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Summary
Two plant production-based strategies – biofortification and dietary diversification – have been advocated to overcome 
micronutrient deficiencies, which are major contributors to morbidity and mortality worldwide. The respective benefits 
and effectiveness of these two strategies are the subject of controversy. Expanding the scope of this debate beyond the sole 
nutritional outcomes, and using a food system approach, this interdisciplinary review aims to providing a novel and holistic 
perspective on the ongoing debate. The literature shows that biofortification can be an effective medium-term strategy to 
tackle nutritional risk in vulnerable populations in some contexts, but that it also may have negative environmental, economic, 
and social impacts. Dietary diversification, on the other hand, is known to be a sustainable way to overcome micronutrient 
deficiencies, bringing with it long-term benefits, including nutritional, and beyond, the provision of ecosystem services. 
Dietary diversification is however challenging to implement, with benefits that are not immediate. Biodiversity as a basis of 
human diets is critically important to improving both human and environmental health. Diet diversification through increased 
mobilisation of biodiversity in food systems deserves much more attention and support in policies for food and nutrition in 
low- and middle-income countries.
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1 Introduction

Vitamins and minerals are essential to adequate nutrition. 
Subclinical micronutrient deficiencies, often referred to 
as hidden hunger (Maberly et al., 1994; Messer, 1992), 

increase both morbidity and mortality risks (Bailey et al., 
2015). While the claim that 2 billion people worldwide are 
affected by micronutrient deficiencies has been made for 
over 30 years, a recent study suggested that this figure may 
actually be underestimated (Stevens et al., 2022). Along 
with undernutrition, overweight, obesity, and diet-related 
noncommunicable diseases, micronutrient deficiencies are 
part of the triple burden of malnutrition that undermines 
the opportunities and futures of individuals, as well as the 
prospect of achieving sustainable development for all. Since 
1992, different strategies and policy recommendations to 
address micronutrient deficiencies have been issued by 
WHO and FAO (the World Health Organisation and Food 
and Agriculture Organisation of the United Nations, respec-
tively; 1992, 2006). Among the recommended strategies, 
biofortification and dietary diversification are both food-
based strategies to improve nutrition. However, the respec-
tive efficiency and sustainability of the two strategies are 
still subject of controversy among scientists and policy mak-
ers. The two strategies follow quite different agricultural 
development pathways, they involve different actors, lobbies, 
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agricultural practices, and ultimately, they imply stark dif-
ferences in their underpinning visions regarding the role of 
agriculture in society (Fig. 1).

The aim of biofortification is to increase the nutritional 
density of vitamins and minerals in the edible part of the 
plants. Major staple crops are the main targets for biofor-
tification. Biofortification may also aim to enhance food 
utilisation by improving nutrient bioavailability (Thomp-
son & Amoroso, 2014). Biofortification initially focused 
on iron (Fe), zinc (Zn), and provitamin A because of their 
frequent inadequate dietary intakes in poor rural households 
and their negative health outcomes, notably anaemia, blind-
ness, impaired physical and mental development, morbidity 
and mortality (Bouis et al., 2011). Biofortification uses two 
main approaches. The first is to apply fertilisers to increase 
nutrient uptake from the soil or via foliar applications, and 
improve the accumulation conditions in the edible parts 
of plants (Hirschi, 2009). Agronomic biofortification has 
been shown to increase the concentration of micronutrients 
including that of Fe, Zn and selenium (Se) in rice, wheat, 
corn, barley, sorghum, potato, soybean, and other legumes, 
and in vegetables including carrots, onion, and garlic (Fang 

et al., 2008; Phattarakul et al., 2012; Wang et al., 2012). The 
second approach entails the insertion of biofortified plant 
varieties that accumulate higher levels of micronutrients in 
cropping systems. In the case of the main cereal crops used 
in intensive agriculture, this approach aims to address the 
limited micronutrient contents in varieties resulting from 
decades of breeding specifically aimed at increasing yields 
and amplified by climate change (Leisner, 2020). Different 
varieties of key food crops including rice, wheat, corn, bar-
ley, potato, tomato, and pulses have been biofortified with 
Fe, Zn, and vitamin A worldwide (Cakmak et al., 2017; Garg 
et al., 2018). These varieties are the result of conventional 
breeding (Saltzman et al., 2013), genetic engineering, and 
genome editing technologies (Garg et al., 2018).

