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Abstract
We present a new application to recognize 218 species of cultivated crops on geo-tagged photos,
‘Pl@ntNet Crops’. The application and underlying algorithms are developed using more than 750k
photos voluntarily collected by Pl@ntNet users. The app is then enriched by data and photos
coming from the European Union’s (EU) Land Use and Coverage Area frame Survey (LUCAS).
During five tri-annual LUCAS campaigns from 2006 to 2018, 242 476 close-up ‘cover’ photos of
crops were collected. The survey protocol for these photos specified that ‘the picture should be
taken at a close distance, so that the structure of leaves can be clearly seen, as well as flowers or
fruits’. This unique labelled data provides an opportunity to further generalize the Pl@ntNet
computer vision algorithms to recognize crops and enlarge their geographic representivity across
the EU. To include LUCAS cover photos, we semantically match Pl@ntNet species and LUCAS
legends, predict the species on LUCAS cover photos with the existing Pl@ntNet algorithm, and
consider the accuracy of the classification and the number of species enriched by the photos. By
setting a threshold of>0.5 on the Pl@ntNet prediction probabilities, 70 170 LUCAS photos
representing 101 species classified with an accuracy of 0.9 were added to the ‘Crops’ app. The
thematic accuracy of the legacy LUCAS data was improved by distinguishing 218 species, opposed
to the original 36 LUCAS levels. Official and publicly financed LUCAS datastreams can now be
improved because of Pl@ntNet citizen science, photo collection, and deep learning model
development. Further use of the app and policy-relevant workflows in the agri-food-environment
domain are discussed.

1. Introduction

Specialized social networks have an unprecedented
ability to scale and match observations and expert-
ise. Nowadays, the collection of photos and obser-
vations is often combined with powerful algorithms
for various classification tasks (e.g. [1, 2]). Meth-
odologies are designed that can efficiently chan-
nel citizen science into environmental monitoring
to inform policy processes, e.g. the monitoring of

the Sustainable Development Goals [3]. The syn-
ergy between expertise and citizen science is also
explored in the domain of land cover and land use
assessments. Citizen scientists have helped to assess
the land available for biofuel production [4]. Bayas
et al [5] investigated how the ‘crowd’ could con-
tribute to in-situ land cover and use observations
to complement the European Union’s (EU) Land
Use and Coverage Area frame Survey (LUCAS). For
example, while LUCAS is carried out every three to
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four years, citizen scientists couldmake annual obser-
vations. Conversely, the geographic scope of LUCAS
is EU-wide, avoiding biases that may occur in volun-
tarily driven observation schemes. Large-scale biod-
iversity and protected area monitoring are increas-
ingly benefiting from citizen science observations [6].
Novice, amateur, and expert botanists have been col-
lecting and revising millions of geo-tagged and time-
stamped photographs of plant species with apps such
as Flora Incognita [7], iNaturalist [8], and Pl@ntNet
[9]. Besides contributing to biodiversity monitoring,
these apps are intrinsically motivating volunteers as
they function as modern day floras. After careful
expert-based quality control procedures these obser-
vations can contribute to platforms such as theGlobal
Biodiversity Information Facility (www.gbif.org/).

Synergies between demand and supply of
collection capacity and expertise are at the core of
several recent and successful examples in the agri-
food-environment domain (e.g. [10]). Farmers are
also actively participating in such activities. Although
there is a long history of public engagement in agri-
culture, specifically through extension work with
beneficial bidirectional flows of information, the
term citizen science has rarely been applied to this
[11]. Farmers and extensionworkers can benefit from
crop disease expertise networks to access information
on treatments [12]. Farmer citizen scientists particip-
ated in on-farmparticipatory trials providing insights
into variety adaptation and selection across large geo-
climatic scale [13]. Farmers also have been engaged
in documenting temporal trends in farmland biod-
iversity and relating these to agricultural practices
[14]. Accounting for the environmental performance
of farming, but also an increasing disconnect between
people and their food, warrants exploring the inter-
faces between food systems and citizen science [11].

