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ABSTRACT 

This study aims at determining if the reflectance spectra of oil palm leaves can provide an 
alternative measurement tool to expensive and time-consuming foliar chemical analysis to 
get information about any deficiencies of the trees. We focus here on the relationships 
between the reflectance spectra of oil-palm leaves and their deficiencies in five elements: 
nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe). We carried 
out statistical analyses over a database that we built on palm trees measured in Sumatra 
(Indonesia), combining leaves reflectance in the visible and near-infrared domain (450-900 
nm), leaves chemical composition, and observations of deficiencies visual symptoms on the 
tree. We obtained insignificant results on nutrient concentration prediction due to error 
rates above the stress detection threshold. At least we were able to discriminate the extreme 
situations of stress with an acceptable precision. We discuss here the results in terms of 
different sources of noise and errors in methodology, and we give prospective ways of 
improving the analysis. 
 

 

1. INTRODUCTION 

Nutrient stress detection is a major issue for the management of mineral nutrition and 
fertiliser regime in oil palm plantations. Foliar chemical analysis has been for a long time 
the main tool used to get information about any deficiencies of the trees. However, it is 
quite expansive and time demanding. In addition, the space and time sampling scales are 
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not compatible with the concept of precision agriculture. This study aims at determining if 
the reflectance spectra of oil palm leaves can provide an alternative measurement tool to 
these chemical analyses.  
For years, multispectral remote sensing has been widely used to detect crop stress, 
providing results of varying reliability (see for instance (Chaerle and Van Der Straeten, 
2000), (Thenkabail et al., 2000),(Boegh et al., 2002), (Haboudane et al., 2002), (Huang et 
al., 2004), (Huang et al., 2007), and references within). This lays on the commonly 
accepted notion that strong relationships exist between the visible and near infrared 
reflectance of leaves and their pigment and mineral content.  
Big advances in this field have been made for several simple crop covers (e.g. (Curran et 
al., 2001), (Sims and Gamon, 2002), (Christensen et al., 2004), (Zhao et al., 2005a), (Zhao 
et al., 2005b), (Bélanger, 2005), (Bélanger et al., submitted in 2005), (Nguyen and Lee, 
2006)) and can now be used for precision farming. Although, this studies have pointed out 
many limits of reflectance-based estimations and in particular the non-generic property of 
any estimated relationship.  
Moreover, some types of crops, like tree crops for instance, have not benefited from this 
work yet and one cannot find much documentation on their optical properties. Due to 
complex architecture and physiology, remote estimation of stress seems to be very difficult 
in this case and raises many questions while it solves few problems.  
With multispectral imaging for instance, many different contributions to the observed 
signal might blur the compositional information. The spectral contrast between stressed and 
unstressed trees is insufficient and cannot be correctly interpreted. It is even more risky 
because functional models and understanding of the optical properties of tree leaves are 
very poor, when they exist. Actually, this information has even not been proven yet to 
reside within this type of signal. We propose here to analyse, in the case of oil palm trees 
and at the leaf level, the possible relationships between the leaves spectral signature and 
their nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe) content. 
We will also study the means how the leaves reflectance can indicate factors of tree stress 
or deficiency.  

 
 

2. FIELD MEASUREMENTS 

We set up one month of survey in may 2006 in different oil palm plantations, owned by 
P.T. SMART, and located in the province of Riau in Sumatra (Indonesia). Hyperspectral 
field measurements were made with a UNISPEC-2001 from PP-Systems. This device 
allows the reflectance measurement at the leaf level, using a leaf clip and a fibre optics 
integrating the signal on a surface of about 5 square millimetres, in 256 spectral channels 
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between 303.6 and 1131.4 nm. The leaf-clip enables sensing the bidirectional reflectance of 
a circular spot of about 5 mm2 in diameter. Reflectance was calibrated thanks to repeated 
measurements of a barium sulphate standard disk. Due to strong instrumental noise outside 
this domain, only the 450-900 nm domain was retained for analysis. 
Two kinds of oil palm trees were sampled in the fields, up to a final number of 47 trees: 

- Trees showing visual symptoms of a specific nutriment deficiency, which could be 
easily detected on leaves, 

- Trees growing inside nutrition practices trials, putting in balance in one hand 
nitrogen (N) and phosphorus (P), and, in the other hand, magnesium (Mg) and 
potassium (K). These ones did not show clear symptoms of any deficiency on their 
leaves. 

