gin significantly explained (adjusted p-value < 0.01) the 
highest percentage of variation in community structure 
for the archaeal fraction of the population (R2 = 0.17), fol-
lowed by the bacterial (R2 = 0.127) and fungal (R2 = 0.059) 
fractions. These results suggest that different sub-Saharan 
African nations harbor distinct soil microbial communi-
ties. However, it is important to note that the percentage 
of variation in microbial community structure attributed 
to the nation of origin is relatively small, with more than 
80% of the unexplained variance (and in the case of fun-
gal communities, more than 95%). This compositional 
difference between soil microbiomes of different coun-
tries could also be observed in the distribution of the 
dominant phyla (Figure S3). Of note is the significant 
(p-value < 0.01) over-representation of Crenarchaeota in 
Botswana soils, while both Cyanobacteria and Chloro-
flexi were over-represented in Namibia and Zambia. By 
comparison, Mozambique soils contained the highest 
percentage of Glomeromycota, while South African and 
Zimbabwe soils showed a significant over-representation 
of unknown and therefore potentially novel, fungal taxa.

Soil chemistry and climate drive sub‑Saharan Africa soil 
microbiomes
As noted in other landscape-scale soil microbiome stud-
ies [8, 75, 76], observed biogeographical differences in 
microbial biodiversity and community composition are 
likely to be driven by a combination of environmental 
factors, including soil physicochemistry and both macro- 
and micro-climatic factors. To assess the potential envi-
ronmental drivers of the community structure of the 
sub-Saharan Africa soil microbiomes, a stepwise model 
building approach for constrained ordination models was 
used. The results, plotted on canonical correspondence 
analysis (CCA) ordination plots (Fig. 5A, B), showed that 
bacterial and archaeal community structures were signifi-
cantly affected by several variables (adj. p-value < 0.01), 

namely pH, nutrient and cation concentration, spatial 
distance, vegetation cover, MAP, and precipitation sea-
sonality. Surprisingly, nitrogen content was not predicted 
to be a driver of archaeal community structure, despite 
previous work having identified nitrogen as an impor-
tant factor in shaping archaeal soil communities [77–80]. 
This result could be explained by the fact that the taxon 
in the archaeal population to be most affected by nitro-
gen content (i.e., Nitrososphaeria) was identified as a 
ubiquitous fraction of the archaeal population across the 
sample set. By comparison, the fungal community struc-
ture was driven by spatial scale, MAP, and MAT, as well 
as temperature and precipitation seasonality (Fig. 5C). As 
spore-formers, fungi are known for their ability to read-
ily disperse across large distances [81, 82], and previous 
studies have also shown spatial scale to be a major driver 
of fungal community structure [83–85]. Variation parti-
tion analysis was performed to further elucidate the con-
tribution of individual groups of explanatory variables 
on microbial community distribution across sub-Saha-
ran Africa. For the prokaryotic fraction of the microbial 
population (Figs. 5D, E), soil chemistry was estimated to 
be the biggest driver of community structure, explaining 
7% and 12% of the bacterial and archaeal distributions, 
respectively. Climate (represented by the explanatory cli-
matic variables calculated in the CCA analysis) was esti-
mated to be the second most important driver, explaining 
8% and 10% of the distribution for both Bacteria and 
Archaea, respectively. Climate was also estimated to 
be the primary driver of fungal community structure 
(explaining 5% of community distribution) (Fig. 5F), with 
distance playing a comparatively minor role. This is again 
consistent with the idea that Fungi are more ubiquitously 
distributed due to their ability to sporulate and trans-
verse large distances [81, 82].

Analyses of the interactions between environmental 
variables and the sub-Saharan African soil microbiomes 
can be interpreted in terms of the potential vulner-
ability of soil microbiome compositions to the effects 
of climate change. The observed importance of climatic 
variables such as precipitation and temperature seasonal-
ity in driving the structure of soil microbial communities 
suggests that changes in rainfall patterns and increased 
regional temperatures may have a significant impact on 
the microbiomes of sub-Saharan Africa. In addition, the 
trickle-down effects of climate change to soil chemical 
properties, including changes in soil pH [86] and vegeta-
tion cover [87], are likely to amplify this impact. However, 
it is also important to highlight the fact that a large per-
centage of the community structure, particularly the fun-
gal fraction, could not be explained by the environmental 
factors measured in this study. It is therefore highly prob-
able that other deterministic and stochastic factors not 
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Fig. 5 A–C Canonical correspondence analysis (CCA) plots showing the effect of explanatory climatic and chemical variables on the different 
fractions of the sub‑Saharan Africa soil microbiome (bacteria (A)/archaea (B)/fungi (C)), using a significance threshold of 0.01. Percentage explained 
by environmental variables is expressed in the CCA1 and CCA2 axes. Samples on the plots were color‑coded according to country of origin. The 
description and units for each variable code can be found in Table S8. D–F Venn diagrams showing the percentage of bacterial (D), archaeal (E), and 
fungal (F) community distribution explained by distinct groups of environmental variables, either individually or in combination. These percentages 
are expressed as a fraction between 0 and 1. The total percentage of explanatory power for each variable group (total R.2) is also indicated next to 
the label for each group
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accounted for in this study, such as dispersal mechanisms 
and niche speciation [19, 21], play very important role in 
the microbial makeup of sub-Saharan Africa soils.

