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Abstract 

Background:  The adverse effects of climate change on crop production are constraining breeders to develop high-
quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for 
enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic 
stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, 
the “queen” of oilseed crops.

Results:  In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distrib-
uted unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs 
(AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup 
exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in 
sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed 
that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 
SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indi-
cated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among 
them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted 
improvement of sesame response to multiple abiotic stresses.

Conclusion:  This study provides a comprehensive understanding of the structure, classification, evolution, and abi-
otic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characteriza-
tion towards enhancing sesame tolerance to multiple abiotic stresses.
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Background
Sesame (Sesamum indicum L.) is a worldwide impor-
tant oilseed crop cultivated mainly in tropical and sub-
tropical regions and providing humans with high-quality 
nutrients and nutraceuticals [1–3]. It represents a price-
less material for food, cosmetics, and medicine [4]. 
For instance, its lignans have been reported to possess 
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various physiological properties, such as antioxidant, 
antiaging, serum lipid-lowering, blood pressure-lower-
ing, anti-cancer, etc. [5–7]. Therefore, the global market 
of sesame products is being expanded. Unfortunately, 
sesame productivity, yield, and seed quality are influ-
enced by several abiotic stresses, including drought, 
waterlogging, salt, and heat [8, 9]. Among them, drought 
and waterlogging are the leading environmental adverse 
impairing physiological and biochemical processes in 
sesame [10–12]. Studies revealed that plants initiate a 
series of transcription factors (TFs) phosphorylation/
dephosphorylation under stress to enable them to bind 
cis-elements of stress-related genes to enhance or sup-
press their transcription, thus inducing stress tolerance 
[13, 14]. TFs are critical in regulating plant’s defense 
responses to stresses and are emerging as promising 
resources for engineering improved crop varieties with 
tolerance for multiple abiotic stresses [15]. In sesame, 
studies carried out by Dossa et al., and Wang et al. dis-
closed that ERF, MYB, bHLH, and WRKY TF families are 
the main genes involved in sesame responses to abiotic 
stresses [16, 17]. MYB and WRKY TFs have been widely 
identified in sesame, and their expression under various 
abiotic stresses was evaluated [18, 19]. However, the ERF 
gene family is not well characterized in sesame, and only 
DREB genes expression under drought stress was investi-
gated [20].

ERF, together with AP2 (APETALA2), DREB (dehydra-
tion responsive element binding), RAV (related to ABI3/
VP), and Soloist (specific proteins) genes are members 
of the AP2/ERF TFs superfamily [21, 22]. The ERF gene 
family includes ERF and DREB genes and encodes a pro-
tein with a single AP2/ERF domain [23]. The structure of 
the domain is unique, with three-stranded β-sheets and 
an α-helix consisting of approximately sixty conserved 
amino acids [24]. ERF and DREB genes could be distin-
guished by their DNA binding domains [21]. The ERF 
subfamily binds to the AGC​CGC​C of GCC-box, while 
the DREB subfamily usually interacts with the CCGAC 
core sequence. ERF TFs are widespread in plants, and 
numerous ERF genes have been successfully identified 
in crops, including Arabidopsis [22], rice [25], soybean 
[26], tomato [27], peanuts [28], Zea mays [29], Bras-
sica napus [30], and wheat [31]. Their roles in plants’ 
response to abiotic stresses have been extensively studied 
[32]. For example, AtERF1 is reported to play a positive 
role in salt, drought, and heat stress tolerance by regulat-
ing stress-specific genes in Arabidopsis [33]. Overexpres-
sion of AtERF019 delayed Arabidopsis plant growth and 
senescence and improved drought tolerance [34]. Over-
expression of AtERF71 enhanced the Arabidopsis plant 
tolerance to salt stress and its ability to resist osmotic 
stress [35]. AtERF98 enhanced tolerance to salt through 

the transcriptional activation of ascorbic acid synthesis 
[36]. In rice, it was demonstrated that OsERF71 increases 
the plant tolerance to drought by binding to the promoter 
of OsCC1 [37]. Conversely, overexpression of OsERF922 
impaired the plant tolerance to salt stress [38]. In soy-
bean, GmERF3 was reported to be essential for plant sur-
vival under salinity and drought [39]. In cotton, GhERF38 
is essential for the plant response to salt and drought 
stresses [40].

