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ABSTRACT

This study aims at determining if the reflectance spectra of oil palm leaves can provide an
alternative measurement tool to expensive and time-consuming foliar chemical analysis to
get information about any deficiencies of the trees. We focus here on the relationships
between the reflectance spectra of oil-palm leaves and their deficiencies in five elements:
nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe). We carried
out statistical analyses over a database that we built on palm trees measured in Sumatra
(Indonesia), combining leaves reflectance in the visible and near-infrared domain (450-900
nm), leaves chemical composition, and observations of deficiencies visual symptoms on the
tree. \e obtained insignificant results on nutrient concentration prediction due to error
rates above the stress detection threshold. At least we were able to discriminate the extreme
situations of stress with an acceptable precision. We discuss here the results in terms of
different sources of noise and errors in methodology, and we give prospective ways of
improving the analysis.

1. INTRODUCTION

Nutrient stress detection is a major issue for ni@nagement of mineral nutrition and
fertiliser regime in oil palm plantations. Folidnemical analysis has been for a long time
the main tool used to get information about anyicigicies of the trees. However, it is
quite expansive and time demanding. In additior, gpace and time sampling scales are
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not compatible with the concept of precision adtige. This study aims at determining if
the reflectance spectra of oil palm leaves canideoan alternative measurement tool to
these chemical analyses.

For years, multispectral remote sensing has beeatelyiused to detect crop stress,
providing results of varying reliability (see fanstance (Chaerle and Van Der Straeten,
2000), (Thenkabail et al., 2000),(Boegh et al.,200Haboudane et al., 2002), (Huang et
al., 2004), (Huang et al.,, 2007), and referencethimi This lays on the commonly
accepted notion that strong relationships exisivbeh the visible and near infrared
reflectance of leaves and their pigment and mineyatent.

Big advances in this field have been made for s¢\@mple crop covers (e.g. (Curran et
al., 2001), (Sims and Gamon, 2002), (Christenset. £2004), (Zhao et al., 2005a), (Zhao
et al., 2005b), (Bélanger, 2005), (Bélanger et aalhmitted in 2005), (Nguyen and Lee,
2006)) and can now be used for precision farminthcddgh, this studies have pointed out
many limits of reflectance-based estimations angdarticular the non-generic property of
any estimated relationship.

Moreover, some types of crops, like tree cropsiristance, have not benefited from this
work yet and one cannot find much documentationthar optical properties. Due to
complex architecture and physiology, remote estonatf stress seems to be very difficult
in this case and raises many questions while viesdlew problems.

With multispectral imaging for instance, many diéfet contributions to the observed
signal might blur the compositional information.el$pectral contrast between stressed and
unstressed trees is insufficient and cannot beectyrinterpreted. It is even more risky
because functional models and understanding obfitieal properties of tree leaves are
very poor, when they exist. Actually, this inforneat has even not been proven yet to
reside within this type of signal. We propose heranalyse, in the case of oil palm trees
and at the leaf level, the possible relationshipsvben the leaves spectral signature and
their nitrogen (N), phosphorus (P), potassium (Kagnesium (Mg), and iron (Fe) content.
We will also study the means how the leaves redlemt can indicate factors of tree stress
or deficiency.

2. FIELD MEASUREMENTS

We set up one month of survey in may 2006 in cfieroil palm plantations, owned by
P.T. SMART, and located in the province of RiauSamatra (Indonesia). Hyperspectral
field measurements were made with a UNISPEC-200in fPP-Systems. This device
allows the reflectance measurement at the leafl,lexseng a leaf clip and a fibre optics
integrating the signal on a surface of about 5 smjuaillimetres, in 256 spectral channels



between 303.6 and 1131.4 nm. The leaf-clip enad#@asing the bidirectional reflectance of
a circular spot of about 5 nfnin diameter. Reflectance was calibrated thankepeated
measurements of a barium sulphate standard disk.t®strong instrumental noise outside
this domain, only the 450-900 nm domain was rethioe analysis.

Two kinds of oil palm trees were sampled in thé&dBeup to a final number of 47 trees:

- Trees showing visual symptoms of a specific nutntaeficiency, which could be
easily detected on leaves,

- Trees growing inside nutrition practices trials,tting in balance in one hand
nitrogen (N) and phosphorus (P), and, in the otierd, magnesium (Mg) and
potassium (K). These ones did not show clear symptof any deficiency on their
leaves.