Soil pH drives the abundance and functionality 
of the dominant community in sub‑Saharan Africa soils
Dominant soil microbial taxa have been shown to play 
important roles in the ecosystem services that micro-
bial communities provide to the surrounding environ-
ment [88–90]. Therefore, to further understand how 
the environment might impact the functional potential 
of sub-Saharan Africa soil microbiomes, random forest 
modeling was used to identify the environmental factors 
that drive the abundance of the dominant phylotypes in 
the community. For the purposes of this analysis, domi-
nant phylotypes were defined according to criteria estab-
lished by Delgado-Baquerizo et  al. (2018b) [23]; i.e., the 
10% most abundant taxa that are present in more than 
50% of the sampled soils. A total of 201 bacterial, 43 fun-
gal and 7 archaeal phylotypes were identified as dominant 
(Table S3), accounting for 3.1%, 1.4%, and 2.7% of the 
total number of phylotypes for the respective fractions of 
their communities. Despite this low number, the domi-
nant phylotypes represented the majority of sequenced 
reads (Figure S4), a result that is consistent with the pre-
vious observation that a small fraction of the total taxa 
dominated sub-Saharan Africa microbial communities. It 
is worth noting that 134 of the dominant phylotypes were 
classified as rhizosphere- or root-associated, based on 
the manual curation of the taxonomy (Table S3) suggest-
ing that a high percentage of taxa (53%) in dominant frac-
tion of the community might play a role in plant-growth 
and soil productivity. Of the 251 dominant phylotypes, 
159 bacterial (79% of dominant bacterial phylotypes), 5 
fungal (12% of total dominant fungal phylotypes), and 6 
archaeal (85% of dominant archaeal) phylotypes could 
be significantly (p-value < 0.05) correlated with envi-
ronmental factors. These results suggest that the domi-
nant bacterial and archaeal fractions of the sub-Saharan 
Africa soil microbiome are significantly impacted by the 
environment.

Semipartial correlation analysis was used to cluster 
dominant phylotypes according to the environmental 
factor with which they demonstrated the strongest cor-
relation; i.e., their best environmental predictor. This 
analysis (Figure S5, Table S4) showed that the majority of 
dominant phylotypes (84 phylotypes) were significantly 
correlated with pH, with 51 being positively correlated, 
i.e., suggesting a preference for more alkaline soils, and 
33 being negatively correlated, i.e., suggesting a prefer-
ence for more acidic soils. A further 28 and 12 phylotypes 
were significantly correlated with phosphate and sodium 
concentrations, respectively. These results suggest that 

while soil microbial biodiversity and structure are driven 
by a combination of both climatic and soil physico-
chemical factors, as elsewhere [23, 24], soil pH exerts the 
strongest impact on the diversification and speciation of 
soil microbial communities in sub-Saharan Africa soils.

Network analysis was performed on the dominant phy-
lotypes and combined with the FAPROTAX and manu-
ally curated functional predictions to infer the possible 
trophic and functional relationships between dominant 
phylotypes (Fig.  6, Table S3). FAPROTAX is a predic-
tive tool that assigns a metabolic or ecological function 
to prokaryotic taxa based on a manually constructed 
database of previously functionally annotated prokary-
otic clades [91]. By design, this tool is limited to prokar-
yotic clades that have been previously documented and 
is not able to account for functional traits that have not 
been elucidated in the literature or multiple traits within 
the same taxa that might not be well documented. It is 
therefore worth noting that information obtained from 
FAPROTAX were only be used to draw suggestive inter-
pretations of the function of the dominant phylotypes, 
rather than conclusive information on the functional 
potential of the dominant community [91].

The dominant-phylotype community network was 
characterized by a primary cluster divided into two 
mutually exclusive sub-clusters of taxa (as indicated by 
the number of negative connections between them) that 
favor either high or low soil pH, supporting the conclu-
sion that pH is a primary driver of microbial community 
structure in sub-Saharan Africa soils. Several phylotypes 
within these two sub-clusters could also be mapped to a 
predicted ecosystem role using FAPROTAX, including 
three of the five phylotypes with the highest number of 
connections. These include two nitrogen fixing taxa from 
the family Beijerinckiaceae and genus Bradyrhizobium, as 
well as a photosynthetic phylotype from the class Chlor-
oflexia. These phylotypes represent potential commu-
nity hubs due to their high number of connections, and 
their predicted functional profiles suggest that nitrogen 
fixation and phototrophy might be keystone functions 
driving the trophic relationships within the dominant 
fraction of sub-Saharan Africa soil microbial communi-
ties. In addition, the location of these phylotypes within 
the two pH-associated sub-clusters suggests that soil pH 
might also have a strong impact in shaping these trophic 
relationships in sub-Saharan Africa.

The predicted the impact of climate change on microbial 
soil health
One of the primary aims of this study was to infer the 
potential impacts of climate change on the microbial 
biodiversity and composition of sub-Saharan African 
soil microbiomes. While microbial biodiversity alone is 
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not a reliable measure of soil “health” [49], several stud-
ies have documented a positive correlation between 
soil biodiversity and soil functional redundancy and 
resilience [47, 50, 92, 93]. Additionally, the presence of 
specific rhizosphere-associated taxa, which promote 
ecosystem services such as nutrient cycling, has also 
been positively associated with plant health [50, 94, 95]. 
Therefore, in order to investigate the effects of climate 
on the viability of sub-Saharan Africa soils in terms of 
their microbial diversity and plant-growth-promoting 
potential, structural equation modeling (SEM) was used 
to model the causal relationships between climatic vari-
ables, soil chemistry, and microbial-biodiversity and 
abundance of plant-beneficial taxa. SEM is a powerful 

statistical tool that has been employed to test complex 
ecosystem models of causal interactions between abi-
otic and biotic factors [96–98].

