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Draft genome sequences of Neurospora crassa clade B, isolated 
from burned Cytisus sp. plants in France
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ABSTRACT Neurospora crassa clade A is a model system for genetics, biochemistry, 
molecular biology, and experimental evolution. Here, we present the draft genome 
sequences of four isolates of N. crassa clade B. These data represent a valuable resource 
to investigate the population biology and evolutionary history of N. crassa sensu lato.
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N eurospora crassa is “the model microbe that opened the book of genetics at the 
chapter on biochemistry” (1). Despite its wide use as a model organism, central 

aspects of the biology and evolutionary history of N. crassa remain poorly understood 
(2). For instance, the life cycle, fine-scale genetic structure, and history of divergence 
among the three lineages of N. crassa [referred to as clades A, B, and C (3)] are not 
fully understood. N. crassa clade A isolate OR74A was the first filamentous fungus to be 
fully sequenced (4). Since the release of the reference genome, whole genome data for 
approximately 60 additional isolates have been published, mostly representing clade A 
(5–7). The public release of high-quality genomic data representative of the diversity of 
N. crassa is needed to fill the gaps in our knowledge of its natural history.

Four strains of N. crassa were collected as wood chips with sporulating bright orange 
colonies from burnt Cytisus sp. plants after a wildfire in Villeveyrac, France, in 2017. 
Samples Vill-A1-2 and Vill-A1-3 originated from the same shrub, while samples Vill-B4 
and Vill-C1-2 originated from two other shrubs. Each wood chip was placed in a separate 
paper envelope and stored at −20°C (8). Single-spore isolation was carried out by 
depositing 100 µL of sterile water onto a mycelial colony and spreading the suspension 
in a Petri dish with water agar (2%) and chloramphenicol (200 g/mL). After incubating 
12 hours at room temperature, a germling was removed using a needle, transferred to 
a Potato Dextrose Agar medium covered with a cellophane jam jar cover (Hutchinson, 
Roubaix, France), and incubated 36 hours on the bench before harvesting mycelium.

Genomic DNA was extracted from mycelium harvested from cellophane membranes 
using a protocol strictly identical to that described in Thierry et al. (9). DNA was 
fragmented by sonication (Covaris, Massachusetts). DNA libraries were prepared with 
TruSeq nano kits and sequenced using NovaSeq 6000 (Illumina, California) with 150 
nucleotide paired-end reads and 500 base-pair insert size. The number of read pairs 
ranged between 8,006,852 and 9,635,233. Read quality was controlled using TRIMMOMATIC 

v0.32 (10).
Genomes were assembled using ABYSS 2.2.1 (11) with default parameters. The k-mer 

size was varied from 60 to 130, so as to maximize the N50. Optimal k-mer sizes and 
genome assembly statistics are reported in Table 1. Genome completeness estimated 
with BUSCO 5.4.3 [9] (sordariomycetes_odb10 set) was above 97%. Bacterial contamina­
tion was estimated using KRAKEN2 v2.1.2 (default settings) with the PLUSPFP database (12).

Isolates were assigned to N. crassa clades based on their evolutionary distance from 
reference genomes OR74A [clade A; PRJNA132, PRJNA13841 (4)], FGSC4830 (clade B; 
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PRJNA371206), and FGSC8863 [clade C (7, 13)]. Coding sequences at 3,540 single-copy 
core genes resulting from the BUSCO analysis (14) were aligned with TRANSLATORX 1.1 (15) to 
maintain the coding frame [aligner: PRANK v170427 (16); parameter -b5 = half in GBLOCKS 

0.91B (17)]. Alignments were concatenated (6,397,566 bp), and isolates were assigned to 
N. crassa clade B using a NeighborNet network built with SPLITSTREE v4.018.2 (18) (default 
settings; Fig. 1).
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TABLE 1 Assembly quality statistics and k-mer sizes used for assembly of four isolates of N. crassa clade B isolated from burned Cytisus sp. plants in France

Parameters

Isolates

Vill-A1-2 Vill-A1-3 Vill-B4 Vill-C1-2

k-mer size 92 84 84 78
Number of scaffolds 6,746 9,156 7,567 9,218
L50 22 19 21 20
N50 512,892 528,255 481,520 551,850
Assembly length 37,345,753 37,773,353 37,603,129 36,795,690
BUSCO score (%) 97.5 97.1 97.2 97.4
GC content (%) 50.73 50.63 50.56 51.19
Bacterial contamination (% reads) 0.14 0.08 0.14 0.04

FIG 1 Neighbor-net phylogenetic network estimated with SPLITSTREE v4 showing the assignment of four isolates of N. crassa collected from burnt Cytisus sp. 

plants in Villeveyrac (France) to N. crassa clade B. The network was inferred using Hamming distance calculated from 182,553 polymorphic sites identified in the 

concatenated sequences of 3,540 single-copy core genes (6,397,566 base pairs in total). A phylogenetic network was constructed, instead of a phylogenetic tree, 

because evolution is not expected to be tree-like at the intraspecific level for a fungus whose populations are recombining.
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