Legacy data and photos can also improve under-
lying identification models provided proper tools
facilitating integration and annotation are available.
Themassive digitization of herbarium specimens and
annotation of specimen images is one such example
[15]. Pl@ntNet provides the possibility to integrate
specific flora previously collected by (amateur) bot-
anists using dedicated semi-automatic tools. In this
letter, we explore the use of legacy in-situ expert pho-
tos taken and labelled during past EU-wide LUCAS
surveys. Taking advantage of the existing Pl@ntNet
species identification algorithms and its mobile and
web functionality, we present a new application in
Pl@ntNet focusing on ‘Crops’. Besides user provided
pictures of crops, the application is enriched with
suitable LUCAS cover photos of crops. Enabling
this synergy required aligning both data sources as
detailed in this manuscript. Eventually, combining
user collected photos and LUCAS surveyed pho-
tos and observations should improve the ability to
recognize crops with Pl@ntNet and deep learning

algorithms in general. These developments could
give rise to various applications in the agri-food-
environment domain. Detailed objectives are to:

(a) Present the Pl@ntNet Crops application focusing
on cultivated crops.

(b) Demonstrate how after legend matching and
inference with the existing Pl@ntNet algorithms
the Crops application is enriched with LUCAS
cover photos.

(c) Demonstrate the synergy of voluntary and
LUCAS collected photos and observations for
deep learning model development to recognize
crops.

(d) Suggest potential uses of the Pl@ntNet Crops
application and openly published crop recog-
nition models in the agri-food-environment
domain.

2. Data andmethods

2.1. Pl@ntNet
Pl@ntNet is an existing smartphone and web-based
application that allows identifying plant species on
images [16]. More broadly, Pl@ntNet is a collabor-
ative system operating since 2010 [9] and involving
a large community of expert and amateur contribut-
ors worldwide [17]. Available in 36 languages and in
200+ countries, about 200 000 to 600 000 users use
Pl@ntNet each day. Experiencing nearly exponential
growth since its conception, more than 200million
plant occurrences have been recorded with Pl@ntNet
around the world. Pl@ntNet provides generic func-
tionality to recognize plants that can be used by any-
one, but also dedicated applications that focus on spe-
cific flora in e.g. natural parks, from herbaria, or on
activities with an educational character. Pl@ntNet is
straightforward to use. After selecting a flora, a user
takes up to four close-up photos of the organs of a
plant following Pl@ntNet guidelines. The user spe-
cifies if the organ is e.g. a flower, fruit, leaf, bark, the
so-called view. In return, Pl@ntNet provides a ranked
list of the most probable predicted species. Each spe-
cies is illustrated by pictures of that species for com-
parison, grouped by their view, that may also include
a ‘habitat’ view if the photo was not close-up but
rather provided a landscape view. See figure 1 on the
left side for typical photos submitted to Pl@ntNet.
Additional information and links to descriptive web
pages of the species are also provided.

2.2. LUCAS cover photos
The LUCAS has collected in-situ data on land use and
cover across the EU in 2006, 2009, 2012, 2015 and
2018. During those surveys, observations are done on
>300 000 points for a sample that is statistically rep-
resentative with respect to land cover. Alongwith data
on a set of relevant variables, photos are taken in the
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Figure 1. Comparing typical Pl@ntNet and LUCAS Cover photos. Pl@ntNet photos distinguish leaves, flowers, and fruit. LUCAS
Cover: L1 photos are included in the app (probability> 0.9), L2 is<0.9 but>0.4, while L3 is<0.4. Reproduced from [19]. CC
BY 4.0.

four cardinal directions from the point. A detailed
methodological description, as well as the harmon-
ised data and photos are published in [18]. Besides
the photos mentioned above, previously unpublished
‘cover’ photos were also taken. The protocol specified
that these cover photos ‘should be taken at a close
distance, so that the structure of leaves can be clearly
seen, as well as flowers or fruits’. During the five cam-
paigns, 874 646 LUCAS cover photos were collected,
out of which 242 476 were of crops. After a two-step
anonymization process relying on computer vision
and visual inspection (detailed in [19]), these pho-
tos will be published in 2022. The Crops app ingests
the cover photos of crops. See supplementary figure
1 and figure 1 on the right side for typical LUCAS
cover photos of crops. As can be seen, these contain
full plant views, but also more distant views, fences

that may block the view, and occasionally the pres-
ence of objects to mark the point.