In this study, the Shannon biodiversity index and the 
relative abundance of rhizosphere-associated taxa with 
reported plant growth-promoting (PGP) capabilities 
(Table S5) were used as response variables. In the a priori 
model (Figure S6), the mean annual precipitation (MAP) 
was hypothesized to have a positive effect on soil nutrient 
content and vegetation, which in turn will have a posi-
tive effect on the microbial soil health. By comparison, 
the mean annual temperature (MAT) was hypothesized 
to have the opposite effect on biological productivity, by 
decreasing the vegetation density and nutrient stocks, 

Fig. 6 Spearman co‑occurrence networks of dominant phylotypes, colored according to taxonomy (at phylum level) (A), associated environmental 
factor (based on the semipartial correlation analysis) (B), and function (according to FAPROTAX predictions and manual annotations) (C). Nodes are 
sized according to the number of connections (edges). Edges are colored according to nature of the correlation between nodes using the following 
color scheme: green—positive correlation; red—negative correlation. The top five nodes with the highest number of edges are highlighted by 
nodes with the thicker black perimeters
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as well as by increasing soil salt concentration and pH. 
The results from the SEM analysis (Fig.  7, Table S6) 
demonstrated that MAP was the major climatic vari-
able positively driving the relative abundance of plant-
growth-promoting bacteria (PGPB) (net std.coef. = 0.42), 
either through direct effect (std.coef. = 0.309) or through 
the positive effect on vegetation and nitrogen content, 
which in turn drive the acidification of soils and result in 
an increase in PGPB relative abundance (Fig. 7A). Several 
plant-promoting rhizobia have been characterized as tol-
erant to acidic soils [99, 100], while other PGPBs such as 
Gluconacetobacter_diazotrophicus and Azospirillum bra-
silience have been shown to grow at pH ranges between 
5 and 6 [101, 102]. MAT was estimated to decrease bio-
diversity and PGPB abundance through direct associa-
tion and through the indirect increase in soil pH (net std.
coef. =  − 0.27) and decrease of soil carbon content (net 
std.coef. =  − 0.03). These results are consistent with 
previous studies showing climatic variables as major 
drivers of soil community structure [36,44 45, 68]. By 
contrast, MAP did not affect bacterial diversity directly, 
but rather through its indirect effects on the soil chem-
istry (pH, carbon, and nitrogen content) of sub-Saharan 
African soils (std.coef. =  − 0.045). The net negative effect 
of MAP on bacterial diversity is particularly difficult to 
explain, considering the documented positive impact of 
precipitation/wetting events on the microbial diversity of 
soils [66, 103]. However, it is worth noting that this nega-
tive impact is represented by both positive and negative 
pathways that might more accurately represent the com-
plexity of the ecosystem and the interactions of abiotic 
factors within it. For instance, MAP is strongly associ-
ated with soil nutrient content and vegetation, which in 
turn were estimated to have both a positive direct and 
negative indirect effect on diversity through the increase 
in soil carbon content (std.coef = 0.098) and decrease in 
soil pH (std.coef =  − 0.157). Both soil total organic car-
bon and pH have been shown to be positively associated 
with bacterial biodiversity [23, 25], and the SEM tested in 
this study highlights the possible unimodal relationship 
between MAP and bacterial biodiversity, where both very 
high and very low precipitation inputs will have a detri-
mental effect on bacterial diversity. As proposed in the 
a priori hypothesis (Figure S6), the abundance of PGPB 
was positively associated with bacterial biodiversity, sug-
gesting that more biodiverse soils harbor a greater abun-
dance of plant-growth-promoting taxa, which might in 
turn have a beneficial effect on plant health in those soils.

MAP was also estimated to be the climatic factor with 
the strongest impact on the biodiversity and abundance 
of plant-growth-promoting fungi (PGPF), either by 
direct interaction (std.coef = 0.36 for biodiversity; std.
coef = 0.30 for PGPF), or indirectly by driving vegetation 

density, which was estimated to have a direct associa-
tion with the abundance of PGPF (std.coef = 0.144). This 
result suggests that the presence of PGPF in sub-Saharan 
African soils is strongly dependent on the presence of 
vegetation, which is consistent with the fact that many 
arbuscular mycorrhizal fungi are dependent on a sym-
biotic relationship with plants for nutrient acquisition 
[104–106]. In turn, the importance of MAP as a predic-
tor of vegetation index has been previously demonstrated 
for the African continent [107]. Interestingly, MAT was 
estimated to have a positive effect on both fungal diver-
sity (std.coef = 0.07) and the abundance of PGPF (std.
coef = 0.149), which seems counterintuitive considering 
the previously reported negative impact of temperature 
on plant cover and soil aridity [108, 109]. However, the 
annual mean temperature of the sites sampled in this 
study (ranging from 12.4 to 28.9  °C) corresponds to a 
temperature range where fungal taxa are likely to show 
optimal activities and growth rates [110]. The fact that 
MAT has no significant effect on EVI2 in the predicted 
SEM also suggests that in sub-Saharan Africa, precipi-
tation might be a more important predictor than the 
temperature for vegetation cover. Another result worth 
noting is the estimated positive association of Na to both 
the abundance of PGPT as well as fungal diversity, which 
is also counter-intuitive considering the documented 
detrimental effect of salt on microbial diversity and root-
associated taxa [111, 112]. However, as for the MAT data, 
the Na concentrations measured for the sampled dataset 
(ranging from 0 to 1 g/kg of soil) fall below the estimated 
inhibitory concentrations of NaCl for soil microbial 
communities [113], and these results suggest that at low 
concentrations Na might exert a beneficial effect on soil 
microbial communities.

In contrast to the bacterial model, pH was not signifi-
cantly associated with fungal diversity and was instead 
estimated to have a positive effect on the abundance of 
PGPF, which in turn was positively associated with fun-
gal diversity. While increases in pH have been previously 
shown to have detrimental effects on fungal diversity 
[109], arbuscular mycorrhizal fungi are characterized by 
a preference for neutral and alkaline environments [114, 
115], which is reflected in the SEM model. More impor-
tantly, the SEM predicted a direct positive association 
between the abundance of PGPF and fungal diversity, 
suggesting that arbuscular mycorrhizal fungi are not only 
key players in maintaining soil health and plant growth 
[50, 116], but might also be important in maintaining 
fungal biodiversity.