 
Defining a robust measurement protocol to get a representative signature of one tree at the 
leaf level was difficult due to a strong gradient of chemical components inside a single 
leaflet, from one leaflet to the other on a single palm leaf, and from one leaf to the other 
inside the palm tree canopy. Moreover, we observed that not all the different deficiencies 
we were looking about provoke symptoms on the same level of leaves. We thus decided to 
get a signature that always corresponds to the same location in the gradient pattern of the 
leaf to let them be comparable. Therefore, we cut 4 to 5 leaves per palm, that are 
representative of the different canopy stratus and that are still visible from the top of the 
canopy. This latter condition was set in the long-term goal of precision agriculture based on 
aerial or satellite remote sensing, that only reaches the top of the tree canopy.  
On each leaf, we made concurrently two distinct samplings 
 
1) 5 leaflets were regularly cut, one every fifteen to twenty leaflets from the end extremity 
of the leaf. On each one, we reproduced a set of 10 spectral measurements, on each of the 
two squares of 2 cm2 symmetrically located at each side of the leaflet central vein, and at 
each of the 1/3 and 2/3 of the leaflet length (see Figure 1). This means that we measured a 
whole set of 40 spots per leaflet. These acquisitions were then averaged so that we get a 
mean spectral signature at 1/3 and one at 2/3 of the leaflet length.  
 
2) A dozen of leaflets were also cut around the 40th to 55th position on each palm leaf, and 
sent to laboratory for chemical analysis. This foliar diagnostic was made by SMARTRI, 
research laboratory of P.T. SMART in Pekanbaru (Sumatra). They used an atomic 
absorption spectrometer providing the chemical composition determination in 6 macro-
elements: Nitrogen (N), Phosphorus (P), Potassium (K), Magnesium (Mg), Calcium (Ca), 
and Chloral (Cl), and 5 olio-elements: Bore (B), Copper (Cu), Zinc (Zn), Manganese (Mn), 
and Iron (Fe).  
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Finally, the spectral database gives, in one hand, the representative chemical composition of 
the leaf in 11 elements and, in the other hand, several spectral signatures on different 
locations in the leaf.  
 

 

Figure 1 : Location of the spectral measurements on each leaf: Two areas were 
considered, at 1/3 and 2/3 of the leaf length; For each, the two 2 cm2-spots located on 
each side of the central vein were sampled respectively by ten measurements of 5 mm2 in 
diameter. 

 
 

3. SPECTRAL ANALYSIS 

The database was first analysed trying to compare different spectra obtained in several 
contexts in order to detect any actual variations in the spectral signature of stress leaves 
compared to unstressed ones. As an example, the Figure 2 shows the spectra of 4 leaves 
obviously showing apparent symptoms of different deficiencies, along with the spectrum of 
a sane leaf. The first observation is that all stress leaves have a lower reflectance in the near 
infrared plateau (750-900 nm) than the unstressed one but no clear tendency is seen to 
discriminate the different deficiencies. Nevertheless, in the visible part of the spectrum 
(450-675 nm) the reflectance variations seem to be reproducible for each respective 
deficiency with the following overall characteristics: 

- Green (∼550nm) and red (∼660m) absorptions intensity decreases, 

- Location of the green reflectance maximum (∼550nm) is shifted to higher wavelengths, 

rachis 
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- Green “peak” widens and changes in shape. N and Fe deficiencies in one hand and Mg 
and K deficiencies in the other hand correspond to almost the same spectral shape with 
different intensities. 

It thus seems possible to detect a stress by means of visible and infrared spectrometry. 
However, at this stage, it seems complex to discriminate between different deficiencies 
only based on visual spectral analysis because of the various observed trends. 
 

 

 

Figure 2 : Measured reflectance spectra between 450nm and 900nm for 4 deficient leaves 
(N in grey line, K in black dots, Mg in grey dots, and Fe in black discontinuous line) and 

on a standard leaf (black line). 
 