Defining a robust measurement protocol to get aeggmtative signature of one tree at the
leaf level was difficult due to a strong gradieritabemical components inside a single
leaflet, from one leaflet to the other on a singédm leaf, and from one leaf to the other
inside the palm tree canopy. Moreover, we obsethkiatinot all the different deficiencies
we were looking about provoke symptoms on the sawed of leaves. We thus decided to
get a signature that always corresponds to the $acaéon in the gradient pattern of the
leaf to let them be comparable. Therefore, we cub 45 leaves per palm, that are
representative of the different canopy stratus thadl are still visible from the top of the
canopy. This latter condition was set in the loagrt goal of precision agriculture based on
aerial or satellite remote sensing, that only readhe top of the tree canopy.

On each leaf, we made concurrently two distinctdargs

1) 5 leaflets were regularly cut, one every fiftéeriwenty leaflets from the end extremity
of the leaf. On each one, we reproduced a set aip&8tral measurements, on each of the
two squares of 2 cirsymmetrically located at each side of the leafmitral vein, and at
each of the 1/3 and 2/3 of the leaflet length (Seegrre 1). This means that we measured a
whole set of 40 spots per leaflet. These acquistiwere then averaged so that we get a
mean spectral signature at 1/3 and one at 2/3dttflet length.

2) A dozen of leaflets were also cut around th8 #055" position on each palm leaf, and
sent to laboratory for chemical analysis. Thisdoldiagnostic was made by SMARTRI,
research laboratory of P.T. SMART in Pekanbaru (8um). They used an atomic
absorption spectrometer providing the chemical amsin determination in 6 macro-
elements: Nitrogen (N), Phosphorus (P), PotassikinNagnesium (Mg), Calcium (Ca),
and Chloral (Cl), and 5 olio-elements: Bore (B)p@er (Cu), Zinc (Zn), Manganese (Mn),
and Iron (Fe).



Finally, the spectral database gives, in one htdredrepresentative chemical composition of
the leaf in 11 elements and, in the other handerséwspectral signatures on different
locations in the leaf.
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Figure 1: Location of the spectral measurements on each leaf: Two areas were
considered, at 1/3 and 2/3 of the leaf length; For each, the two 2 crm?-spots located on

each side of the central vein were sampled respectively by ten measurements of 5 mn¥ in
diameter.
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3. SPECTRAL ANALYSIS

The database was first analysed trying to compdéfereht spectra obtained in several
contexts in order to detect any actual variatianshie spectral signature of stress leaves
compared to unstressed ones. As an example, tleeF&yshows the spectra of 4 leaves
obviously showing apparent symptoms of differerftaencies, along with the spectrum of

a sane leaf. The first observation is that allsstieaves have a lower reflectance in the near
infrared plateau (750-900 nm) than the unstressex but no clear tendency is seen to
discriminate the different deficiencies. Nevertisslein the visible part of the spectrum
(450-675 nm) the reflectance variations seem tordpgroducible for each respective
deficiency with the following overall charactercsi

- Green [b50nm) and red660m) absorptions intensity decreases,
- Location of the green reflectance maximud30nm) is shifted to higher wavelengths,



- Green “peak” widens and changes in shape. N @&ndeficiencies in one hand and Mg
and K deficiencies in the other hand correspondltoost the same spectral shape with
different intensities.

It thus seems possible to detect a stress by mefamsible and infrared spectrometry.

However, at this stage, it seems complex to disnate between different deficiencies

only based on visual spectral analysis becaudeeofdrious observed trends.
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Figure 2 : Measured reflectance spectra between 450nm and 900nm for 4 deficient leaves
(Ningreyline, K in black dots, Mg in grey dots, and Fe in black discontinuous line) and
on a standard leaf (black line).

In order to extract the more objective informatimut of the huge built spectral database,
we selected a set of 27 analytic parameters désgrdoth the spectrum shape and intensity
(see Figure 3 and TABLE 1). These indexes are for instance levels of redlem,



wavelengths of the local maxima, minima or inflentipoints, or some areas of spectral
features like peaks and valleys. They are illusttain the spectrum of an Mg-deficient leaf
atFigure 3.