To further assess the impact of climate change on 
sub-Saharan Africa soil biological productivity, SEM 
modeling was used to estimate the changes in biodiver-
sity and abundance of plant-promoting microbiota in 
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Fig. 7 SEM models fitted to the diversity and abundance of plant‑promoting taxa for bacteria (A) and fungi (B). The AIC fit metric and model p 
value are included in the top of each model. The arrows between the abiotic and biotic variables tested represent the direction and nature of the 
interaction between variables: black arrows represent positive interactions, while red arrows represent negative interactions. The size of the arrow 
signifies the significance level, with thicker arrows having higher significance (*—p value ≤ 0.05; **—p value ≤ 0.01; ***—p value ≤ 0.001). Gray 
dashed lines represent non‑significant interactions from the a‑priori SEM model. Standardized coefficients, representing the magnitude of the effect 
between variables, are also included for each interaction. The response variables used in the models are represented by dark green rectangles, 
while both the endogenous and exogenous variables are represented by dark blue rectangles. The fraction of explained variation (R.2) for each 
endogenous variable is highlighted below the variable
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2050 and 2100, as a response to predicted changes in 
MAT and MAP driven by an increase in carbon emis-
sions. The MIROC6 climate model, which is widely 
employed for future climate predictions [117, 118], was 
used to predict MAT and MAP values for 2040–2060 
and 2080–2100 temporal windows, under two differ-
ent shared socio-economic pathway (SSP) scenarios 
for greenhouse (GH) emissions (SSP1-2.6 and SSP5-
8.5) (Figure S7). Under this model, the mean annual 
temperatures are predicted to rise for all sub-Saharan 
African countries sampled in this study, with an esti-
mated mean rise of 4  °C by the 2090s under the worst 
GH emission scenario (SSP5-8.5). By comparison, pre-
dicted precipitation profiles are more regional, with 
countries such as Kenya and Mozambique showing a 
predicted decrease in MAP, while Benin and Zambia 
are predicted to have higher MAP indexes by 2100. 
Both climate scenarios modeled in MIROC6 were pre-
dicted to have a significant (p-value < 0.01) negative 
effect on the prokaryotic productivity of sub-Saharan 
African soils (Fig. 8S A-B), with the biggest impact pre-
dicted for the 2080–2100 window under the highest 
GH emission scenario. The prokaryotic communities 
in Kenyan soils were estimated to be the most vulner-
able to the predicted climate change, with a noticeable 
reduction in biodiversity (average 0.68% reduction in 
Shannon index) and abundance of PGPB (average 41% 
reduction in relative abundance values) being predicted 
for the 2040–2060 period under the SSP1-2.6 scenario. 
In countries such as Benin, South Africa, and Zambia, a 
comparable reduction in biodiversity was only recorded 
for the most extreme scenario (average 0.53%, 0.54%, 
and 0.78% reduction in Shannon index, respectively), 
suggesting that the soil prokaryotic communities in 
these countries will be more resilient to climate change. 
In contrast, soil fungal diversity and the abundance of 
plant-growth-promoting fungi were predicted to either 
remain constant or increase in six of the sub-Saharan 
countries sampled in this study (with the exception of 
Kenya, Mozambique, and Zimbabwe) (Figure S8C-D). 
The two countries where fungal biodiversity and abun-
dance of PGPF were predicted to increase as early as 
the 2050s under the SSP1-2.6 scenario, Benin and Cote 
d’Ivoire, were also predicted to have increased annual 
precipitation by the 2050s. These results again sug-
gest the importance of precipitation as a main climatic 
driver of soil fungal diversity and community structure 
(as shown by the CCA results), while prokaryotic com-
munities are more vulnerable to extreme temperature 
shifts. These results also suggest that in future climate 
change scenarios, fungal communities across sub-Saha-
ran soils will be more resilient to anthropogenic-driven 
climate disruptions, a conclusion that is consistent with 

recent research showing increased resilience of fungal 
communities to climate change in different parts of the 
world [119, 120].

Conclusion
This study represents the most extensive survey of the sub-
Saharan soil pan-microbiome performed to date and fills a 
substantial gap in our knowledge of the microbial ecology 
of sub-Saharan Africa. The results from this study largely 
corroborate the general global patterns reported by Fierer 
and others (see refs 8, 10, and 23 for examples); that is, that 
sub-Saharan African soils are dominated by a small but 
ubiquitous fraction of the microbial population and that 
pH is the primary driver in shaping this fraction of the soil 
community. As the dominant fraction of soil communities 
is thought to play an important role in ecosystem servic-
ing, scenarios of disturbance such as the ones emulated 
here are expected to affect soil functioning and productiv-
ity. More importantly, we have demonstrated, through the 
constrained and structural equation modeling, the vulner-
ability of microbial communities in sub-Saharan Africa 
to climate change. The observed roles of precipitation 
and temperature in shaping the diversity and structure of 
sub-Saharan Africa soil microbiomes imply that climate 
change will have a significant impact on the latter. This 
was highlighted by the SEM models, which hinted at the 
complex roles of climate in modulating the chemistry and 
biological productivity of sub-Saharan African soils. The 
vulnerability of sub-Saharan African soil microbial com-
munities to climate change was further demonstrated by 
the prediction of future climate change scenarios, in which 
the prokaryotic fraction of the soil microbiomes is pre-
dicted to be negatively impacted by shifts in temperature 
and precipitation patterns. Considering the important role 
that prokaryotes play in soil ecosystem services, and that 
the economies of many countries in sub-Saharan Africa 
are very heavily reliant on rain-fed agriculture, the pre-
dicted climate-driven decrease in soil prokaryotic diver-
sity and abundance of plant-growth-promoting bacteria 
are likely to exacerbate the negative economic effects of 
climate change. By comparison, fungal communities were 
predicted to be more resilient to climate shifts, and future 
studies should focus on whether this resilience can miti-
gate the adverse effects of climate change.