2.3. Pl@ntNet crop recognitionmodels
Pl@ntNet is an automated visual identification system
that integrates various novel approaches in handling
and classifying imagery [9]. Pl@ntNet is built on the
combination of a deep learning image classification
model and a generalist content-based image retrieval
method (for details see [9, 16]). Besides computer
vision based identification, the Pl@ntNet framework
is itself synchronized with observations that are val-
idated by a network of expert botanists. This allows
the recognition performances to improve with an
ever increasing amount of training data. Pl@ntNet
datasets and algorithms are also benchmarked in
community-steered identification challenges such as
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LifeCLEF [1]. This type of long-term evaluation
makes it possible to quickly detect major advances in
terms of performance and to accelerate their integ-
ration into operational production systems such as
Pl@ntNet.

2.4. Model performance and including LUCAS
photos in the app
First, before including the LUCAS crop pho-
tos into the application, the accuracy of the
Pl@ntNet algorithm to identify crops is evaluated
on the photos contributed by citizen scientists. When
training Pl@ntNet’s recognition algorithm, a frac-
tion of the data (randomly selected) that has been
evaluated by experts is removed from the training
set in order to evaluate the performance of the crop
identification. Second, to decide which LUCAS cover
photos of crops can be included in the application,
considerations are made regarding the probability of
the prediction and the accuracy of the crop identific-
ation by comparing the Pl@ntNet classification with
the LUCAS label. This requires matching the LUCAS
legend labels with the Pl@ntNet species reference list.
Legend matching is also needed for the future use of
the photos to train and improve the current Pl@ntNet
species identification algorithm. In the Pl@ntNet pro-
cedure, while users need to specify the type of view
when submitting the photo, the algorithm also clas-
sifies the view (e.g. flower, leave, bark, habitat) before
classifying the species. After inclusion in the Crops
app, the established expert driven Pl@ntNet quality
control mechanism continues to take place.

3. Results and discussion

3.1. Model performance
A total of 218 cultivated crop species are included
in the Pl@ntNet Crops application (see supplement-
ary table 1 and the Crops application). Along with
scientific names, common names translated into 36
languages are also provided. Species covered include
major crops (maize, wheat, rice, yam), but also
vegetables (asparagus, eggplant), tree crops (olives,
coconut), fruits (kiwi, apple), nuts (hazelnuts, pista-
chio), spices (cinnamon, black pepper), and cover or
N-fixing crops (clover). Pl@ntNet users have already
contributed 605 242 crop photos (as of 16 November
2021) from around the world to the Crops applica-
tion.Out of these 605 242, the classification of 260 610
of those have also been evaluated by experts. The
dataset that was used to train the model was selected
from these.

Before including the LUCAS cover photos,
the performance of the current Pl@ntNet Crops
algorithm is evaluated with the randomly selected
validation set that is removed from the training set.
This set contains 2654 images and allows to meas-
ure the average identification performance of unseen

Table 1. Performance evaluation of Pl@ntNet’s crop recognition
application.

Mean average precision Top-1 accuracy Top-5 accuracy

0.927 0.891 0.972

crop images. As reported in table 1, the correct spe-
cies is returned in first position 89% of the time,
and among the top 5 predicted species 97% of the
time. This provided a satisfactory performance of the
algorithm that is used in the Pl@ntNet Crops applic-
ation. A threshold on the prediction probability of
the algorithm will determine whether a LUCAS cover
photo can be included in the app.

3.2. Legendmatching and species list
Pl@ntNet uses up to date Latin taxonomy to clas-
sify at species level. The LUCAS legend level 3, which
is used to label the LUCAS cover photos, contains a
mix of family and species names with synonyms and
alternative spellings that needed to be semantically
mapped to the Pl@ntNet reference species list (see
supplementary table 1). The 218 cultivated crops in
the application were matched to 36 LUCAS legend
level 3 classes. Following the LUCAS class defini-
tion, the frequency distribution across the different
crop types is shown in supplementary figure 2. This
reveals the long-tail problem [9], for only a few of
the crop species—the major crops—a large amount
of LUCAS observations with photos exist. However,
if the Pl@ntNet observations are classified following
the LUCAS legend, a large group of observations are
included in the ‘other fruit trees and berries’ class. Of
course, a much richer differentiation exists at species
level for the Pl@ntNet photos. This is illustrated in
figure 2. Here each bar indicates a Pl@ntNet species,
the size of the bar the number of Pl@ntNet citizen
scientist observations for that species, while colour
indicates the LUCAS legend level 3. Unfortunately,
when using the original LUCAS label to evaluate the
accuracy of the Pl@ntNet classification of the LUCAS
cover photos, species will be grouped that may also be
similar (e.g. ‘dry pulses’).