In addition, we selected in the literature 21 sg@dhdices often used in remote sensing for
crops nutrient status characterisation (B&BLE 2) to test them in the case of oil palm.
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Figure 3: Schematic definition of main analytic spectral indexes (see TABLE 1 for
analytic definition) M, B, G, Y, R, REIP, RINIR, IR, Hr, and Hg



TABLE 1: ANALYTIC DEFINITION OF THE 27 SPECTRAL INDEXES
SELECTED FOR THE OIL-PALM SPECTRUM DESCRIPTION

Index Definition

M (Am, Ru) minimum in the blue domain (380-550 nm)

B (s, Re) blue edge: inflection point between blue (450 nmg greer
’ (550 nm)

G (Aa, Ro) maximum in the green domain (500-650 nm)

Y O, RY) yellow edge: inflection point between green (500) rand
’ yellow (650 nm)

R (\r, RR) minimum in the red domain (550-750 nm)

REIP Qrer, Rreip)

Red Edge Inflection Point: inflexion point betwered (550
nm) and near IR (800 nm)

RSNIR Qrsnir, RrsniR)

Red Slope-Near Infra Red: intersection point betwée
tangent at REIP and the near infrared plateau line

IR

mean reflectance of the near infrared platea80900 nm)

Slope of Blue edge: mean value of the slope betwéamd

J7

veen

SB G

sy Slope of Yellow edge: mean value of the slope betw&
and R

sy slope of red-IR: mean value of the slope betweeNIRS
and R

sc Slope of Continuum: mean value of the slope bety
RSNIR and G

HG net height of the green peak

HR net absorption depth

HI net height of the near infrared plateau

MG green peak width\¢ —Ag)

AR red valley width Xrep —Avy)

AG total area of green peak

Agn net area of green peak

AR net area of red absorption




TABLE 22 MATHEMATICAL DEFINITION OF THE 21 SPECTRAL INDEXES
FOUND IN THE LITERATURE SELECTED FOR THISSTUDY.

Index (reference)

Definition

SIPI (Penuelas et al., 1995)

(Rsoo - Raas)
(Rso00 - Resn)

PSRI (Merzlyak et al., 1999)

{Rss0 - Rsao)
Ri=o

PRI (Gamon et al., 1997)

(Rs31 - Rsro)
(Rs31 +Rs70)

SR680 (Sims and Gamon, 2002) Rsoo/Reso
SR705 (Gitelson and Merzlyak, 1994a) R7s0/R7o0s
. Raoo - Reso
ND680 (Sims and Gamon, 2002) Rego + Reso.
. R7s0 - R7os
ND705 (Sims and Gamon, 2002) Ryeo + Ryoe
. R7s0- R
mSR705 (Sims and Gamon, 2002) | o o -
R7os - Raas

mND705 (Sims and Gamon, 2002)

R0 - Rios
(R7s0 + Ryos - 2Raa5)

Cl (Zarco-Tejada et al., 2002)

{Rs75 - Rean)
R2%s3

TCARI/ OSAVI
(Haboudane et al., 2002)

(R7o0)

R700-Re70) - 0.2(R7o0 - RSSO)'(Rsm)

{1+ 0.16).(Rsoo - Re7a)
(Rsoo + Rg7o + 0.186)

R1 (Read et al., 2002) Rr0s/R715
R2 (Read et al., 2002) R705/Rg30
R3 (Merzlyak et al., 1999) R7s50/R7o00
R4 (Bélanger, 2005) Ras0/R7e2

R5 (Bélanger, 2005) Rss0/R430

NDVI

MOY(700:979nm) - MOY(600:700nm)
MOY(700:979nm) + MOY(600:700nm)

R6 (Carter et al., 1996)

Rss0/Rasn

R7 (Carter et al., 1996) Reg4/R760
R8 (Carter et al., 1996) Regga/Raon
R9 (Carter et al., 1996) R750/Rss50




4. STATISTICAL ANALYSIS

We followed two statistical approaches to decipkiee information collected in the
database.

1) Establishment of a predictive model for the cheinst@aments concentrations [N], [P],
[KI], [Mg], [Fe].