Whereas biofortification focuses on one or a few nutrients 
at a time, dietary diversification considers a spectrum of 
micronutrients supplied through the consumption of a suffi-
cient variety of foods. These include plant (fruit, vegetables, 
cereals, and legumes), and animal products (meat, or prod-
ucts of fisheries and aquaculture). Based on the principle 
that no single food can provide a sufficient quantity of all 
the nutrients required to maintain optimal health, eating a 

Fig. 1  Summary framework of two agricultural solutions to overcome 
micronutrient deficiencies: ‘Biofortification’ versus ‘Diversification’. 
Reducing micronutrient deficiencies by correcting the micronutri-
ent content of food depends on a series of steps (blue triangle and 
large blue arrows), from the field (bottom of the triangle) to the con-
sumer (top). Biofortification (right hand-side, orange box) consists 
in increasing the micronutrient content of staple crops. This can be 
achieved using different approaches e.g. transgenic, marker assisted, 
or conventional plant breeding, and different agricultural practices, 
including fertilisation to increase the micronutrient content in the edi-
ble organs, combined with other chemical inputs, such as pesticides. 

Diversification (left, green box) acts at different steps and scales: 
agroecological practices (bottom) increase crop diversity at the farm 
and regional scales, thereby increasing the number of different farm 
products supplying a diversity of markets. Diversification of diets 
(left, top) influences micronutrient intakes. The final nutritional out-
comes of both strategies depend on factors operating at the field to 
the consumer scales (blue ellipses). Figure 1 presents two contrasting 
agricultural pathways but intermediate pathways may exist: dietary 
diversification may co-exist within a regime of conventional agricul-
ture, and biofortification may occur in low-input agriculture
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variety of foods has been a longstanding public health rec-
ommendation worldwide.

Both biofortification and diversification are the subject 
of conflicting arguments and policies. On the one hand, it 
is argued that further breeding and transgenic programmes 
are required to develop new staple crop varieties capable of 
adapting to climate change, that produce high yields, and 
that are nutrient-enriched (Ofori et al., 2022). Such varieties 
should be grown by poor farmers using chemicals to increase 
the concentration of nutrients while protecting the crop 
against pathogens, animal pests, weeds and adverse effects 
of climate change (Maqbool et al., 2020). On the other hand, 
it also is argued that biofortification restricts nutrition to 
only a few nutrients; that it fails to address the root causes of 
undernutrition, which are linked to poverty and inequality; 
and that the best way to eliminate micronutrient deficien-
cies is to promote an increased supply and consumption of 
a wider range of foods (Graham et al., 2007).

Food systems are changing rapidly in low-income and 
middle-income countries (LMICs), in relation with growing 
populations and urbanisation. A food system “gathers all the 
elements (environment, people, inputs, processes, infrastruc-
tures, institutions, etc.) and activities that relate to the pro-
duction, processing, distribution, preparation and consump-
tion of food, and the output of these activities, including 
socio-economic and environmental outcomes” (High Level 
Panel of Experts on Food Security and Nutrition of the Com-
mittee on World Food Security, 2017). Consequently, a food 
system approach encompasses the whole range of activities, 
drivers, and outcomes of a food system, their interconnec-
tions and interactions, and its actors (Ericksen, 2008; Sobal 
et al., 1998). Such an approach provides a more comprehen-
sive view of the full range of consequences of any organisa-
tional choices in the food system, such as food-based strate-
gies to improve nutrition (Tendall et al., 2015), or even the 
increase in risks and burdens of infectious diseases (Waage 
et al., 2022). In this article, we deconstruct the controversy 
between biofortification and diversification through an inter-
disciplinary prism using a food system approach. We review 
the results achieved by the two strategies reported in the 
literature through nutrition and health, agricultural, environ-
mental, and social sciences lenses, before reconsidering the 
framework in a transdisciplinary perspective.

2  Biofortification versus diversification: 
Effects on nutrition and health

2.1  Biofortification, micronutrient intakes 
and status, impacts on health

The vast majority of studies on the potential of biofortifi-
cation to reduce micronutrient deficiencies have focused 

on three main micronutrients: Zn, Fe and provitamin A 
(Ofori et al., 2022). It has been estimated that biofortifica-
tion has the potential to improve coverage of the estimated 
average requirement by 25% for zinc crops, 35% for iron 
crops, and > 85% for provitamin A crops (Van Der Straeten 
et al., 2020). Recent challenges concern the development of 
multinutrient biofortified maize to increase the likelihood 
of meeting recommended intakes of macro- and micronu-
trients thereby reducing multiple deficiencies (Goredema-
Matongera et al., 2021; Van Der Straeten et al., 2020).