3.3. Spatial and temporal distribution of Pl@ntNet
and LUCAS photos
Pl@ntNet users have already contributed 605 242 crop
photos (as of 16 November 2021) to the Crops applic-
ation. Approximately 400 000 photos contain GPS
geolocation information and 260 610 of them are
both present in Europe and have been validated by
experts. The potential contribution of LUCAS cover
photos of crops to the Pl@ntNet application amounts
to a total of 242 476 photos and observations taken
across the EU following the LUCAS classification
(see supplementary figure 3 mapping the distribu-
tion of LUCAS cover photos across the EU for seven
crops). The type of view classified by the algorithm
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Figure 2. Distribution of the Pl@ntNet observations with the LUCAS class equivalent (Pl@ntNet data have been converted from
species to LUCAS legend level 3). Only species with a minimum of ten observations are shown.

(table 2) highlights the difference between Pl@ntNet
user and LUCAS surveyor provided photo. While
most Pl@ntNet user photos are recognized to have a
viewof flowers or leaves,most LUCASphotos are clas-
sified to be of habitat type, i.e. a full plant view, or a
more distant photo of a cropped field. This is despite
the LUCAS protocol, which referred to pictures to be
taken at a close distance.

The relative contribution of Pl@ntNet and
LUCAS observations to the Crops app is evaluated
by comparing the 260 620 evaluated Pl@ntNet obser-
vations and the 242 476 potential LUCAS observa-
tions. Geographically speaking, the relative contri-
bution of LUCAS to Pl@ntNet observations across
Europe is especially pronounced in Eastern Europe
and away from populated coastal and metropolitan
areas (see figure 3). Following the launch of Pl@ntNet
in 2010 and the direct uptake in the existing French
Tela Botanica network (www.tela-botanica.org), it is
no surprise that most Pl@ntNet user made observa-
tions have been made in France. The LUCAS cover
photos are geographically distributed more uni-

formly, a drawback is that generally only a single
cover photo is taken at a LUCAS point. Some of these
LUCAS points will have been revisited only once,
while others may have been visited during all five past
surveys [18].

Summarized across a year, the temporal dis-
tribution of observations contributed by Pl@ntNet
users and LUCAS surveyors is seen in figure 3. For
Pl@ntNet this encompasses the time period between
2010 and 2021, while this covers the five survey years
for LUCAS. Clearly, most photos are provided dur-
ing the growing season, when Pl@ntNet users are out
and about, and when the LUCAS surveys are carried
out. However, the contribution of Pl@ntNet users is
more stable throughout the year, while the LUCAS
surveys clearly peak with the campaign time. These
campaigns are also more or less staggered according
to phenological development from South to North.
Since 2018 the number of evaluated Pl@ntNet obser-
vations of cultivated crops have increased dramatic-
ally, reaching more than 80 000 in 2020, illustrating
one of the strengths of citizen science.

5
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Table 2. Type of views of Pl@ntNet user and LUCAS cover pictures.

Total Flower Fruit Leaf Bark Habit Other

Pl@ntNet user (n) 605 242 231 669 62 541 260 005 17 099 26 666 7262
Pl@ntNet user (%) 38 10 43 3 4 1
LUCAS cover total (n) 242 476 24 401 25 333 67 488 1692 98 234 25 328
LUCAS cover total (%) 10 10 28 1 41 10
LUCAS cover inference> 0.5 (n) 70 170 12 516 7662 23 193 55 26 235 509
LUCAS cover inference> 0.5 (%) 18 11 33 0 37 1

3.4. Including LUCAS cover photos
Several considerations are made when deciding to
include LUCAS cover photos. This includes the prob-
ability of the prediction, the accuracy of the predic-
tion against the original LUCAS classification of the
crop on the photo (distinguishing 36 classes), but also
the added value the photos provide. Considerations
include maximizing the total number of photos that
could be added to the app,minimizing the risk of con-
fusionwith the fuzzy LUCAS legend, or increasing the
number of photos for species that have few or no pho-
tos associated with them. Since human expert review
is part of the Pl@ntNet workflow, erroneous classi-
fications may be corrected. Figure 4 quantifies this.
Using the legendmatching, the accuracy of the species
classified with the highest probability by Pl@ntNet is
calculated (upper left panel of figure 4). The accuracy
(against the independent LUCAS labels) of the clas-
sification increases with probability threshold, and
even the lowest Pl@ntNet probabilities correspond to
an accuracy of 0.62. Figure 1 illustrates this further:
LUCAS cover photos with a probability of classifica-
tion >0.9 (L1) are included in the app, while photos
predicted with a probability <0.9 but >0.4 (L2) and
<0.4 (L3) are excluded. LUCAS cover photos classi-
fied with the lowest probability (L3) include photos
that are very distant (B81), have little contrast (B11),
depict harvested bare soil (B21), agricultural plastic
(B45), and flattened crops (B51).