In the present, the ERF gene family was re-identified 
in sesame under stringent conditions. Through a com-
prehensive bioinformatic analysis, their structure, chro-
mosomal distribution and duplication events, phylogeny, 
and conserved motifs were revealed. Moreover, their 
expression patterns in response to drought, waterlogging, 
osmotic, submerge, ABA, and ACC treatments were 
analyzed. Our findings provide new insights into the 
ERF gene family and reveal key SiERF genes for targeted 
improvement of the sesame tolerance to abiotic stresses.

Results
Genome‑wide identification of ERF family genes in sesame
In total, 114 putative ERF genes were identified and 
named from SiERF1 to SiERF114 based on their appear-
ance on the sesame linkage groups. Detailed information 
of SiERFs such as gene name, gene ID, mRNA accession, 
protein accession, linkage group, gene start position, gene 
end position, protein length, and the number of exons are 
shown in Table S1. 

The proteins of the 114 SiERF ranged from 121 
(SiERF091) to 419 (SiERF114) amino acids (aa) in 
length. The molecular weights (MWs) and the isoelec-
tric points (pIs) of the sesame ERF proteins varied from 
13.42804 (SiERF114) to 46.17756 kDa (SiERF091) and 4.5 
(SiERF072) to 10.24 (SiERF114), respectively. Table S2 
presents detailed information about the physiochemical 
proprieties of each identified ERF protein.

Chromosomal localization and gene duplication analysis 
of SiERF genes
96.49% of the SiERF genes (110 genes) were distributed 
unequally on the 16 linkage groups (LGs) (Fig.  1). The 
remaining four SiERF genes (SiERF111, 112, 113, and 
114) are located on the unanchored scaffolds (Table S1). 
The LG1 harbored the largest number of 19 SiERF genes, 
accounting for 16.67% of the total number. In contrast, 
the LG14, LG15, and LG16 contained only one SiERF 
gene, respectively. Some SiERF genes formed one, two or 
three clusters on LG1、LG2、LG3、LG4、LG6、LG8
、LG10、LG11 and LG12.

In order to reveal the evolution mechanism of the 
ERF gene family in sesame, we analyzed the duplication 
events. The result indicated that the SiERF gene family 
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underwent whole-genome duplication (WGD) and tan-
dem duplication events (Fig. S1). Fifty-eight (58) SiERF 
genes accounting for 52.73% were derived from WGD 
events, indicating that whole-genome duplication plays a 
major role in ERF gene family expansion in sesame. The 
tandem gene duplication involved 18 SiERF genes.

Phylogenetic analysis among the Arabidopsis and sesame 
ERFs
To get insight into the phylogenetic relationships of the 
ERF gene families, a phylogenetic tree was constructed 
using the neighbor-joining (NJ) method and based on 
AP2/ERF domain of 122 Arabidopsis ERFs and the 114 
SiERFs. As presented in Fig. 2, the SiERFs were distinctly 
divided into eleven (11) groups (groups I, II, III, IV, V, VI, 
VII, VIII, IX, X, and VI-L), which closely agrees with the 
phylogenetic analysis of ERFs in cassava and Androgra-
phis paniculate [41, 42]. One additional group (group 
Xb-L) was composed uniquely of three Arabidopsis ERFs. 
Groups I ~ X and VI-L constituted of 9, 10, 21, 6, 5, 7, 4, 
15, 23, 6, and 8 SiERFs, respectively. The largest group 
(class III) included 45 ERF proteins (21 SiERFs and 24 
AtERFs), suggesting that genes of this subfamily might 
undergo duplication events and retain more genes.

Gene structure, conserved domain, and cis‑acting 
elements analyses of SiERF genes
Phylogenetic evolution and gene structure usually have a 
strong correlation. To study the structural characteristics 
of the SiERF genes, the conserved motifs and the num-
ber of exons and introns were identified and analyzed. 
Totally, we identified 16 conserved motifs (motif 1–16) 

through MEME motif detection software (Fig.  3A). The 
motifs were constituted of 6 to 49 aa (Fig. S2). Each SiERF 
contained two to eight motifs. The motifs 1, 2, 3, and 4 
aligned in the order 4–2–1-3 were shared by 95 SiERFs, 
indicating that ERF family genes are relatively conserved 
in sesame. Motifs 5 and 13 were shared by 28 SiERFs, 
and motif 6 was shared by 29 SiERFs. SiERF proteins in 
the same group displayed similar conserved motif types 
(Fig. 3A). For instance, 20, 17, and 13 SiERFs in the same 
groups shared motif 8, motif 7, and motif 11, respectively, 
indicating that subgroups of SiERF are different. To 
determine the number and location of exons and introns, 
the structure of SiERF genes was further analyzed via the 
TBtools software. The result showed a weak variation of 
the number of exons and introns in the sesame ERF gene 
family (Fig. 3B). 90 of the 114 (78.9%) sesame ERF genes 
contained only one exon and no intron. Twenty (17.5%) 
SiERF genes contained two exons and one intron.