This study also demonstrated that different countries 
harbor distinct soil microbiomes. However, as discussed 
above, this difference is linked to spatial-scale variation 
in environmental factors and soil chemistry, rather than 
an inherent property of each country. It is worth noting 
however that the different policies that individual coun-
tries enact on land use and management might have an 
indirect impact on shaping soil microbial communities 
by regulating anthropogenic impacts on soils. It is our 
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hope that the findings from this study will assist future 
policy makers on the best measures to preserve and pro-
tect sub-Saharan African soil microbiomes in the face of 
climate change.

Materials and methods
Sample collection
A total of 810 sites were sampled across nine countries in 
sub-Saharan Africa (Table S7), between January 2017 and 
June 2018. The number of sites allocated to each nation 
was calculated on the basis of land area, with a total allo-
cation of 1000 effective sample sites, in order to cover as 
much sub-continental area as possible. Sampling sites were 
spaced at approximately 50 km, using the major and minor 
road networks in each nation to maximize regional cover-
age. A standardized protocol was used throughout the sam-
ple collection campaign to avoid biases in the downstream 
analysis of the microbial community. Briefly, four 200 g sur-
face soil (0–5-cm depth) sample replicates were collected in 
sterile Whirlpak® bags from the vertices of a 100 m x 50 m 
plot at each GPS-located sample site. Each 200  g sample 
was a composite of four 50 g pseudo-replicate sub-samples 
recovered from within a 1-m2 quadrat. Samples were stored 
on ice and transported to the country’s host institutions, 
where they were stored at 4 °C before being shipped to the 
Centre for Microbial Ecology and Genomics (CMEG) (Uni-
versity of Pretoria, South Africa) for nucleic acid extraction 
and soil physicochemical analysis. Upon arrival to CMEG, 
samples were sieved (4  mm mesh) to remove plant roots 
and other debris and stored at − 80 °C.

DNA extraction and amplicon sequencing
Before nucleic acid extraction, the four replicate samples 
from each site were thoroughly mixed into a composite 
sample. DNA was subsequently extracted from 0.25  g 
of soil using the DNeasy PowerSoil Kit (QIAGEN, USA) 
following the manufacturer’s instructions with minor 
modifications. Specifically, the elution buffer C6 was pre-
heated to 55  °C for 10 min before the final elution step, 
and the DNA was eluted using 70 μl of the elution buffer. 
After extraction, DNA concentration and purity were 
checked using the Nanodrop 2000 (ThermoFisher, USA) 
and agarose gel electrophoresis.

DNA samples were sent to MRDNA laboratories (www. 
mrdna lab. com, Shallowater, TX, USA) for sequencing of 
the V4/V5 16S rRNA gene and the ITS-1 and ITS-2 sub-
units of the internal transcribed spacers (ITS). Primers 
used were the 515F (5′-GTG YCA GCMGCC GCG GTAA-
3′) and 909R (5′-CCC CGY CAA TTC MTTT RAG T-3′) 
for the 16S rRNA gene amplification [121], and ITS1F 
(5′-CTT GGT CAT TTA GAG GAA GTAA-3′) and ITS4 (5′-
TCC TCC GCT TAT TGA TAT GC-3′) for ITS amplification 
[122]. Before library preparation, the regions of interest 

were amplified using the HotStarTaq Plus Master Mix Kit 
(Qiagen, USA) and subsequently purified using calibrated 
Ampure XP beads (Beckman Coulter Life Sciences, 
USA). Sequencing was performed on an Illumina MiSeq 
instrument following the manufacturer’s guidelines.

Sequence processing and taxonomic annotation
The raw amplicon reads were filtered, trimmed, and clus-
tered into unique amplicon sequence variants (ASVs) 
using the QIIME2 pipeline [123]. Briefly, raw sequences 
were demultiplexed and denoised and merged using 
DADA2 [124] to filter chimeric sequences and singletons. 
The reads were further truncated at the 5′- and 3′-termini 
to remove sequences below a quality score of 25. The 
truncation lengths used were 10 bps for the 5′-termini, 
and 290 and 220 bps for the 3′-termini of 16S rRNA and 
ITS reads, respectively. Reads were subsequently clus-
tered into ASVs and classified into taxonomic phylotypes 
using a trained SILVA 138 (release 12–2019) database for 
prokaryotic species [125] and the UNITE fungal database 
(release 11–2018) [126].

Soil physicochemical analysis
Soil physicochemical properties were analyzed at the 
University of Pretoria, following the protocols outlined 
by AgriLASA (2004) [127] (Table S1). A total of eleven 
soil physicochemical parameters were analyzed. The soil 
pH was measured using the slurry method at a 1:2.5 soil/
water ratio, and the pH of the supernatant was recorded 
with a calibrated benchtop pH meter (Crison Basic, + 20, 
Crison, Barcelona, Spain). The Mehlich 3 test was used 
to determine the concentrations (mg/kg) of soluble and 
exchangeable sodium (Na), potassium (K), carbon (Ca), 
magnesium (Mg), and phosphorus (P) [128]. The extract-
able ion concentration was quantified using ICP-OES 
(Inductively Coupled Plasma Optical Emission Spec-
trometry, Spectro Genesis, SPECTRO Analytical Instru-
ments GmbH & Co. KG, Germany). The soil particle size 
distribution (sand/silt/clay percentage) was measured 
using the Bouyoucos method [129]. The total nitrogen 
(TN) and soil organic carbon (TOC) (as a percentage) 
were measured using the catalyzed high-temperature 
combustion method (Dumas method) [130].