Changes in micronutrient status and health outcomes 
of individuals enrolled in randomized trials conducted in 
controlled conditions are required to evaluate the nutri-
tional efficacy of biofortified crops. The literature reports 
contrasting results in chidren, women and general popu-
lation (Table. 1). Biofortification appears to effectively 
improve the micronutrient status of children (Palmer et al., 
2016a, b; Scott et al., 2018) and to have some beneficial 
effects on eye health (Palmer et al., 2016a), cognitive func-
tion (Scott et al., 2018), and diarrhea (Jones & De Brauw, 
2015). No significant effects have been shown on either the 
zinc or iron status and anaemia in women (Murray-Kolb 
et al., 2017; Sazawal et al. (2018). However, despite the 
lack of improvement in micronutrient status, some health 
benefits have been reported for cognitive performance 
(Murray-Kolb et al., 2017), morbidity, and a reduction in 
the number of days during which patients suffered from 
pneumonia, vomiting, and fever (Sazawal et al., 2018). In 
their systematic review and meta-analysis including only 
three randomised efficacy trials, Finkelstein et al. (2019) 
confirmed that the consumption of iron-biofortified crops 
can improve cognitive function, in terms of attention and 
memory. However, the authors did not observe any change 
in iron status, whereas the compilation of HarvestPlus bio-
fortification trials reported an improvement in both iron 
status and vitamin A status (Bouis & Saltzman, 2017).

The relevance of biological indicators is often questioned 
in public health medicine, because each micronutrient is dis-
tributed throughout several body organs. Measuring one or 
two biological indicators therefore may not provide a com-
plete picture of the nutritional effect of a single food.

The current state of play suggests that further stud-
ies are needed to: (i) assess the impact of storage, culi-
nary, and consumption practices to ensure the nutritional 
advantage of biofortified crops (Van Der Straeten et al., 
2020), (ii) evaluate the bioavailability of the nutrient con-
cerned, which is influenced by a range of dietary factors 
(food matrix, co-existence of inhibitors and enhancers in 
the food and/or meal) and host (age, physio-pathologi-
cal status microbiota, genetic variation), and (iii) con-
firm long-term health efficacy in real conditions while 
accounting for the variability caused by food and host 
factors (Ruel et al., 2018).
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2.2  Dietary diversification

There is strong evidence in LMICs that diets that are 
mainly based on starchy staples with low consumption 
of fruits, vegetables, and animal-sourced products are 
associated with inadequate intakes of essential nutrients 
(Ruel, 2003). A recent review summarised evidence link-
ing dietary diversity and dietary adequacy in adolescents 
and adults (Verger et al., 2021). Fifty studies reported that 
higher dietary diversity was positively associated with 
the nutritional adequacy of the diet in most cases, regard-
less of the economic context. Further, several studies in 
LMICs showed that higher dietary diversity was asso-
ciated with reduced risk of micronutrient deficiencies: 
lower odds of vitamin A insufficiency resulting from con-
sumption of meat, poultry, fish, fruit, and vegetables in 
Kenyan women of reproductive age (Fujita et al., 2012). 
Similarly, lower odds of Zn deficiency were achieved as a 
result of consumption of animal source foods in Ethiopian 
women of reproductive age (Gebremedhin et al., 2011); 
and reduced odds of insufficient Zn status resulted from 
consumption of meat, poultry, and fish in Mozambican 
adolescents (Korkalo et al., 2017). However, evidence that 
dietary diversity has a protective effect against anaemia in 
women of reproductive age in LMICs is conflicting: seven 
articles report association between higher dietary diver-
sity with reduced odds of anaemia, whereas five report 
no association (Savy et al., 2006).

While there is consistent evidence that higher dietary 
diversity can prevent undernourishment in LMICs, as 
demonstrated in Burkina Faso (Lourme-Ruiz et al., 2021), 
the association between higher dietary diversity with 
body weight (insufficient or excessive), or with the risk 
of non-communicable diseases was found to be inconsist-
ent in both adolescents and adults (Verger et al., 2021). 
However, evidence exists for a protective role of dietary 
diversity against some health outcomes (e.g. cardiovas-
cular diseases) but not for others (e.g., type 2 diabetes; 
Mozaffari et al., 2021, 2022).