To identify the putative cis-acting regulatory elements 
in the promoter regions of the SiERFs, the sequences 
1500-bp upstream from the protein start codons (ATG) 
of each gene were analyzed by the PLACE database [43]. 
All SiERFs contained cis-acting elements within the ana-
lyzed interval. Totally, 40 cis-elements mainly related to 
hormone response, stress response, and light-response 
were identified (Table S3; Table S4). Light responsive 
elements, including I-box, TCT-motif, TCA-element, 
TCCC-motif, GT1-motif, GA-motif, G-Box, AE-box, 
Box  4, MRE, etc., were the most abundant (Fig. S3). 
Hypoxia response elements (ARE), ABA response ele-
ments (ABRE), methyl jasmonate response elements 
(CGTCA-motif and TGACG-motif ), and ethylene 

Fig. 1  Distribution of SiERF genes within the sesame linkage groups (LGs). Vertical bars represent the LGs within the sesame genome. The LG 
number is indicated at the top of each LG. The scale on the left is in megabases
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response elements (ERE) were detected in 82, 89, 67, 67, 
and 72 genes, respectively (Table S3).

Expression profiles of SiERF genes under drought 
and waterlogging stresses
To explore the roles of SiERF genes in sesame response 
to drought and waterlogging stresses, we investi-
gated their expression in roots at different time points 
based on RNA-seq data from previous studies [9, 44]. 

Unfortunately, eleven (SiERF006, 007, 013, 016, 048, 
073, 074, 075, 082, 083, and 099) and thirteen genes 
(SiERF006, 007, 019, 028, 034, 041, 048, 067, 076, 086, 
089, 093, and 099) lacked RNA-Seq data under progres-
sive drought and waterlogging stress, respectively. As 
shown in Fig.  4A, the SiERF genes exhibited significant 
transcriptional changes in responses to drought stress. 
59 (51.8%) and 44 (38.6%) SiERF genes were up-regulated 
and down-regulated under drought stress, respectively. 

Fig. 2  Phylogenetic analysis of the ERF proteins in sesame and Arabidopsis. Multiple sequence alignments of ERF amino-acid sequences were 
conducted using ClustalX, and the phylogenetic tree was constructed using MEGA5 by the neighbor-joining (NJ) method and 1000 bootstrap 
replicates. The blue triangles and red dots represent ERF proteins in Arabidopsis and sesame, respectively
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Fig. 3  Phylogenetic relationships, gene structure, and motif compositions of SiERFs. A Left: the phylogenetic tree of SiERFs. Right: conserved motif 
composition of the SiERFs. Different colored boxes represent different motifs. B Intron-Exon structure of SiERFs. The green boxes represent UTR, grey 
lines represent introns, and yellow boxes represent exons
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Among the up-regulated SiERFs, fifteen (SiERF002, 005, 
016, 020, 021, 023, 033, 035, 038, 050, 077, 094, 097, 105, 
and 109) were highly expressed at all time points dur-
ing the drought stress. Expression levels of SiERF002, 
SiERF003, SiERF016, and SiERF109 were maximum at 3 
d after drought stress initiation. The expression levels of 

SiERF021, SiERF023, SiERF069, SiERF077, and SiERF097 
were peaked at 7 d, and those of SiERF005 and SiERF050 
at 10 d, implying their role in the sesame responses to 
drought stress at different times. Besides, some SiERF 
genes in the down-regulated group such as SiERF010, 
SiERF014, SiERF053, SiERF055, SiERF078, and SiERF093 

Fig. 4  SiERF genes expression profiles in sesame roots under drought stress (A) and waterlogging stress (B). Transcriptome data (Reads Per Kilobase 
per Million mapped reads; RPKM) were used for the expression levels measurement. The colored scale for the different expression levels is shown
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exhibited a high expression at 3 d. SiERF11, SiERF34, and 
SiERF35 were down-regulated significantly at each time 
point (Fig. 4A).