Extraction of macroclimate variables
The GPS coordinates of each sampling site were used to 
obtain eight bioclimatic data variables (Table S1) from 
WorldClim2 Global Climate Data [131] at a resolution 
of 30-arc seconds. These included mean annual tem-
perature (Bio1, MAT, °C), temperature seasonality (Bio4, 
°C*100), minimum temperature of the coldest month 
(Bio6, °C*10), mean annual precipitation (Bio12, MAP, 
mm), temperature isothermality (Bio3, %), precipitation 

http://www.mrdnalab.com
http://www.mrdnalab.com
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of the driest month (Bio14, mm), and precipitation sea-
sonality (Bio15, %). The Enhanced Vegetation Index-2 
(EVI2) was obtained from the NASA Land Processes 
Distributed Active Archive Center’s (LP DAAC) VIIRS 
Vegetation Indices dataset [132], at a 500-m resolution. 
Land cover categories (LC) were determined based on 
the ESA GlobCover 2009, 300-m resolution, 22 class, and 
global land cover map [133]. The 22 land cover classes 
of the land cover map were defined based on the United 
Nations (UN) Land Cover Classification System (LCCS). 
The ESA GlobCover 2009 land cover classification was 
used as it provides fair differentiation between the broad 
African vegetation, agricultural, and urban classes. The 
relevant bioclimatic variables, enhanced vegetation 
index, and land cover class were extracted for each soil 
sample point, at the native resolution of each dataset.

Statistical analyses
Soil chemistry and climatic differences across sub‑Saharan 
countries
Significant differences in soil chemistry and climatic vari-
ables between countries were calculated using the stats 
(version 3.6.2) package in RStudio version 4.0.3 [134]. 
The normality of the dataset was first tested with the Sha-
piro–Wilk test [135]. The Kruskal–Wallis rank-sum test 
[136] was subsequently used to calculate the significance 
of mean differences in variables between countries, and 
the pairwise Willcoxon rank-sum test [137] was used to 
compare significant differences between country groups 
(adj. p-value < 0.01). The distribution of climatic and soil 
chemistry variables across different sites was calculated 
on log-standardized data using the “prcomp” function, 
which performs a principal component analysis of the 
data (PCA) [138]. The resulting distance matrix between 
samples was plotted in a PCA graph, with the projected 
direction and magnitude of the distribution for each vari-
able plotted in a separate loading plot. The hmisc (version 
4.5) package was subsequently used to calculate strong 
significant Pearson correlations [129] between variables 
(adj. p value < 0.01), which were plotted in a bubble graph 
using the corrplot (version 0.9) package.

Identification of environmental drivers of microbial diversity 
and community structure
Metrics for biodiversity (alpha-diversity) and community 
structure (beta-diversity) were calculated using the vegan 
(version 2.5.7) [139] and phyloseq (version 1.16.2) [140] 
packages in Rstudio. Both observed richness and the Shan-
non index [141] were used as metrics for alpha-diversity. 
Before calculation of alpha-diversity values, the ASV tables 
were rarefied to a read depth of 27,000 and 11,400 total 
reads for prokaryotic and fungal ASVs, respectively. The 

prokaryotic ASV table was subsequently split into Archaea 
and Bacteria using the “subset_taxa” function in phyloseq. 
Differences in alpha-diversity between countries were 
assessed using the methodology described above for the 
climatic and soil chemistry variables.

The Bray-Cutis beta-diversity index of each sample was 
calculated from the log-transformed (natural log) rare-
fied ASV tables using the “vegdist” function in vegan. The 
distribution of samples according to their beta-diversity 
was subsequently plotted on a principal component anal-
ysis plot (PCoA) [142], and the significance of beta-diver-
sity dissimilarity between countries was calculated using 
Permutational multivariate analyses of variance (PER-
MANOVA) [143] with 999 permutations. The environ-
mental (climate and soil) drivers of microbial community 
structure were estimated using constrained correspond-
ence analysis (CCA) [144]. The climatic/soil chemistry 
dataset was z-score standardized and tested for multicol-
linearity using the “vif” function from the car (version 
3.0.11) package [145]. Variables with vif values above 
10 were before performing the CCA. The best models 
for explanatory variables were calculated using the for-
ward stepwise regression model selection method with 
the ordistep() function in the vegan package, with 1000 
permutations. The significance of the best-fitted models 
and each predictor variable in the model were calculated 
using the ANOVA permutation test for CCA [146], with 
1000 permutations. The variation partition analysis was 
performed on the log-transformed ASV datasets and the 
standardized environmental variables dataset using the 
varpart() function in the vegan package.

Identification of dominant phylotypes and their 
environmental preferences
In this study, phylotypes were identified at the spe-
cies level, i.e., sharing ≥ 99% sequence identity across 
the amplified reads. Dominant phylotypes were sub-
sequently defined according to criteria established by 
Delgado-Baquerizo et  al. (2018b) [23], i.e., as the top 
10% most abundant taxa that are present in more than 
50% of the sampled soils. To identify the environmental 
preferences of the dominant phylotypes, random for-
est analysis [147] was performed on the rarefied counts 
for each dominant phylotype using the randomForest 
(version 4.6.14) package in R. The models tested with 
the algorithm included all the numerical environmen-
tal variables used in multivariate constrained analyses 
described above. A threshold of > 30% of the explained 
variation was used to consider phylotypes with a poten-
tial environmental preference. Semi-partial correlations 
(Spearman) analysis was subsequently performed using 
the ppcor package [148] to identify the contribution of 
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each environmental variable in explaining the distri-
bution of each phylotype with an environmental pref-
erence. Phylotypes were subsequently clustered into 
ecological groups according to the predictor with the 
highest correlation value, at a p value threshold of 0.05. 
The ecological groups were defined by the nature of the 
correlation between phylotype and the predictor, e.g., 
phylotypes exhibiting a negative correlation with pH 
would be clustered into a low pH ecological group. The 
relative abundance of each ecological group per sam-
ple was subsequently calculated by averaging the rare-
fied relative abundances of phylotypes belonging to the 
group in each sample.