3  Biofortification versus diversification: 
Effects of nutritional strategies 
on the Agri‑food system 
and the environment

3.1  Biofortification and Agri‑food systems

All over the world, crop breeding programmes have always 
invested most efforts into increasing grain yields and pro-
ducing more crops to increase land productivity, improve 
farmers’ incomes and ultimately meet the demand of the 
ever-increasing human population. During the first Green 

Revolution, the developing world witnessed an extraor-
dinary period of increased food crop productivity, with 
the tripling of cereal crop productivity, with only a 30% 
increase in the surface area of cultivated land (Pingali, 
2012). Over this period, the new varieties developed by 
international agricultural research centers in collaboration 
with national research programs have contributed to these 
large increases in crop productivity, although productiv-
ity gains and adoption have been uneven across crops and 
regions (Evenson & Gollin, 2003). Many staple crop spe-
cies (not only cereals) today produce grains that are defi-
cient in micronutrients, because of a negative correlation 
between (for cereals) grain weight, yield, and nutritional 
quality (Lata-Tenesaca et al., 2023; Mohan et al., 2023). 
To give but one example, wheat yields have more than 
doubled in many regions since the 1960s due to advances 
in plant breeding techniques and agronomy (Fischer et al., 
2010; Grassini et al., 2013), however, the process has been 
accompanied by a decrease in concentration of Zn and Fe 
in the grains (Fan et al., 2008; Miner et al., 2022).

By the 1980s, the main objective was to adjust global 
food production to the growing demand for food by elimi-
nating obstacles to crop production, particularly pests and 
diseases. Breeding to feed the world during the Green 
Revolution paved the way for the first period of GMOs in 
plant sciences (Buiatti et al., 2013). In contrast to the Green 
Revolution, the push for GMOs was based largely on private 
agricultural research, with varieties provided to farmers on 
market terms (Pingali & Raney, 2005). Increasing yields 
and consequently increasing the global food production (not 
uptake of micronutrients) was the first objective (Jacobsen 
et al., 2013). In this sense, biofortification is an attempt to 
reverse this tendency. Biofortification emerged as a pos-
sible solution in the global research system (Van Ginkel & 
Cherfas, 2023). In recent years, in particular since 2010, 
GMO breeding programmes have entered a second phase 
with new objectives with biofortication at the heart. The 
implementation of biofortification was supposed to offer 
several advantages: the increased production of basic crops, 
a positive sustainable impact on the environment, with the 
promotion of environmentally resistant breeding products, 
cheap breeding maintenance after the initial investment, and 
increased accessibility to rural and restricted areas (Dhali-
wal et al., 2022). But assessment of the new biofortified 
GMO varieties must be improved to compare their nutri-
tional contents with those of other modern crop varieties 
(high-yield varieties), especially tubercules, since data on 
cereals are already available (Ofori et al., 2022). There are 
several examples of biofortification combining high yields 
with high micronutrient levels (Ashokkumar et al., 2020; 
Duo et al., 2021; Velu et al., 2019). However, higher micro-
nutrient content in genetically biofortified crops may be at 
the expense of yield (Raatz, 2018; Van Ginkel & Cherfas, 



 E. Malézieux et al.

1 3

2023). Concentrations of minerals in grains depend on 
complex traits, controlled by multiple functional pathways, 
including absorption from the soil by roots, translocation 
from root to shoot and allocation to developing grain (Mori, 
1999). Breeding for both high yield and micronutrient con-
centrations is challenging (Joukhadar et al., 2021). Breed-
ing efforts are further complicated by the environment, soil 
type, and soil fertility, which all influence micronutrient 
accumulation (Lowe et al., 2020). As a result, biofortified 
varieties may require more nitrogen and more micronutri-
ents in the environment (Zn or Fe) to express their potential. 
The introduction of high-yielding biofortified varieties in 
cropping systems has thus often required the intensifica-
tion of these systems including increased use of chemical 
inputs and fossil energy, thereby increasing both farmers’ 
dependency on the chemical industry and risks for the envi-
ronment. Therefore, where agricultural soils are depleted 
(Stewart et al., 2020), biofortified crop varieties rely on the 
use of costly inputs. In the absence of government subsidies, 
smallholders revert to local landraces with lower market 
value (Snapp et al., 2018; Vidigal et al., 2020).