Three groups of SiERF genes could be distinguished 
under waterlogging stress (Fig. 4B). The first group con-
stituted of 26 genes that were expressed highly at differ-
ent time points. Among them, the expression of SiERF31 
and SiERF54 were significantly up-regulated along with 
the waterlogging stress progress, indicating they might be 
essential for sesame survival under waterlogging condi-
tions. The second group of SiERF genes (51 genes) was 
up-regulated at one, two, or three time points, except for 
SiERF010, SiERF053, SiERF011, and SiERF081, which 
were down-regulated at each time point. The third group 
of SiERF genes was composed of 24 genes that were 
expressed weakly under waterlogging stress. By integrat-
ing the results, we found that twenty-two SiERF genes, 
including SiERF23, SiERF35, and SiERF54, were up-
regulated significantly at least once under drought and 
waterlogging stresses. Forty-two SiERF genes exhibited 
contradictory expression patterns under drought and 
waterlogging stress. For example, SiERF005, SiERF021, 
SiERF38, SiERF40, SiERF069, SiERF98, SiERF105, 
SiERF109, and SiERF113 were up-regulated significantly 
under drought and down-regulated under waterlog-
ging, while SiERF088 was induced by waterlogging and 
repressed by drought.

Expression profiles of SiERF genes in response to osmotic 
and submerge stresses
To further investigate the potential roles of the SiERF 
gene family in response to multiple abiotic stresses 
in sesame, we selected and examined the stimulation 
response of eighteen SiERF genes under osmotic and 
submerge stresses via qRT-PCR (Fig.  5A and B). The 
results showed that except for SiERF004 and SiERF014, 
the other sixteen SiERF genes were significantly up-
regulated by osmotic stress, with SiERF023 exhibiting 
the highest expression level (Fig.  5A). SiERF014 was 
significantly down-regulated, while SiERF004 expres-
sion was not significantly influenced at 6 h. SiERF023 
and SiERF054 showed a steady tendency of expres-
sion profiles from 3 h (Fig. 5A). In contrast to osmotic 
stress, submerge stress significantly affected the expres-
sion of the selected eighteen SiERF genes except for 
SiERF002 and SiERF108 (Fig. 5B). SiERF004, SiERF008, 
SiERF014, SiERF050 and SiERF107 were significantly 
down-regulated while SiERF023, SiERF030, SiERF052, 
SiERF054, SiERF055, SiERF064, SiERF084, SiERF085, 
SiERF090, SiERF102, and SiERF105 were significantly 
up-regulated under the submerge stress (Fig. 5B).

Expression profiles of SiERF genes in response to ABA 
and ACC treatments
Abscisic acid (ABA) is a critical plant hormone involved 
in various growth, developmental, as well as plant and 
environment interactions processes [45]. 1-aminocy-
clopropane-1-carboxylic acid (ACC) is the direct pre-
cursor of ethylene. It is converted into ethylene in seed 
plants by ACC oxidase [46]. Ethylene responses in plants 
are often induced via ACC treatment [47]. We investi-
gated the expression profiles of eighteen selected SiERF 
genes in response to ABA and ACC treatment of sesame 
for 0 h, 3 h, and 6 h through qRT-PCR. As presented 
in Fig.  6A and B, the selected SiERF genes were up-
regulated by both ABA and ACC treatments except for 
SiERF004, SiERF014, SiERF050, and SiERF085. SiERF105 
was down-regulated by both ABA and ACC treatment. 
SiERF050 expression was induced by ABA treatment 
but was not significantly affected by ACC treatment. 
SiERF004 was up- and down-regulated by ABA and 
ACC, respectively. In contrast, SiERF085 was down- 
and up-regulated by ABA and ACC, respectively. The 
expression of SiERF023, SiERF030, SiERF052, SiERF055, 
SiERF061, and SiERF107 were significantly induced along 
with the duration of the ABA treatment, specifically at 
6 h (Fig. 6A). Meanwhile, the same genes with SiERF002, 
SiERF008, and SiERF102 exhibited the same expression 
patterns under ACC (Fig. 6B).