Network analysis of the dominant community
To assess possible biotic relationships between domi-
nant phylotypes, co-occurrence network analysis was 
performed on the rarified absolute count table of the 
dominant phylotypes. Pairwise Spearman correlations 
between all dominant phylotypes were first calculated, 
after which correlations below r < 0.65 and with non-
significant p values (threshold p value < 0.00001) were 
filtered out. A very stringent significance threshold was 
chosen to prevent the high number of false positives 
normally associated with Spearman correlations [149]. 
The resulting pairwise correlation table was used to 
draw a co-occurrence network, which was visualized in 
gephi [150]. This software was also used to calculate the 
topology properties of the network, including degrees, 
betweenness centrality, and modularity. The potential 
functional roles of each phylotype in the network were 
predicted using the FAPROTAX taxonomy-based func-
tional prediction software [91] as well as by manual 
curation, linking the phylotype with previous research 
on functionality. Nodes in the network were colored 
based on the taxonomy, ecological group, and predicted 
function of the dominant phylotype.

Structural equation modeling of climate effect on soil health
Structural equation modeling (SEM) [96–98] was used 
to model the effects of climate on the chemistry and 
health of sub-Saharan African soils. In this study, we 
used confirmatory path analysis to assess the validity 
of an a priori ecosystem model of causal relationships 
(Figure S6), which was informed by both the multivari-
ate constrained analyses and previous literature showing 
a link between the various abiotic and biotic variables 
used in the model. The Shannon diversity indexes and 
relative abundances of plant-growth-promoting taxa 
(PGPT) were used as proxy measures for bacterial and 
fungal diversity as well as the abundance of taxa that 
might exert a positive effect on plant growth and health 

in the ecosystem. The environmental parameters chosen 
for SEM analysis were the following: MAP, MAT, TOC 
(carbon content), TN (nitrogen content), Na concentra-
tion (mg/kg), EVI2, and pH. These environmental vari-
ables have also been shown repeatedly to be associated 
with microbial community biodiversity and structure 
[10, 25, 109]. The package piecewiseSEM [98] in R was 
used to assess the a priori model and calculate the best 
fit model, using the author’s suggested workflow (https:// 
github. com/ jslef che/ piece wiseS EM/ blob/ master/ vigne 
ttes/ piece wiseS EM. Rmd). Tables containing the Shan-
non indexes, the average relative abundance of PGPT, 
and the measurements for the environmental variables 
per sample were log-normalized before modeling each 
interaction in the a priori model using the “lme” func-
tion. The country of origin was used as a random effect 
correction, while latitude/longitude was used for spatial 
autocorrelation correction, to account for human dif-
ferences in the sampling strategy. In SEM analysis, the 
best fitting models are considered to be those that are 
similar as possible to the measured data, i.e., that do not 
reject the null hypothesis (p value > 0.01). Best-fit models 
were therefore chosen based on the highest p value, low-
est AIC and BIC scores, and highest parsimony. The net 
estimated effect of each environmental variable on the 
response variables was estimated by summing the effects 
of direct and indirect pathways. In turn, indirect path-
ways were calculated as the product of the effects from 
the connections that make up the pathway.

MIROC6‑based predictions of the effect of climate change 
on the microbial biodiversity and productivity
Annual mean temperature (Bio1) and precipitation 
(Bio12) projections were retrieved for two future 
CMIP6 climatic scenarios, respectively, represent-
ing the most optimistic mitigation-driven and worst 
concentration-driven shared socio-economic sce-
narios of GH emissions (SSP1-2.6 and SSP5-8.5) [151] 
calculated with the model MIROC6 [117]. Spatial cli-
mate data forecasts of the plot future conditions were 
retrieved with UP licensed ArcMap 10.2 software [152] 
for two periods (2040–2960 and 2080–2100) from 
WoldClim2—future climate data repository (https:// 
www. world clim. org/ data/ cmip6/ cmip6 clima te. html) at 
30-arc second resolution. The predict() function from 
the car package (version 3.0.11) [153] in RStudio was 
subsequently used to calculate all the predicted values 
for the endogenous and response variables of the opti-
mal SEM model, based on the forecasted climate MAT 
and MAP values for both climate scenarios and both 
year periods.

https://github.com/jslefche/piecewiseSEM/blob/master/vignettes/piecewiseSEM.Rmd
https://github.com/jslefche/piecewiseSEM/blob/master/vignettes/piecewiseSEM.Rmd
https://github.com/jslefche/piecewiseSEM/blob/master/vignettes/piecewiseSEM.Rmd
https://www.worldclim.org/data/cmip6/cmip6climate.html
https://www.worldclim.org/data/cmip6/cmip6climate.html
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Additional file 1. Figure S1. Distribution of samples across the 9 African 
countries according to their land cover (LC) classification. Land cover 
codes used were the following: LC_1 ‑ Rainfed croplands; LC_2 ‑ Mosaic 
Cropland (50‑70%) / Vegetation (grassland, shrubland, forest) (20‑50%); 
LC_3 ‑ Mosaic Vegetation (grassland, shrubland, forest) (50‑70%) / 
Cropland (20‑50%); LC_4 ‑ Closed to open (>15%) broadleaved evergreen 
and/or semi‑deciduous forest (>5m); LC_5 ‑ Closed (>40%) broadleaved 
deciduous forest (>5m); LC_6 ‑ Open (15‑40%) broadleaved deciduous 
forest (>5m); LC_10 ‑ Mosaic Forest/Shrubland (50‑70%) / Grassland (20‑
50%); LC_11 ‑ Mosaic Grassland (50‑70%) / Forest/Shrubland (20‑50%); 
LC_12 ‑ Closed to open (>15%) shrubland (<5m); LC_13 ‑ Closed to open 
(>15%) grassland; LC_14 ‑ Sparse (>15%) vegetation (woody vegetation, 
shrubs, grassland); LC_17 ‑ Closed to open (>15%) vegetation (grassland, 
shrubland, woody vegetation) on regularly flooded or waterlogged soil; 
LC_18 ‑ Artificial surfaces and associated areas (urban areas >50%); LC_19 
‑ Bare areas. 