After the high cost of seed innovation (mainly cov-
ered by international programmes such as HarvestPlus, 
a CGIAR Challenge Programme http:/ www. harve stplus. 
org), the recurring costs of dissemination are assumed to 
be lower than those in other strategies (Bouis et al., 2011). 
However, while transgenic approaches account for more 
than 60% of the research on biofortification in terms of the 
number of cultivars released, the success rate remains low 
(Garg et al., 2018). National regulations limit the dissemi-
nation of the few varieties that are available. Once in place, 
the production and consumption of biofortified varieties 
largely depends on government and international funding. 
In practice, the cost-effectiveness of biofortification is often 
restricted to large-scale crop production and commercial 
seed supply systems. Further, the applicability of bioforti-
fication remains uncertain given the diversity of food cul-
tures, weak seed systems, scarce and irregular processing, 
and cooking resources (Johns & Eyzaguirre, 2007).

Seed dependency should also be recognised as a major 
obstacle to the success of any biofortification strategy. This 
is particularly true of family farming of the Global South. 
Even if farmers receive the first seeds cost-free when bio-
fortification programmes are launched, nothing is usually 
done to set up a long-term programme. In fact, farmers are 
forbidden to produce seeds for the following crop cycle 
because seeds are patented. Thus farmers’ dependency on 
seed companies to be able to follow biofortification strate-
gies is perpetuated (Cummings et al., 2023). What is more, 
farmers often have inadequate access to reliable informa-
tion when choosing transgenic crops, some of which may be 
associated with toxic, allergenic, and genetic hazards, hence 
jeopardizing the very purpose of farming (Vega Rodríguez 

et al., 2022; Zakaria et al., 2022). Indeed, adoption of these 
new GMOs biofortified varieties could put the nutritional 
security of the whole food system at risk by introducing 
new types of toxicity. The ethical principles of the right to 
informed choice should be respected, and many countries 
actually have taken precautionary measures for transgenic 
crops to avoid possible damage to the environment and 
health (Muzhinji & Ntuli, 2021).

Because of his focus on few cultivated varieties, biofortifi-
cation might have adverse effects such as over-dependence on 
high calorie, starchy staples, which will ultimately erode agro-
biodiversity in cropping systems (Bélanger & Pilling, 2019). 
The gradual replacement of locally adapted landraces or cul-
tivars by few staple crops over-simplifies cropping and farm-
ing systems, making them vulnerable to global changes. The 
adaptive capacity of small-holders is jeopardised while their 
dependence on global commodities simultaneously increases 
(Katz-Rosene et al., 2023). This process may undermine 
efforts to conserve local neglected and underutilised species. 
Yet, neglected and underutilised species, including traditional 
fruits, vegetables and legumes, are often rich in micronutrients, 
adapted to local climatic and soil conditions, locally available 
and contribute significantly to nutrition security (Adhikari 
et al., 2017; Jacob et al., 2023; Massawe et al., 2015).

3.2  Dietary diversification and Agri‑food systems

Diversification of agricultural production has been pro-
moted as the most sustainable way to guarantee a more 
diversified diet for both farmers and the general population 
(High Level Panel of Experts on Food Security and Nutri-
tion of the Committee on World Food Security, 2019). Yet, 
even though most studies show a positive link between 
agricultural and dietary diversity, the relationship is com-
plex and depends to a great extent on the spatial scales and 
on the contexts. At farm level in LMICs, agrobiodiversity 
can increase the availability and accessibility of diversified 
food for poor farmers, particularly where agricultural bio-
diversity is low (Jones, 2017) e.g. in sub-Saharan Africa 
(Sibhatu & Qaim, 2018; Waha et al., 2022). Agricultural 
diversification can also provide farmers with additional 
income and different livelihood options, thereby increas-
ing their resilience to the risk of seasonal shortage, natural 
disasters and price volatility (Thrupp, 2000). Farm income 
from the sale of agricultural products can also contribute 
to dietary diversity by making it possible to purchase food 
at markets (Dillon et al., 2015; Sibhatu et al., 2015). This 
seems especially true in Burkina Faso when the income 
is managed by women (Lourme-Ruiz et al., 2022). In the 
other extreme, where specialising in monocrops for export 
takes place, negative externalities affect the environment, 
increase farmers’ incomes may not occur, and a nega-
tive effect on diets may take place. Indeed, specialisation 

http:/www.harvestplus.org
http:/www.harvestplus.org


Biofortification vs. diversification to fight micronutrient deficiencies

1 3

toward monocrops for export has been proven to reduce 
dietary diversity among cotton growers in Burkina Faso 
(Lourme-Ruiz et al., 2021, 2022) and to affect the nutri-
tional status of the children of oil palm growers in Guate-
mala (Milovich & Villar, 2022).