2) Discrimination of 5 pre-defined classes of spedifieficiencies: in N, in P, in K, in Mg
and in Fe.

For the first one, we applied a multiple linear resgion (MLR) on the 48 indexes

described afTABLE 1 and TABLE 2 as the explicative variables, with the 5 element
concentrations as the expected results. This reigresvas combined with a stepwise

procedure, which determined the most significamapeeters to be used in the model.

For the second one, we used a partial least sqaegression (PLS) (Preda and Saporta,
2005) followed by a factorial discriminative anasy$DFA) on the set of the 130 couples
(wavelength; reflectance value) that compose tla¢ teflectance spectrum in the 450-

900 nm domain. This can be called the PLS-DA apgrdRoger et al., 2005).

A cross-validation was used in both algorithms.

This analysis main difficulty lies in the best mbdelection based on the function of the
guadratic error vs. the number of predictive oeratvariables selected by the stepwise
procedure. Indeed, this curve shows no absolutémmaim, but only local minima that do
not constitute ideal solutions. Finally, a fouriehbtes-based model was selected for the
MLR application, while the model chosen for the HDA& was based on four axes and six
variables.

5. RESULTS AND DISCUSSION

In one hand, it seems that we can not derive argeifor the concentration predictions of
P, K, Mg or Fe. MLR algorithm found a very faint de for [N], following the Euation 1:

[N]:(61&M +4375.Rg +60.5Rs50 —7.4NSRyg5 +52288)1@ (Equation 1)

This model allows to estimate the concentration\{lith an accuracy of 44% only and an
error bin 0f+0.44% . Considering that an optimal [N] is abo&®?2.and a critical [N] about
2.3%, it is obvious that this bin is out of the asisible range and that any nitrogen stress
will not be detected.



This unsatisfying result can come from differenigms that we try to explain in the
following.

1) There may be no relationship between the nitragethe minerals and the reflectance
spectra in these wavelengths. Considering the lamgeunt of publications in this field,
applied to many other crops as different as bgteygensen et al., 2007), rice (Nguyen and
Lee, 2006), sorghum (Zhao et al., 2005a), eucdkipang et al., 2007), chestnut tree or
maple (Gitelson and Merzlyak, 1994Db), it would belsan exception if oil palm would not
drive any rule.

2) Such a relationship exists, but is not linearolr study we only used the MLR method,
which only seeks linear combinations of the expiveavariables. Even though this method
had proven to be powerful in a wide range of appilons, it would be of large interest to
test now other types of regressions that allowsratpes of combinations.

3) The uncertainty on the reflectance measuremits to protocol, instrumental noise,
etc...), summed to chemical diagnostic uncertaintighinbe higher than the detection
threshold of this relationship. This is the biggeshstraint of the problem, because this
study was lead in the most rigorous way, with devithat provides some of the richest
spectral information available in the fields, a¢ ttmaller scale that remote detection can
afford to reach. Thus, it seriously embeds futuppliaations in the field of precision
farming, where the conditions can only be worsa tvgperimental surveys. Unfortunately,
we have no means to estimate the total amount isertbat our protocol implies and to
validate this assumption, except testing all theeopossibilities of failure.

In the other hand, we could not establish a shawpb r@liable discrimination of the 5
deficiency classes by means of the PLS-DA. Indeedhe selected solution with 4 axes
and 6 variables, the error committed on the testpga is 27% while the error in cross-
validation is 28%. A solution based on 3 axes ahddriables gives lower errors, neither
very satisfying (25% on the test sample, 18% irsgrealidation), but the system looses
strongly in stability, providing very noisy discrinative vectors. Looking at the projections
of the database population in the planes definethéytwo first discriminative vector (cf.
Figure 4), it is obvious that the great majority of poirdse concentrated near the
barycentre. Such population has intrinsically ditthance to be classified in different
separable groups. Nevertheless, it seems alsosthadral "branches” move aside this
barycentre, and that these trends correspond gtesifasses of deficiencies.
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Figure 4: Representation of the spectral database population in the plane defined by the
two first PLS-D discriminative vectors for: a) the test sample and b) the cross-validation.
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We can thus be confident in the fact that stromgléacies exist for extreme individuals,
namely highly deficient leaves. We suppose thaintéhematical discrimination difficulty
between the different deficiencies classes amongopulation comes from the population
itself. In fact, a kind of "noise” may blur the s#ification trends, due to the possible
sampling of poorly deficient leaves and leaves #rat simultaneously deficient in two or
more elements.