Discussion
Sesame is one of the most important oilseed crops supply-
ing humans worldwide with various metabolites, includ-
ing high-quality nutrients and bioactive compounds [1, 7]. 
The plant growth, development, survival, reproduction, 
and yield are usually affected by various abiotic stresses 
[10–12, 16]. To adapt to unfavorable environmental condi-
tions, the plant has implemented sophisticated regulatory 
mechanisms involving diverse TFs [10, 48]. Among them, 
ERF genes have emerged as one of the key regulators of 
multiple stress responses in sesame [16, 17]. Therefore, in 
this study, we performed a comprehensive and systematic 
analysis of the ERF gene family in sesame and investigated 
the expression of SiERFs under various abiotic stresses.

The ERF gene family represents one of the largest fami-
lies of plant TFs and is essential for plant species sur-
vival [23]. ERF genes have been widely identified in many 
plants, including Arabidopsis, rice, soybean, Brassica 
napus, Sorghum bicolor, Tartary buckwheat, Medicago 
sativa, and peanuts in which 122, 139, 323, 444, 158, 116, 
159, and 63 ERFs were detected, respectively [22, 23, 28, 
30, 49–51]. Herein, we identified 114 SiERFs, indicating 
that the ERF gene family has expanded more in many 
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species compared with S. indicum. A similar observa-
tion was noticed by Dossa et  al. [20]. The SiERFs were 
distributed irregularly on the sixteen LGs of the sesame 
genome, mostly in a cluster of two or three genes. It is 
shown that a subset of the ERF genes appears in clus-
ters on the chromosomes and contributes together to 
regulate metabolism [51]. The interspecific variation of 
the number of ERF genes may be originated from differ-
ences in gene duplication events. Studies revealed that 

the expansion of the ERF gene family in plants might be 
caused by chromosomal (segmental) duplication and tan-
dem duplication [22, 30]. We found that the SiERF gene 
family went through whole-genome duplication (WGD) 
and tandem duplication events. 52.73% of the SiERFs 
were derived from WGD events, indicating that WGD is 
essential for ERF gene family expansion in sesame.

78.94% of the SiERF genes were intron-less and con-
tained one exon. Meanwhile, 20 SiERF genes were 

Fig. 5  Expression profiles of eighteen SiERF genes in sesame leave subjected to osmotic stress (A) and submerge stress (B) for 6 h. Transcript 
abundance was quantified using quantitative real-time polymerase chain reaction (qRT-PCR), and expression levels were normalized using sesame 
Histone H3.3 (LOC105159325) as a reference gene. The mean expression levels from three independent biological replicates were analyzed for 
significance using t-tests (p < 0.01). Asterisks indicate significant expression differences
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constituted of two exons and one intron. 60% and 38 
SbERFs also had no and single intron, respectively [50]. 
Also, the 40 identified cis-acting elements in the promoter 
regions of 114 SiERFs were related to light-response, 
stress-response, and hormone response. These results 
suggest that SiERFs might play essential roles during the 
sesame plant growth, development, and reproduction. 
Particularly, SiERFs might exhibit efficient expression in 
swift response to environmental stresses. Phylogenetic 
analysis showed that SiERF family proteins were sys-
tematically classified into 11 subgroups as the previously 
classified AtERFs by Nakano et al., except for the group 

Xb-L [22]. The ERF genes in S. bicolor and Hypericum 
perforatum were similarly classified in 11 groups [24, 50]. 
The motif analysis showed that SiERFs in the same clade 
shared a similar motif structuring, indicating the reliabil-
ity of the phylogenetic classification of the ERF proteins 
and the coevolution of the ERF domain with the remain-
ing protein sequence. Most of the SiERFs conserved 
motifs 1–4, suggesting they might be involved in a regu-
lation network of developmental processes and abiotic 
stresses response in sesame. In Arabidopsis, studies dem-
onstrated that AP2/ERFs participate in various stress tol-
erance, allowing them to build an interconnected stress 

Fig. 6  Expression profiles of eighteen SiERF genes in sesame leave treated with ABA (A) and ACC (B) for 6 h. Transcript abundance was quantified 
using quantitative real-time polymerase chain reaction (qRT-PCR), and expression levels were normalized using sesame Histone H3.3 (LOC105159325) 
as a reference gene. The mean expression levels from three independent biological replicates were analyzed for significance using t-tests (p < 0.01). 
Asterisks indicate significant expression differences
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regulatory network [52]. Some motifs were specific to 
phylogenetic groups suggesting their potential contribu-
tion to the SiERF gene’s functional specialization. Taken 
together, these findings denote that SiERFs within the 
same subgroups could play similar functions. These func-
tions could be predicted based on the reported roles of 
the Arabidopsis ERF genes. Indeed, it was shown that the 
sequences gathered in the same clade play similar physi-
ological functions [53]. For example, GmERF135 and 
OsERF922 in soybean and rice, respectively, and their 
homologous maize ZmERF39 and ZmERF23 were both 
up-regulated by drought and salt stress [38, 54]. The A. 
thaliana ERF-VII group plays an important role in low-
oxygen sensing and low-oxygen survival and root growth 
[55, 56]. Therefore, we speculated that the SiERF genes 
belonging to group VII might be involved in hypoxia 
response and root development [57, 58].