Beyond providing food, agricultural diversification is an 
important lever to improve the sustainability of food sys-
tems at different scales. At the farm and regional scales, 
increasing agrobiodiversity may benefit farmers by improv-
ing agricultural productivity and providing ecosystem ser-
vices (Beillouin et al., 2021; Malézieux et al., 2022). Crop 
diversity has also been identified as an effective way to cope 
with climate change-induced crop yield decrease and nutri-
tional quality decline (Food and Agriculture Organization 
of United Nations, 2015). Agricultural diversification is fur-
thermore often more labour-intensive, and so may increase 
rural employment opportunities especially for young peo-
ple in LMICs, especially in sub-Saharan Africa, where 
rapid population growth and intense pressure on land occur 
(Giordano et al., 2019).

Promoting dietary diversity worldwide would encourage 
diversification of plant species worldwide. International 
trade contributes shaping food systems, either positively by 
enabling access to a wider range of foods in many countries, 
or negatively through the standardisation of diets and by 
reducing the number of species cultivated around the world 
(Khoury et al., 2014). At a global scale, the demand for, 
and the production of more diverse and nutrient-dense foods 
could reduce input-intensive monocropping in favor of the 
cultivation of vegetables, fruits, and legumes, as well as 
encouraging the conservation of traditional and indigenous 
plants (Fanzo et al., 2013). Recent studies point to certain 
levers, including reducing the consumption of red meat or 
sugar while increasing the consumption of fruit, vegetables, 
nuts, and legumes to ensure healthier diets and limit the 
environmental impacts of food systems (Beal et al., 2023; 
Coleman et al., 2021; Laine et al., 2021; Stylianou et al., 
2021; Tilman & Clark, 2014; Willett et al., 2019).

4  Biofortification and diversification 
from a political perspective

Diversification has long been under-promoted in the LMICs 
compared to biofortification and supplementation, which 
appear to be the preferred solutions in nutritional policies 
supported by the health sector (Delisle, 2003; Kimura, 2013; 
Van Ginkel & Cherfas, 2023). This observation is still valid 
today, although improving dietary diversity is now higher 
on political agendas as a result of the emergence of a multi-
sectoral approach to nutrition and an interest in nutrition-
sensitive agricultural interventions (Food and Agriculture 
Organization of United Nations, 2013; Food and Agriculture 

Organization of United Nations, 2017). It is worth noting that 
in many industrialised countries, diversified diets are strongly 
promoted by public authorities, sometimes through dietary 
guidelines, as is the case in the UK, France (Hercberg et al., 
2008), Australia (National Health and Medical Research 
Council, 2013) and several Scandinavian countries.

Biofortification and diversification involve different types 
of economic actors and are supported by asymmetric eco-
nomic interests. Biofortification was developed through the 
HarvestPlus program, and was supported by a large inter-
national agricultural research consortium (CGIAR), with 
significant funding from large public and private donors 
including the World Bank, USAID, DANIDA, the ADB, 
and the Bill and Melinda Gates Foundation (Kimura, 2013). 
The HarvestPlus programme proposes a technology which 
also matches the interests of international seed and fertiliser 
companies and is apparently well received by policy makers, 
probably because it is a technology-driven approach that 
is perceived as a “magic bullet”, echoing the micronutri-
ent movement of the 1990s with supplementation and food 
fortification (Horton and Wesley, 2008). Biofortification is 
also an explicit target for breeders as well as for governments 
and donors, which usually structure and orient their support 
for agriculture around a few priority value chains, mostly 
staples (Pingali, 2015). Apparent simplicity helps making 
biofortification very attractive to both policy makers and 
donors (Ginkel and Cherfas, 2023).