There are 112 445 LUCAS cover photos that could
be included. The reduction from 242 476 occurs for
two major reasons. First, 63 878 have been rejected
as a classification could not be made by Pl@ntNet
for various reasons, e.g. this happens for many of the
photos with a habitat view, or there is an imposing
object (e.g. a marker, notebook, . . .). Second, of the
178 598 for which a prediction could be made, the
first species predicted is not part of the Crops ref-
erence list of 218 crops. This can be due to various
reasons, again, the wider view of the habitat pho-
tos does not correspond to the close-up view usu-
ally provided to the algorithm which may hamper the
classification, but also there is a lack of training data
for the crop species in the reference list. Logically, the
number of photos that could be included decreases
with increasing probability threshold (upper right
panel). A significant number of species could benefit

from including the LUCAS cover photos. However,
with an increasing probability threshold, that number
decreases dramatically as well, from 133 to 26 species.
Finally, the number of photos added to each species
is specified in the boxplot in the lower right panel.

Following the considerations specified above, a
reasonable compromise was found by setting the
threshold for the probability for inclusion of LUCAS
cover photos at >0.5. Hereby, 70 170 LUCAS photos
classified with an accuracy of 0.9 are added to the
Crops app enriching 101 species. The LUCAS Cover
photos currently contributing to the app can be found
here: https://identify.plantnet.org/partners/lucas-
survey. In the near future, species below the 0.5
threshold will be visually evaluated as these LUCAS
cover photos could improve the Pl@ntNet algorithms
the most as they have been the most difficult to pre-
dict.

3.5. Pl@ntNet crops and application context
The interface and functionality of the mobile
Pl@ntNet Crops application is illustrated in sup-
plementary figure 4. The app includes more than
842 320 photos and more than 675 000 observa-
tions (as of 19 October 2022) and is available
as an Android and iOs app as well as through
a web interface (https://identify.plantnet.org/eu-
crops). Various application contexts can be con-
sidered, but we consider three here. For more
examples of other Pl@ntNet activities, please explore
https://identify.plantnet.org/ and related literature.

3.5.1. Collecting in-situ observations
The increasing volume of freely accessible Earth
Observation (EO) data through e.g. the Coperni-
cus program, has not been matched with propor-
tional amounts of in-situ, reference, and training
data, hampering novel applications. Using automated
workflows, the Pl@ntNet Crops app can contribute
to collecting in-situ data for such EO applications.
Since the app is global and includes 218 species cul-
tivated around the world, this may be particularly rel-
evant for data-poor environments. In food insecure
regions, in-situ crop type data are generally missing
[20]. In those regions the combination of in-situ data
with EO data is crucial to better inform early warning
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(a)

(b) (c)
Figure 3. (a) The geographic contribution of Pl@ntNet user and LUCAS cover provided photos. (b) The monthly distribution of
Pl@ntNet user and LUCAS cover provided photos. (c) Annual totals since 2005.

systems and guide humanitarian responses, ensur-
ing market transparency and stability, and informing
national agricultural policies [21]. The use of citizen
science tools such as the Pl@ntNet Crops app could

also encourage individual farmers or surveyors to
report on crops grown on specific parcels without
the need to have expertise in geo-spatial technolo-
gies. Crop type recognition on geo-referenced images
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Figure 4. Including inferenced LUCAS cover photos in Pl@ntNet. Accuracy (upper left), correctly predicted images (upper right),
number of species added to Pl@ntNet (lower left), and images per predicted species added to Pl@ntNet (lower right), as a
function of the Pl@ntNet probability of the identification.

for in-situ data collection using computer vision has
been successfully tested [20, 22]. Since the posi-
tion of the camera may not be in the field, smart
ways to link the precise position of the crop loc-
ated on the photo and the field are needed. Pictures
are taken directly in the field in campaigns such as
those done for the Copernicus4GEOGLAM com-
ponent (https://land.copernicus.eu/global/about-
copernicus4geoglam) of the Copernicus Global Land
Service. However, these protocols do not necessar-
ily ensure a smooth integration in computer vision
and machine learning applications. Metrics on the
positional accuracy of the in-situ data collection will
be extracted by comparisons against spatially expli-
cit parcel-level farmers’ declarations of crops (from
e.g. France and the Netherlands) as gathered in the
context of the Integrated Administration and Control
System of the Common Agricultural Policy (CAP).