The sustainability of crop production requires an in-
depth understanding of the stress-induced molecular 
mechanisms in plants and the identification of mul-
tiple stress-responsive candidate genes for targeted 
improvement of crop tolerance to unfavorable growth 
conditions. Previous studies in sesame, Arabidopsis, 
Panax ginseng, Triticum durum, etc., showed evidence 
that ERF TFs are essential for plant response to abiotic 
stresses [16, 17, 59–61]. Wan et al. reported that ectopic 
overexpression of the peanuts AhERF019 improved tol-
erance to drought, salt, and heat stresses in Arabidopsis 
[28]. Overexpression of AtERF1, AtERF019, AtERF71, 
and AtERF98 enhanced the Arabidopsis plant tolerance 
to drought, heat, salt, and osmotic stresses [33–36]. We 
then investigated the expression of SiERF genes under 
drought and waterlogging stress. We found that 59 and 
26 SiERFs were significantly induced under drought and 
waterlogging stress, respectively, confirming their piv-
otal role in drought and waterlogging stresses tolerance 
in sesame. The up-regulated SiERF genes reached their 
expression peak at different time points, indicating they 
might be involved in different stress-responsive pro-
cesses. Moreover, the qRT-PCR analysis revealed that 
most of the SiERFs that responded to the drought and 
waterlogging stresses were also induced significantly 
under osmotic, submerge, ABA, and ACC (an imme-
diate precursor of ethylene) treatments. Among them, 
SiERF23 and SiERF54 were the most induced by both 
the abiotic stresses. ABA and ethylene play essential 
roles in various plant growth and developmental pro-
cesses, including seed maturation, germination, abi-
otic stress responses, pathogen response, senescence, 
etc. [9, 62, 63]. These findings support that the ERF 
gene family plays a vital role during sesame growth 
and development, especially in the plant responses to 

abiotic stresses. In addition, they suggest that targeting 
SiERF23 and SiERF54 could help promote sesame tol-
erance to multiple abiotic stresses.

Conclusion
In this study, 114 SiERF genes were identified and com-
prehensively analyzed. Chromosomal locations, phylo-
genetic relationships, gene structures, conserved motifs, 
and cis-acting elements analyses revealed that SiERFs 
might be involved in networks regulation of various 
developmental processes, especially in stresses toler-
ance in sesame. Tandem duplication and mostly whole-
genome duplication are the driving forces that have 
contributed to the ERF gene family expansion in sesame. 
Gene expression profiles and qRT-PCR analyses unveiled 
that many SiERFs are stimulated under drought, water-
logging, osmotic, and submerge stresses. Particularly, 
SiERF23 and SiERF54 were identified as potential candi-
date genes for targeted improvement of multiple abiotic 
stresses tolerance in sesame. This study provides refer-
ence information for exploring the SiERF gene’s functions 
and investigating the regulatory mechanisms involved in 
abiotic stresses resistance in sesame.

Materials and methods
Plant material
The sesame variety Zhongzhi No. 13 used in this study 
was provided by the Oil Crops Research Institute of the 
Chinese Academy of Agricultural Science (OCRI-CAAS, 
Wuhan, China).

Identification of ERF family genes in the sesame genome
Whole-genome protein sequences of Sesamum indicum 
were downloaded from NCBI (https://​ftp.​ncbi.​nlm.​nih.​
gov/​genom​es/​refseq/​plant/​Sesam​um_​indic​um/​latest_​
assem​bly_​versi​ons/​GCF_​00051​2975.1_​S_​indic​um_​v1.0/). 
A local BLASTP alignment against all sesame proteins 
was established by using known ERF protein sequences 
from Arabidopsis as queries with a cut-off e-value of 
1E-10. The Hidden Markov Model (HMM) profile of the 
AP2 domain (PF00847) and the B3 domain (PF02362) 
were downloaded from the PFAM database (http://​pfam.​
xfam.​org/) [64], and used to search against the sesame 
protein sequences using HMMER3.0 [65], with a thresh-
old of E < 1E-4. The presence of the AP2 domain in the 
putative sesame ERF proteins was further confirmed by 
SMART (http://​smart.​embl-​heide​lberg.​de/) [66]. After 
removed the proteins containing two repeated AP2 
domains or B3 domains, the remaining proteins were 
assigned as members of the ERF family in sesame.