By contrast, dietary diversification involves a food system 
approach with multiple food chains, which are usually run 
by small-scale economic operators in the LMICs. Donors 
and states support a number of projects that aim to improve 
dietary diversity, however these projects are scattered across 
national territories and are implemented at relatively small 
scales. Unlike biofortification, dietary diversification pro-
jects do not involve large coalitions of powerful actors. In 
other words, a diversification strategy is not currently being 
promoted by any major international research programme 
supported by large-scale public and private donors and, 
perhaps most importantly, is not linked to any powerful 
economic interests. Political economy thus appears to help 
explain the imbalance in political interests and support for 
the two pathways.

Overall, actors promoting biofortification have benefited 
from a favourable political agenda on strengthening agricul-
ture-nutrition linkages. Biofortification has been presented 
as a nutrition-sensitive agricultural intervention, and one 
which has been proved to be cost-effective compared to 
others actions aimed at improving dietary diversity (Ruel 
et al., 2018; Sharma et al., 2021). The amount of research 
using randomised controlled clinical trials to demonstrate 
the impact of biofortification on micronutrient status and 
its cost-effectiveness is then viewed as an advantage com-
pared to research on other nutrition-sensitive agricultural 
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interventions based on statistical correlation studies (Aval-
lone et al., 2021; Ruel et al., 2018).

Each of the proposed pathways also has important con-
sequences in terms of independence and national food 
sovereignty. Kimura (2013) and Scrinis (2016) show that 
biofortification is a solution over which countries suffering 
from food insecurity, and a fortiori their populations, have 
no control. Implementing biofortification would therefore 
make these countries dependent on technological systems 
and oligopolies. This criticism is similar to that of industrial 
agriculture, particularly by the early advocates of agroecol-
ogy (e.g., Gliessman, 2016), who deplored farmers’ depend-
ence on seed companies, fertilisers, pesticides and, increas-
ingly, on electronics and big data. The re-emergence of the 
question of food sovereignty following the Covid 19 crisis 
and the war in Ukraine has revived this criticism.

5  Conclusion

Figure 2 summarises the potential and limits of biofortifica-
tion and of dietary diversification from the points of views of: 
(1) human health, (2) economic and social well-being, and 
(3) agricultural and environmental sustainability. Although 
biofortification may be an effective way to tackle specific 
micronutrient deficiencies, the strategy should be seen as a 

short-term technical fix, whose potential may be reduced by 
complex bioavailability mechanisms and dietary behaviour. By 
contrast, diversification should be seen as a long-term strategy 
leading to improved overall nutritional adequacy.

Addressing the challenge of micronutrient deficiencies, 
but also of malnutrition in all its forms, requires a shift from 
a linear approach to a holistic, multidisciplinary, and multi-
sector approach. Widespread use of biofortified foods as a 
way to tackle malnutrition not only oversimplifies the chal-
lenge posed by malnutrition, but could have serious conse-
quences on the whole food system, with adverse impacts on 
the environment, in addition to social and economic impacts. 
Proposing a single-factor solution to an issue with multiple 
social, economic, and cultural roots fails to recognize the 
need for a profound transformation of food systems.

Diversification appears to be a solution that countries, 
farmers, and consumers can control. Unlike a stand-alone 
solution, diversification may be adapted to any different 
particular context, reflecting each specific agronomic and 
climatic characteristics, but also associating the local food 
cultures. Dietary diversification could thus enhance the sus-
tainability of food systems at different scales. However, the 
implementation of diversification requires long-term struc-
tural and ambitious changes, such as the transformation 
of production systems, the organisation of efficient value 
chains for healthy but perishable foods, public regulations 

Fig. 2  Potentials and limits of biofortification and diversification considering food and nutrition security, economic and social well-being, and 
environmental sustainability
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favouring nutrient-rich foods, and improved consumer infor-
mation. Successfully addressing these challenges requires 
a coordinated approach between public health, agriculture 
and consumers.

Regardless of the type of nutritional intervention strat-
egy used, accounting for the broader food and consumption 
context is a prerequisite for sustainable nutrition and health. 
The key to good nutrition must remain a healthy, balanced 
diet, which in turn implies access to a variety of foods and 
the implementation of the right to food (Food and Agricul-
ture Organization of United Nations, 2005). Malnutrition 
in LMICs is part of a global nexus where it combines with 
poverty and disease, within a strong frame of social and eco-
nomic facts and constraints (Adeyeye et al., 2023; Owolade 
et al., 2022). Taking the agricultural, health, educational, 
and social aspects into consideration and addressing poverty 
reduction are part and parcel of any successful strategy.
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