3.5.2. CAP
Automation and new technologies can reduce admin-
istrative burden and strengthen evidence provision
for the European Union’s CAP. When receiving
specific subsidies, the responsible administration

requests farmers to provide a georeferenced photo
proving that they grow certain crops (see [23]),
e.g. besides crops supported by voluntary coupled
support, for cover, catch, or N-fixing crops. The deep
learning model developed as part of the Pl@ntNet
Crops application could be ported elsewhere and
implemented to take advantage of this automation.
For instance, should a photo taken by a farmer res-
ult in a classification with low probability (below a
threshold accepted by the administration), he/she
would be immediately alerted to pay attention to
the protocol and retake the photo, e.g. from a more
optimized viewpoint or distance to the plant, to
ensure sufficient probability of a correct crop clas-
sification. The foreseen benefits are threefold: (a) for
the farmer—ensuring that his/her duty of provid-
ing the evidence was fulfilled correctly and avoid-
ing extra efforts of coming back to the field to
retake the photo at a later date; (b) for the admin-
istration handling the subsidies—receiving high
quality proof captured according to the protocol
enabling automatic processing and thus decreasing
the need for costly expert photo evaluation; (c) for
further algorithm development—the misclassified
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first photo could be added to the training set
to improve the classification probability. Such
approaches are already implemented by certain
administrations to improve the environmental
performance of the CAP. To receive support in
Thuringia, Germany, farmers need to evidence main-
tenance of environmentally sensitive and biodiverse
grasslands by providing the occurrence of at least
six key species out of list using Flora Incognita
(https://marswiki.jrc.ec.europa.eu/wikicap/images/5
/57/09_Detection_of_individual_plants.pdf). These
approaches improvemonitoring of practices, but also
directly contribute to near real-time monitoring of
ecological patterns and can thus help to assess pro-
gress towards the EU biodiversity targets in managed
agricultural land.

3.5.3. Food system awareness raising
Engaging citizen scientists in food system research
keeps on gaining momentum and now covers diverse
applications [24]. At the same time, Ryan et al [11]
note that the term citizen science has rarely been
applied to a long history of public engagement in
agriculture and food science. Consumers increasingly
care about the origin and sustainability of the food
they buy. In the context of the EU’s Farm to Fork
strategy, citizen science activities with consumers or
schools could use the Crops app to explore local
agricultural produce and in this process gain know-
ledge about the crops that are cultivated in their sur-
roundings, the sustainability of the production pro-
cess, and the interaction with the local environment.
The transparency of the production chain for agricul-
tural commodities (oil palm, cocoa, coffee, . . .) pro-
duced outside of Europe is also of concern to con-
sumers. If geolocated crop type is combined with
additional information, the development of targeted
applications could improve monitoring of environ-
mental externalities such as biodiversity impact [25]
of e.g. traditional and agro-forestry-based systems.
These developments could strengthen the relation-
ship between producers and consumers and encour-
age agronomic and environmental awareness with
positive impacts on food systems, especially at the
production stages. Nevertheless, Mourad et al [26]
found that many citizen and farmer science projects
tend to focus on academic research outcomes, and not
on sustainable solutions in practice. Here we propose
that image recognition apps and deep learning mod-
els originating in the citizen science domain can also
more indirectly feed work flows and policies imple-
menting sustainable farm practices.

3.6. Lessons learned
Opportunistic use was made of legacy LUCAS cover
photos. There was enough overlap between the visual
requirements of the Pl@ntNet algorithms and the

LUCAS cover photos so that 31% of the photos could
be included in the app after a first inference. Inclusion
of the LUCAS cover photos that are predominantly of
‘habitat’ type, improves the Pl@ntNet algorithm for
this type of view. For 70 170 legacy LUCAS observa-
tions, the thematic accuracy was improved by distin-
guishing 218 species opposed to the original 36 levels.
As expert evaluation improves the training set and
thus the crop identification, LUCAS cover photos will
increasingly be added as the algorithm improves.