6. CONCLUSIONS AND PERSPECTIVES

A spectral database was constituted on leaves lgbabn trees presenting apparent
deficiencies in different elements (N, P, K, Mg,).F€his base associates the reflectance
spectrum between 450 and 900 nm, the chemical csitigro of the leaves in terms of
constituent concentrations, and the list of deficies visible symptoms on the trees.
Spectral shape and variations analysis led to theaction of representative indexes
describing the main reflectance features. A mudtigdgression analysis combined with a
stepwise procedure and a cross validation (MLR) azsied to the indexes combined to
the elements content values to establish a coratemtrpredicting model. A mathematical
model was found for [N] with 4 latent variablest boo faint to allow any stress detection.
No model could be derived for the other elementspahktial least square regression,
combined with a stepwise procedure and a crossdatadn, and followed by a
discriminative factorial analysis (PLS-DA) was thapplied to the spectra in the aim of
discriminating the five deficiencies classes. Ibwh that it can separate only highly
deficient leaves, the others being discriminateg with a high level of error.

To improve these results, we will now extract therensignificant and "pure" individuals
off the database to derive reliable linear and kwear models of prediction or
discrimination in the extremel/ideal cases. We wiien analyse the possibilities of
unmixing the remaining individuals on the basish&f extreme cases as endmembers.
Concurrently, we will quantitatively estimate thespible factors of “noise” coming from
the spectral measurements, the chemical analysieavay the database was built. We will
then assess the exact potentiality of these models.

At this stage of the study, we are not able to pseprecommendations on the use of
hyperspectral data to detect and characteriseabit putrient stress. We have only showed
that there is a potential in such measurements.eiftleess, the next step in further
analysis should establish the bases for this kirskosing.

12



7. ACKNOWLEDGEMENTS

This study was jointly funded by the French Agrommah Research Centre for the
Development (CIRAD), and PT-SMART, sub company oha% Mas, in Indonesia.
Chemical analyses were performed by SMART-RI indl.ilmdonesia.

8. REFERENCES

BELANGER, M.-C. (2005) Détection de carences niwei par fluorescence active et
spectrométrief-orestry and Geomatics. Québec, Université Laval.

BELANGER, M.-C., VIAU, A. A., SAMSON, G. & CHAMBERIAN, M. (submitted in
2005) Comparison of reflectance and fluoresceneetepscopy for the detection of
mineral deficiencies in potato plan@anadian Journal of Remote Sensing.

BOEGH, E., SOEGAARD, H., N. BROGE, HASAGER, C. BIENSEN, N. O,
SCHELDE, K. & THOMSEN, A. (2002) Airborne multispeal data for
guantifying leaf area index, nitrogen concentratieamd photosynthetic efficiency in
agriculture Remote Sensing of Environment, 81, 179-193.

CARTER, G. A., CIBULA, W. G. & MILLER, R. L. (1996Narrow-band reflectance
imagery compared with thermal imagery for earlyedabn of plant stresgournal
of Plant Physiology, 148 515-222.

CHAERLE, L. & VAN DER STRAETEN, D. (2000) Imagingthniques and the early
detection of plant stres$rendsin Plant Science, 5, 295-500.

CHRISTENSEN, L. K., BENNEDSEN, B. S., JORGSEN, R.&INIELSEN, H. (2004)
Modelling nitrogen and phosphorus content at egrbwth stages in spring barley
using hyperspectral line scannimjosystems Engineering, 88, 19-24.

CURRAN, P. J., DUNGAN, J. L. & PETERSON, D. L. (ZQOEstimating the foliar
biochemical concentration of leaves with refleceangpectrometry testing the
Kokaly and Clark methodologieRemote Sensing of Environment, 76, 349-359.

GAMON, J. A., SERRANQO, L. & J.S., S. (1997) The ptahemical reflectance index: a,
optical indicator of photosynthetic radiation u$ceency across species, functional
types and nutrient level®ecologica, 112 492-501.