In order to extract the more objective information out of the huge built spectral database, 
we selected a set of 27 analytic parameters describing both the spectrum shape and intensity 
(see Figure 3 and TABLE 1). These indexes are for instance levels of reflectance, 
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wavelengths of the local maxima, minima or inflection points, or some areas of spectral 
features like peaks and valleys. They are illustrated on the spectrum of an Mg-deficient leaf 
at Figure 3.  

In addition, we selected in the literature 21 spectral indices often used in remote sensing for 
crops nutrient status characterisation (see TABLE 2) to test them in the case of oil palm. 

 

 

Figure 3: Schematic definition of main analytic spectral indexes (see TABLE 1 for 
analytic definition) M, B, G, Y, R, REIP, RSNIR, IR, Hr, and Hg 
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TABLE 1: ANALYTIC DEFINITION OF THE 27 SPECTRAL INDEXES 
SELECTED FOR THE OIL-PALM SPECTRUM DESCRIPTION 

Index Definition 

M (λM, RM) minimum in the blue domain (380-550 nm) 

B (λB, RB) 
blue edge: inflection point between blue (450 nm) and green 
(550 nm) 

G (λG, RG) maximum in the green domain (500-650 nm) 

Y (λY, RY) 
yellow edge: inflection point between green (500 nm) and 
yellow (650 nm) 

R (λR, RR) minimum in the red domain (550-750 nm) 

REIP (λREIP, RREIP) 
Red Edge Inflection Point: inflexion point between red (550 
nm) and near IR (800 nm) 

RSNIR (λRSNIR, RRSNIR) 
Red Slope-Near Infra Red: intersection point between the 
tangent at REIP and the near infrared plateau line 

IR mean reflectance of the near infrared plateau  (780-900 nm) 

SB 
Slope of Blue edge: mean value of the slope between M and 
G 

SY 
Slope of Yellow edge: mean value of the slope between G 
and R 

SV 
slope of red-IR: mean value of the slope between RSNIR 
and R 

SC 
Slope of Continuum: mean value of the slope between 
RSNIR and G 

HG net height of the green peak 
HR net absorption depth 
HI net height of the near infrared plateau  
λwG green peak width (λY – λB) 
λwR red valley width (λREIP – λY)  
AG total area of green peak 
Agn net area of green peak 
AR net area of red absorption  
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TABLE 2: MATHEMATICAL DEFINITION OF THE 21 SPECTRAL INDEXES 
FOUND IN THE LITERATURE SELECTED FOR THIS STUDY. 

Index (reference) Definition 

SIPI (Penuelas et al., 1995) 
 

PSRI (Merzlyak et al., 1999) 
 

PRI (Gamon et al., 1997) 
 

SR680 (Sims and Gamon, 2002)  
SR705 (Gitelson and Merzlyak, 1994a)  

ND680 (Sims and Gamon, 2002) 
 

ND705 (Sims and Gamon, 2002) 
 

mSR705 (Sims and Gamon, 2002) 
 

mND705 (Sims and Gamon, 2002) 
 

CI (Zarco-Tejada et al., 2002) 
 

TCARI / OSAVI  
(Haboudane et al., 2002) 

 
R1 (Read et al., 2002)  
R2 (Read et al., 2002)  
R3 (Merzlyak et al., 1999)  
R4 (Bélanger, 2005)  
R5 (Bélanger, 2005)  

NDVI 
 

R6 (Carter et al., 1996)  
R7 (Carter et al., 1996)  
R8 (Carter et al., 1996)  
R9 (Carter et al., 1996)  
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4. STATISTICAL ANALYSIS 

We followed two statistical approaches to decipher the information collected in the 
database.  

1) Establishment of a predictive model for the chemical elements concentrations [N], [P], 
[K], [Mg], [Fe]. 

2) Discrimination of 5 pre-defined classes of specific deficiencies: in N, in P, in K, in Mg 
and in Fe. 