Photos and observations that are voluntarily col-
lected by apps such as Pl@ntNet and by statistically
representative surveys such as LUCAS have different
but complementary strengths. Now that the legends
are matched, LUCAS surveyors could (voluntarily)
use the app for the crop classification task, especially
if they are not agronomists. While generally only a
single photo is taken of a crop at a LUCAS point
(i.e. similar to the one-shot problem, very few images
per species and type of view, see [9]), multiple pho-
tos of the same species, and of different organs, can be
used for the identification by Pl@ntNet. By combin-
ing photos from volunteers and surveys, as done here,
increasingly rich training datasets are created. While
noise in the imagery is a drawback, a positive aspect is
the diversity of such datasets. Over time, this should
lead to the development of more robust identifica-
tion models. Such models are needed for real-world
applications.

The LUCAS protocol was not built for use in com-
puter vision and machine learning. Taking a photo of
a cropped field with many closely spaced individuals
is different compared to taking a close-up photo of
an organ of a single plant. Furthermore, even though
a protocol for close-up photos was specified, rather
heterogeneous imagery is present in the LUCAS cover
set. Following on from these experiences, we have
improved the instructions for the 2022 LUCAS survey
protocol. Backgroundmarkers are no longer included
during the acquisition of LUCAS cover photos to
reduce the noise in the photo for further computer
vision applications. Furthermore, in the training of
surveyors emphasis was placed on the need of pho-
tos taken at a close distance, that have sufficient con-
trast, and where individual crops could be distin-
guished. Direct use of the app with requirements
on the probability of the classification will be sug-
gested for the next LUCAS survey. The cover pho-
tos of the LUCAS 2022 survey will also be included
in the app once available. Besides photos of crops,
the LUCAS cover photo-dataset also includes photos
of trees (leaves) and grasses. These may be included
within other Pl@ntNet floras. Other LUCAS legacy
photos, such as those taken in the four cardinal dir-
ections, may prove useful in computer vision chal-
lenges related to land cover and use and landscape
analysis [27].
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A proliferation of apps for plant recognition has
appeared in recent years (e.g. LeafSnap, PictureThis,
PlantStory, Seek, etc). Jones [28] compared ten auto-
mated image recognition apps to identify British
flora. Here, overall Pl@ntNet was a mid-level per-
former. Otter et al [29] concluded that such apps can-
not yet be trusted to identify toxic plants, with two
out of three apps tested (including Pl@ntNet) cor-
rectly predicting about half of plants. The extension
service of Michigan State University (USA) evaluated
eight different apps, with Pl@ntNet ranking second
(www.canr.msu.edu/news/plant-identification-
theres-an-app-for-that-actually-several). Clearly, the
results of such evaluations depend strongly on the
species chosen for the test set. In the future a stronger
differentiation may appear between specialised sys-
tems and those oriented towards more common
species.

One specific complication for certain crops is that
varieties of the same species are very different. For
example, Brassica oleracea L. includes cultivars such
as cabbage, broccoli, cauliflower, kale, and Brussels
sprouts. In Pl@ntNet, being one species, these cul-
tivars are all in the same class, notwithstanding their
different visual appearances. Traditionally in the Life-
CLEF challenge [30], the leading activity on bench-
marking new algorithms for automated plant recog-
nition apps, accuracy is evaluated at species, genus,
and family level. The particular difficulty of very
visually distinct crop varieties has not been solved
yet. Different phenological stages provide another
challenge [22]. In fact, plant identification can be dif-
ficult, even for a trained botanist, and benchmarked
datasets are needed to improve algorithms (see for
example the public dataset created by Pl@ntNet
on anemones, https://plantnet.org/en/2021/03/30/a-
plntnet-dataset-for-machine-learning-researchers/).

4. Conclusions

A new Pl@ntNet app including more than 842k pho-
tos (as of 19October 2022) of 218 crop species around
the world is presented. The application and under-
lying algorithms are built on voluntarily collected
photos of crops and enriched by legacy LUCAS sur-
vey cover photos of crops. The comparative strengths
of merging such networked collaborative and survey-
based approaches relate to temporal and geographic
representivity of the sampling. The application can
benefit various agri-food-environment activities
and can contribute to the further development of
computer vision algorithms to recognize crops on
photos.
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