GITELSON, A. & MERZLYAK, M. (1994a) Quantitative @#mation of Chlorophyll-A
using reflectance spectra - Experiments with autwmestnut and maple leaves.
Journal of Photochemistry and Photobiology B- Biology, 22, 247-252.

GITELSON, A. & MERZLYAK, M. (1994b) Spectral refléance changes associated with
autumn senescence of Aesculus-Hippocastanum L aed-Platanoides L leaves -

13



Spectral features and relation to chlorophyll eation. Journal of Plant
Physiology, 143 286-292.

HABOUDANE, D., MILLER, J. R., TREMBLAY, N., ZARCO-EJADA, P. J. &
DEXTRAZE, L. (2002) Integrated narrow-band vegetatindices for prediction of
crop chlorophyll content for application to preoisiagriculture Remote Sensing of
Environment, 93, 18-29.

HUANG, Z., JIA, X., TURNER, B. J., DURY, S. J.,, WAIS, I. R. & FOLEY, W. J.
(2007) Estimating nitrogen in eucalypt foliage bytamatically extracting tree
spectra from HyMap Datd@hotogrammetric Engineering & Remote Sensing, 73
397-401.

HUANG, Z., TURNER, B. J., DURY, S. J., WALLIS, I..R& FOLEY, W. J. (2004)
Estimating foliage nitrogen concentration from HYMAdata using continuum
removal analysisRemote Sensing of Environment, 93, 18-29.

JORGENSEN, R. N., CHRISTENSEN, L. K. & BROS, R. @Z) Spectral reflectance at
sub-leaf scale including the spatial distributiomscdminating NPK stress
characteristics in barley using multiway partialdesquare regressidnternational
Journal of Remote Sensing, 28, 943-962.

MERZLYAK, M., GITELSON, A., CHIVKUNOVA, O. & RAKITIN, Y. (1999) Non-
destructive optical detection of pigment changesnduleaf senescence and fruit
ripening.Physiologia Plantarum, 106 135-141.

NGUYEN, H. T. & LEE, B.-W. (2006) Assessment ofaitzaf growth and nitrogen status
by hyperspectral canopy reflectance and partiadtiegquare regressioiuropean
Journal of Agronomy, 24, 349-356.

PENUELAS, J., BARET, F. & FILELLA, 1. (1995) Semnwirical indices to assess
carotenoids/chlorophyll a ratio from leaf spectreflectance Photosynthetica, 31,
221-230.

READ, J. J., TARPLEY, L., MCKINION, J. M. & REDDYK. R. (2002) Narrow-
waveband reflectance ratios for remote estimatibmitvogen status in cotton.
Journal of Environment Quality, 31, 1442-1452.

ROGER, J. M., PALAGOS, B., GUILLAUME, S. & BELLON-KMUREL, V. (2005)
Discriminating from highly multivariate data by fmdEigen Function discriminant
analysis; application to NIR spectfzhemometrics and intelligent laboratory
systems, 79, 31-41.

SIMS, D. & GAMON, J. A. (2002) Relationships betweé&af pigment content and
spectral reflectance across a wide range of spedesf structures and
developmental stageRemote Sensing of Environment, 81, 337-354.

14



THENKABAIL, P. S., SMITH, R. B. & DE PAUW, E. (20Q0Hyperspectral vegetation
indices and their relationship with agriculturalogth characteristicsRemote
Sensing or Environment, 71, 158-182.

ZARCO-TEJADA, P. J., MILLER, J. R.,, MOHAMMED, G. HNOLAND, T. L. &
SAMPSON, P. H. (2002) Vegetation stress detectionugh Chlorophyll a + b
estimation and fluorescence effects on hypersdedtreagery. Journal of
Environment Quality, 31, 1433-1441.

ZHAO, D., REDDY, K. R., KAKANI, V. G. & REDDY, V. R (2005a) Nitrogen
deficiency effects on plant growth, leaf photoswsis, and hyperspectral
reflectance properties of sorghuBuropean Journal of Agronomy, 22, 391-403.

ZHAO, D. G, LI, J. L. & QI, J. G. (2005b) Identfation of red and NIR spectral regions
and vegetative indices for discrimination of cottotrogen stress and growth stage.
Computers and Electronicsin Agriculture, 48, 155-169.

15