Additional file 2. Figure S2. Significant (p‑value < 0.01) variation of soil 
chemistry and climatic variables across African countries. Significance was 
calculated using the Kruskal‑Wallis test for non‑parametric data distribu‑
tions, while pair‑wise comparison was calculated using the pairwise 
Wilcox test. Significant results are indicated using the following nomencla‑
ture: * ‑ p‑value < 0.05; ** ‑ p‑value < 0.01; *** ‑ p‑value < 0.001.  

Additional file 3.Figure S3. Average relative abundance of the top 
bacterial (A) and fungal (B) taxa across the sampled sub‑Saharan Africa 
countries.

Additional file 4.Figure S4. Relative abundance of dominant (201 bacte‑
rial, 43 Fungal and 7 archaeal) phylotypes across soil samples. 

Additional file 5. Figure S5. Relationship between the relative abun‑
dance of dominant phylotypes across soil samples and their main environ‑
mental predictors, as determined by semipartial correlation analysis. 
Phylotypes were grouped into environmental categories based on the 
correlation between phylotype and its major environmental predictor: 
positive correlation with pH – high pH; negative correlation with pH – 
low pH; positive correlation with phosphate – high Phosphate; negative 
correlation with phosphate – low Phosphate; negative correlation with 
Sodium – low Sodium.

Additional file 6. Figure S6. A‑priori ecological model tested using SEM. 
MAP and MAP are represented as exogenous variables (black rectangles), 
soil chemistry and vegetation index are represented as endogenous 
variables (blue rectangles), while the Shannon diversity and abundance 
of PGPT are represented as response variables (green rectangles). The 
color and direction of the arrows represent the nature and direction of the 
causal relationships between variables: red – negative relationship; black – 
positive relationship.

Additional file 7. Figure S7. MIROC6 model predictions for mean annual 
temperature (oC) (A) and mean annual precipitation (mm) (B) under 
too different GH emission scenarios (SSP126 and SSP585), predicted for 
2040‑2060 and 2080‑2100 temporal windows. The predicted datasets are 
grouped according to country, as indicated by the vertical dashed lines. 

Additional file 8. Figure S8‑A. Predicted prokaryotic Shannon biodi‑
versity index values (expressed as natural log scale) in soils of the 9 sub‑
Saharan Africa countries used in this study, for 2040‑2060 and 2080‑2100 
under two distinct GH emission scenarios (SSP126 and SSP585), and 
comparison with current predicted Shannon biodiversity as estimated 
by SEM. Pairwise significance values of differences in biodiversity means 
between the different years and scenarios are represented by the brackets 
with the following nomenclature: * ‑ p‑value < 0.05; ** ‑ p‑value < 0.01; 
*** ‑ p‑value < 0.001.  

Additional file 9. Figure S8‑B. Predicted abundance values of PGPB 
(expressed as natural log scale) in soils of the 9 sub‑Saharan Africa coun‑
tries used in this study, for 2040‑2060 and 2080‑2100 under two distinct 
GH emission scenarios (SSP126 and SSP585), and comparison with current 

predicted Shannon biodiversity as estimated by SEM. Pairwise significance 
values of differences in biodiversity means between the different years 
and scenarios are represented by the brackets with the following nomen‑
clature: * ‑ p‑value < 0.05; ** ‑ p‑value < 0.01; *** ‑ p‑value < 0.001.

Additional file 10. Figure S8‑C. Predicted fungal Shannon biodiversity  
values (expressed as natural log scale) in soils of the 9 sub‑Saharan Africa 
countries used in this study, for 2040‑2060 and 2080‑2100 under two 
distinct GH emission scenarios (SSP126 and SSP585), and comparison with 
current predicted Shannon biodiversity as estimated by SEM. Pairwise sig‑
nificance values of differences in biodiversity means between the different 
years and scenarios are represented by the brackets with the following 
nomenclature: * ‑ p‑value < 0.05; ** ‑ p‑value < 0.01; *** ‑ p‑value < 0.001.

Additional file 11. Figure S8‑D. Predicted abundance values of PGPF 
(expressed as natural log scale) in soils of the 9 sub‑Saharan Africa coun‑
tries used in this study, for 2040‑2060 and 2080‑2100 under two distinct 
GH emission scenarios (SSP126 and SSP585), and comparison with current 
predicted Shannon biodiversity as estimated by SEM. Pairwise significance 
values of differences in biodiversity means between the different years 
and scenarios are represented by the brackets with the following nomen‑
clature: * ‑ p‑value < 0.05; ** ‑ p‑value < 0.01; *** ‑ p‑value < 0.001.

Additional file 12. Table S1. Metadata for all the sites used in the study, 
which include the latitude and longitude GPS coordinates, physicochemi‑
cal properties of the sample soils, macroclimatic variables for each site, 
and soil texture and land cover classifications based on the macroclimatic 
variables.

Additional file 13. Table S2. Taxonomy of prokaryotic taxa in the domi‑
nant fraction of the microbial community, at the Class taxrank. 

Additional file 14. Table S3. Metadata of the dominant phylotypes, 
including taxonomy, functional predictions (based on FAPROTAX and 
manual curation), and ecological groups based on the main environmen‑
tal predictor.

Additional file 15. Table S4. Table with the semi‑partial correlation 
analysis results, in which the correlation values (r) and associated p‑values 
of the variable with the highest correlative value are displayed for each 
dominant phylotype that was significantly (p‑value < 0.05) correlated with 
environmental factors. 

Additional file 16. Table S5. Taxonomy of the taxa considered as 
plant‑growth‑promoting. 

Additional file 17. Table S6. Net estimates and corresponding signifi‑
cance values for the environmental variables associated with soil health in 
the SEM model.

Additional file 18. Table S7. Number of samples allocated for each 
country, and number of samples collected. 

Additional file 19. Table S8. Variable codes, meaning and units for the 
environmental variables used in this study. 
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