For the first one, we applied a multiple linear regression (MLR) on the 48 indexes 
described at TABLE 1 and TABLE 2 as the explicative variables, with the 5 element 
concentrations as the expected results. This regression was combined with a stepwise 
procedure, which determined the most significant parameters to be used in the model. 
For the second one, we used a partial least square regression (PLS) (Preda and Saporta, 
2005) followed by a factorial discriminative analysis (DFA) on the set of the 130 couples 
(wavelength; reflectance value) that compose the leaf reflectance spectrum in the 450-
900 nm domain. This can be called the PLS-DA approach (Roger et al., 2005). 
A cross-validation was used in both algorithms. 

This analysis main difficulty lies in the best model selection based on the function of the 
quadratic error vs. the number of predictive or latent variables selected by the stepwise 
procedure. Indeed, this curve shows no absolute minimum, but only local minima that do 
not constitute ideal solutions. Finally, a four-variables-based model was selected for the 
MLR application, while the model chosen for the PLS-DA was based on four axes and six 
variables.  
 
 

5. RESULTS AND DISCUSSION 

In one hand, it seems that we can not derive any model for the concentration predictions of 
P, K, Mg or Fe. MLR algorithm found a very faint model for [N], following the Equation 1: 

[N]=(61.6λM +4375.9RB +60.2SR680 –7.4mSR705 +5228.8).10-3                         (Equation 1) 

This model allows to estimate the concentration [N] with an accuracy of 44% only and an 
error bin of ±0.44% . Considering that an optimal [N] is about 2.5% and a critical [N] about 
2.3%, it is obvious that this bin is out of the admissible range and that any nitrogen stress 
will not be detected.  
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This unsatisfying result can come from different origins that we try to explain in the 
following. 
1) There may be no relationship between the nitrogen or the minerals and the reflectance 
spectra in these wavelengths. Considering the large amount of publications in this field, 
applied to many other crops as different as barley (Jorgensen et al., 2007), rice (Nguyen and 
Lee, 2006), sorghum (Zhao et al., 2005a), eucalypt (Huang et al., 2007), chestnut tree or 
maple (Gitelson and Merzlyak, 1994b), it would be such an exception if oil palm would not 
drive any rule.  

2) Such a relationship exists, but is not linear. In our study we only used the MLR method, 
which only seeks linear combinations of the explicative variables. Even though this method 
had proven to be powerful in a wide range of applications, it would be of large interest to 
test now other types of regressions that allows other types of combinations. 

3) The uncertainty on the reflectance measurements (due to protocol, instrumental noise, 
etc…), summed to chemical diagnostic uncertainty, might be higher than the detection 
threshold of this relationship. This is the biggest constraint of the problem, because this 
study was lead in the most rigorous way, with devices that provides some of the richest 
spectral information available in the fields, at the smaller scale that remote detection can 
afford to reach. Thus, it seriously embeds future applications in the field of precision 
farming, where the conditions can only be worse than experimental surveys. Unfortunately, 
we have no means to estimate the total amount of noise that our protocol implies and to 
validate this assumption, except testing all the other possibilities of failure.  

 
In the other hand, we could not establish a sharp and reliable discrimination of the 5 
deficiency classes by means of the PLS-DA. Indeed, in the selected solution with 4 axes 
and 6 variables, the error committed on the test sample is 27% while the error in cross-
validation is 28%. A solution based on 3 axes and 11 variables gives lower errors, neither 
very satisfying (25% on the test sample, 18% in cross validation), but the system looses 
strongly in stability, providing very noisy discriminative vectors. Looking at the projections 
of the database population in the planes defined by the two first discriminative vector (cf. 
Figure 4), it is obvious that the great majority of points are concentrated near the 
barycentre. Such population has intrinsically little chance to be classified in different 
separable groups. Nevertheless, it seems also that several "branches" move aside this 
barycentre, and that these trends correspond to single classes of deficiencies.  
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Figure 4: Representation of the spectral database population in the plane defined by the 
two first PLS-D discriminative vectors for: a) the test sample and b) the cross-validation. 

a) Test  sample 

b) Cross-validation 
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We can thus be confident in the fact that strong tendencies exist for extreme individuals, 
namely highly deficient leaves. We suppose that the mathematical discrimination difficulty 
between the different deficiencies classes among our population comes from the population 
itself. In fact, a kind of "noise" may blur the classification trends, due to the possible 
sampling of poorly deficient leaves and leaves that are simultaneously deficient in two or 
more elements.  