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/plant/Sesamum_indicum/latest_assembly_versions/GCF_000512975.1_S_indicum_v1.0/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/plant/Sesamum_indicum/latest_assembly_versions/GCF_000512975.1_S_indicum_v1.0/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/plant/Sesamum_indicum/latest_assembly_versions/GCF_000512975.1_S_indicum_v1.0/
http://pfam.xfam.org/
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
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Chromosomal localization and gene duplication analyses
All identified ERF genes were mapped to the sesame linkage 
groups based on positions information using TBtools soft-
ware [67]. Gene duplication analyses were performed using 
the One-Step MCScanX function in TBtools software, and 
the result was further visualized by the Circle Gene View 
function [67]. Genes that were located on the unassembled 
genomic scaffolds were excluded from analyses.

Multiple sequence alignment and phylogenetic analysis
Multiple sequence alignment of ERF proteins from ses-
ame and Arabidopsis was performed using Clustal X [68]. 
Subsequently, an unrooted phylogenetic tree with 1000 
bootstrap replications was constructed by the MEGA 
(version 5.0) program [69] using the neighbor-joining 
(NJ) method and based on the conserved AP2/ERF 
domain of ERFs from sesame and Arabidopsis.

Gene structure, conserved motifs, and cis‑acting elements 
analyses
The gene structure of SiERFs was analyzed by TBtools 
software [67] based on gene’s structure annotation file 
in GFF3 format of sesame. Conserved motifs of SiERFs 
were analyzed using MEME (Multiple Em for Motif Elici-
tation) v5.3.3 (http://​meme-​suite.​org/​tools/​meme) [70] 
with the default parameters. The XML file storing motif 
pattern information obtained from MEME was used to 
generate schematic diagrams of motif distribution by 
TBtools software [67].

To analyze the cis-acting elements in the promoter 
region, the 1500-bp length of the upstream DNA sequences 
of SiERF genes were extracted in TBtools software and sub-
mitted to the PlantCARE database (http://​bioin​forma​tics.​
psb.​ugent.​be/​webto​ols/​plant​care/​html/) [43].

Expression profiling of SiERF genes under drought 
and waterlogging
The expression levels of SiERF genes in response to drought 
and waterlogging stress were analyzed using the RNA-seq 
data previously developed by our group [9, 44]. The heat-
map was constructed by TBtools software with Log2-based 
expression fold-changes [67]. The differentially expressed 
genes (DEGs) were identified at the criteria of false discov-
ery rate (FDR) < 0.01 and |log2FC (fold change)| > 1.

Osmotic, submerge, ABA, and ACC treatments
The Zhongzhi No. 13 seeds were grown in a growth 
chamber at 28 °C (16 h light/8 h dark cycle). The differ-
ent treatments were induced on two-week-old seedlings. 
The osmotic stress was induced as described in our pre-
vious study [71]. For the submerge stress, the seedlings 
were introduced into distilled water at a depth of 3 cm 
from the water surface. The hormone treatments were 

performed as per Yin et al. [72]. 0.1 mM ABA and ACC 
were sprayed on the surface of the seedling leaves. The 
leaf samples were collected after each treatment at 0 h, 
3 h, and 6 h for genes expression analysis. All collected 
samples were frozen immediately in liquid nitrogen and 
stored at − 80 °C until use.

qRT‑PCR
Total RNA was isolated from each sample, and first-
strand cDNAs were synthesized following the methods 
reported by Wei et  al. [73]. Quantitative real-time PCR 
(qRT-PCR) was performed in Roche LightCycler 480 
real-time PCR system with the ChamQ SYBR qPCR Mas-
ter Mix (Vazyme Biotech, China). The experiment was 
performed with three replicates. Relative expression lev-
els were calculated according to the 2–ΔΔCT method and 
normalized to the sesame Histone H3.3 (LOC105159325) 
gene expression [71, 74]. The gene-specific primers are 
listed in Table S5.
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