 

 

6. CONCLUSIONS AND PERSPECTIVES 

A spectral database was constituted on leaves of oil-palm trees presenting apparent 
deficiencies in different elements (N, P, K, Mg, Fe). This base associates the reflectance 
spectrum between 450 and 900 nm, the chemical composition of the leaves in terms of 
constituent concentrations, and the list of deficiencies visible symptoms on the trees. 
Spectral shape and variations analysis led to the extraction of representative indexes 
describing the main reflectance features. A multiple regression analysis combined with a 
stepwise procedure and a cross validation (MLR) was applied to the indexes combined to 
the elements content values to establish a concentration predicting model. A mathematical 
model was found for [N] with 4 latent variables, but too faint to allow any stress detection. 
No model could be derived for the other elements. A partial least square regression, 
combined with a stepwise procedure and a cross validation, and followed by a 
discriminative factorial analysis (PLS-DA) was then applied to the spectra in the aim of 
discriminating the five deficiencies classes. It shows that it can separate only highly 
deficient leaves, the others being discriminated only with a high level of error.  

To improve these results, we will now extract the more significant and "pure" individuals 
off the database to derive reliable linear and non-linear models of prediction or 
discrimination in the extreme/ideal cases. We will then analyse the possibilities of 
unmixing the remaining individuals on the basis of the extreme cases as endmembers.  
Concurrently, we will quantitatively estimate the possible factors of “noise” coming from 
the spectral measurements, the chemical analysis or the way the database was built. We will 
then assess the exact potentiality of these models.  

At this stage of the study, we are not able to propose recommendations on the use of 
hyperspectral data to detect and characterise oil palm nutrient stress. We have only showed 
that there is a potential in such measurements. Nevertheless, the next step in further 
analysis should establish the bases for this kind of sensing.  
 
 



 

13 

7. ACKNOWLEDGEMENTS 

This study was jointly funded by the French Agronomical Research Centre for the 
Development (CIRAD), and PT-SMART, sub company of Sinar Mas, in Indonesia. 
Chemical analyses were performed by SMART-RI in Libo, Indonesia.  

 

 

8. REFERENCES 

BÉLANGER, M.-C. (2005) Détection de carences nutritives par fluorescence active et 
spectrométrie. Forestry and Geomatics. Québec, Université Laval. 

BÉLANGER, M.-C., VIAU, A. A., SAMSON, G. & CHAMBERLAN, M. (submitted in 
2005) Comparison of reflectance and fluorescence spectroscopy for the detection of 
mineral deficiencies in potato plants. Canadian Journal of Remote Sensing. 

BOEGH, E., SOEGAARD, H., N. BROGE, HASAGER, C. B., JENSEN, N. O., 
SCHELDE, K. & THOMSEN, A. (2002) Airborne multispectral data for 
quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in 
agriculture. Remote Sensing of Environment, 81, 179-193. 

CARTER, G. A., CIBULA, W. G. & MILLER, R. L. (1996) Narrow-band reflectance 
imagery compared with thermal imagery for early detection of plant stress. Journal 
of Plant Physiology, 148, 515-222. 

CHAERLE, L. & VAN DER STRAETEN, D. (2000) Imaging techniques and the early 
detection of plant stress. Trends in Plant Science, 5, 295-500. 

CHRISTENSEN, L. K., BENNEDSEN, B. S., JORGSEN, R. N. & NIELSEN, H. (2004) 
Modelling nitrogen and phosphorus content at early growth stages in spring barley 
using hyperspectral line scanning. Biosystems Engineering, 88, 19-24. 

CURRAN, P. J., DUNGAN, J. L. & PETERSON, D. L. (2001) Estimating the foliar 
biochemical concentration of leaves with reflectance spectrometry testing the 
Kokaly and Clark methodologies. Remote Sensing of Environment, 76, 349-359. 

GAMON, J. A., SERRANO, L. & J.S., S. (1997) The photochemical reflectance index: a, 
optical indicator of photosynthetic radiation use efficiency across species, functional 
types and nutrient levels. Oecologica, 112, 492-501. 

GITELSON, A. & MERZLYAK, M. (1994a) Quantitative estimation of Chlorophyll-A 
using reflectance spectra - Experiments with autumn chestnut and maple leaves. 
Journal of Photochemistry and Photobiology B- Biology, 22, 247-252. 

GITELSON, A. & MERZLYAK, M. (1994b) Spectral reflectance changes associated with 
autumn senescence of Aesculus-Hippocastanum L and Acer-Platanoides L leaves - 



 

14 

Spectral features and relation to chlorophyll estimation. Journal of Plant 
Physiology, 143, 286-292. 

HABOUDANE, D., MILLER, J. R., TREMBLAY, N., ZARCO-TEJADA, P. J. & 
DEXTRAZE, L. (2002) Integrated narrow-band vegetation indices for prediction of 
crop chlorophyll content for application to precision agriculture. Remote Sensing of 
Environment, 93, 18-29. 

HUANG, Z., JIA, X., TURNER, B. J., DURY, S. J., WALLIS, I. R. & FOLEY, W. J. 
(2007) Estimating nitrogen in eucalypt foliage by automatically extracting tree 
spectra from HyMap Data. Photogrammetric Engineering & Remote Sensing, 73, 
397-401. 

HUANG, Z., TURNER, B. J., DURY, S. J., WALLIS, I. R. & FOLEY, W. J. (2004) 
Estimating foliage nitrogen concentration from HYMAP data using continuum 
removal analysis. Remote Sensing of Environment, 93, 18-29. 

JORGENSEN, R. N., CHRISTENSEN, L. K. & BROS, R. (2007) Spectral reflectance at 
sub-leaf scale including the spatial distribution discriminating NPK stress 
characteristics in barley using multiway partial least square regression. International 
Journal of Remote Sensing, 28, 943-962. 

MERZLYAK, M., GITELSON, A., CHIVKUNOVA, O. & RAKITIN, Y. (1999) Non-
destructive optical detection of pigment changes during leaf senescence and fruit 
ripening. Physiologia Plantarum, 106, 135-141. 

NGUYEN, H. T. & LEE, B.-W. (2006) Assessment of rice leaf growth and nitrogen status 
by hyperspectral canopy reflectance and partial least square regression. European 
Journal of Agronomy, 24, 349-356. 

PENUELAS, J., BARET, F. & FILELLA, I. (1995) Semi-empirical indices to assess 
carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 
221-230. 

READ, J. J., TARPLEY, L., MCKINION, J. M. & REDDY, K. R. (2002) Narrow-
waveband reflectance ratios for remote estimation of nitrogen status in cotton. 
Journal of Environment Quality, 31, 1442-1452. 

ROGER, J. M., PALAGOS, B., GUILLAUME, S. & BELLON-MAUREL, V. (2005) 
Discriminating from highly multivariate data by focal Eigen Function discriminant 
analysis; application to NIR spectra. Chemometrics and intelligent laboratory 
systems, 79, 31-41. 

SIMS, D. & GAMON, J. A. (2002) Relationships between leaf pigment content and 
spectral reflectance across a wide range of species, leaf structures and 
developmental stages. Remote Sensing of Environment, 81, 337-354. 



 

15 

THENKABAIL, P. S., SMITH, R. B. & DE PAUW, E. (2000) Hyperspectral vegetation 
indices and their relationship with agricultural growth characteristics. Remote 
Sensing or Environment, 71, 158-182. 

ZARCO-TEJADA, P. J., MILLER, J. R., MOHAMMED, G. H., NOLAND, T. L. & 
SAMPSON, P. H. (2002) Vegetation stress detection through Chlorophyll a + b 
estimation and fluorescence effects on hyperspectral imagery. Journal of 
Environment Quality, 31, 1433-1441. 

ZHAO, D., REDDY, K. R., KAKANI, V. G. & REDDY, V. R. (2005a) Nitrogen 
deficiency effects on plant growth, leaf photosynthesis, and hyperspectral 
reflectance properties of sorghum. European Journal of Agronomy, 22, 391-403. 

ZHAO, D. G., LI, J. L. & QI, J. G. (2005b) Identification of red and NIR spectral regions 
and vegetative indices for discrimination of cotton nitrogen stress and growth stage. 
Computers and Electronics in Agriculture, 48, 155-169. 

 
 


