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Abstract— Nowadays, satellite image time series (SITS) are
commonly employed to derive land-cover maps (LCM) to support
decision makers in a variety of land management applications.
In the most general workflow, the production of LCM strongly
relies on available GT data to train supervised machine learning
models. Unfortunately, these data are not always available due to
time-consuming and costly field campaigns. In this scenario, the
possibility to transfer a model learnt on a particular year (source
domain) to a successive period of time (target domain), over the same
study area, can save time and money. Such a kind of model transfer
is challenging due to different acquisition conditions affecting each
time period, thus resulting in possible distribution shifts between
source and target domains. In the general field of machine learn-
ing, unsupervised domain adaptation (UDA) approaches are well
suited to cope with the learning of models under distribution shifts
between source and target domains. While widely explored in the
general computer vision field, they are still underinvestigated for
SITS-based land-cover mapping, especially for the temporal trans-
fer scenario. With the aim to cope with this scenario in the context of
SITS-based land-cover mapping, here we propose spatially aligned
domain-adversarial neural network, a framework that combines
both adversarial learning and self-training to transfer a classifica-
tion model from a time period (year) to a successive one on a specific
study area. Experimental assessment on a study area located in
Burkina Faso characterized by challenging operational constraints
demonstrates the significance of our proposal. The obtained results
have shown that our proposal outperforms all the UDA competing
methods by 7 to 12 points of F1-score across three different transfer
tasks.

Index Terms—Deep learning, land-cover mapping, satellite
image time series (SITS), temporal-domain adaptation.
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I. INTRODUCTION

TODAY, satellite imagery represents a fundamental source
of information to monitor the dynamic of the Earth surface

providing valuable knowledge to support decision makers in sev-
eral application domains [1]. Recent spatial programmes (i.e.,
the European Union’s Copernicus programme and its Sentinel
missions) provide open access satellite imagery with both high
spatial resolution as well as high revisit frequency. They capture
satellite image time series (SITS) data that can be leveraged
to monitor phenomena in a variety of different domains, such
as ecology [2], agriculture [3], forestry [4], and natural habitat
monitoring [5].

SITS data, conversely to monodate imagery, contain signal
information about the evolution of the Earth surface allowing,
for instance, to distinguish vegetated land covers that evolve
differently over a yearly cycle of seasons (e.g., in agriculture,
different cropping practices exhibit a different dynamic in their
radiometric signal over a growing season).

Among the possible use of SITS data, the production of land-
cover maps (LCMs) over a specific region [6] is of paramount
importance. The increasing availability of SITS data along with
advances in machine learning [7], more precisely deep learn-
ing [8], has led to land-cover mapping systems that take largely
profit of the information carried out by time series of remote
sensing imagery.

Nonetheless, supervised machine learning methods require
large amount of reference [or ground truth (GT)] data to be
trained, hence posing serious challenges to their use in situ-
ations characterized by a reduced amount of, or unavailable,
reference data. For instance, when LCMs have to be updated
from previous years, costs or restrictions related to new field
campaigns can prevent the possibility to collect new refer-
ence data, thus hindering to learn an up-to-date classification
model [9].

An ideal solution would be to reuse already available data on
a study site, for instance collected in previous field campaigns or
shared over the past years by some public/government agency, to
save time and money for the production or update of LCMs. This
option can, on one hand, take advantages of the efforts previously
done and, on the other hand, limit the needs of fresh reference
data on a study area whose accessibility may be reduced or
compromised.
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However, in the specific, yet common case in which signifi-
cant land-cover changes occur over a certain reference period,
i.e., for agricultural landscapes with year-to-year crop type
changes among fields, simply training a new model using up-to-
date images and legacy reference data is not a solution, and the
use of transfer learning strategies becomes urgent.

We here start from the observation that directly transfering
a model trained on a particular year (the source domain) to a
successive period of time (the target domain) can be challenging
since the two time periods can be affected by different environ-
mental, weather, or climate conditions [10], [11]. This results in
differences or shifts in the distributions of the acquired yearly
remote sensing data.

Addressing the distribution shift problem to adapt a model
trained on a source domain to an unlabeled target domain is
known as unsupervised domain adaptation (UDA) [12] in the
general field of machine learning. The UDA approach has the
objective to provide methods and strategies to cope with dis-
tribution shifts between the data on which the model is trained
(source domain) and the data on which the model is deployed
(target domain) [13].

Here, we consider the tUDA (or tUDA) problem where data
are SITS and the task is to provide yearly land-cover mapping.
The goal is to train a classification model capable to provide a
reliable LCM using an image time series on a given year for
which no specific GT is provided (target domain) as well as
both SITS and sparsely annotated GT data from a previous year
(source domain).

When dealing with real-world land-cover mapping, the col-
lected GT is generally sparse due to the operational constraints
related to time and efforts associated to field campaigns [14],
[15]. This means that a limited number of polygons (in terms
of surface with respect to the study site) is annotated by field
experts with the aim to have samples covering the whole study
area. Matter of fact, the common operational GT data collection
protocol prevents the use of standard semantic segmentation ap-
proaches due to the fact that the latter requires densely annotated
GT data as underlined in [16] and [17] forcing the conceived
land-cover mapping solution to work at the pixel [18] or at the
parcel [19] granularity.

To cope with the tUDA challenging setting affecting SITS-
based land-cover mapping, in this article, we propose spa-
tially aligned domain-adversarial neural network (SpADANN),
a framework that combines both adversarial learning and self-
training for tUDA for SITS-based land-cover mapping un-
der sparsely annotated GT data. More precisely, SpADANN
leverages adversarial learning with the aim to extract domain-
invariant features and it progressively transfers the underlying
classification model from source to target domain via self-
training. With the aim to leverage the peculiarity of remote
sensing data, the self-training process generates pseudolabels
on the target domain identifying stable spatial areas between
the two considered years (domains) and use such spatial areas
(anchor points) to further alleviate the distribution shift between
domains. In addition, with the goal to explicitly cope with
the temporal dimension charaterizing SITS data, we leverage
1-D convolutional neural networks (NNs) as backbone of our

framework. The extensive experimental evaluations are carried
out to assess the behavior of SpADANN considering state-of-
the-art UDA approaches and assessing both quantitative and
qualitative aspects on a rural study site located in Burkina Faso,
referred as Koumbia site and characterized by a mostly agricul-
tural land-cover nomenclature (crop types as well as natural and
built-up classes). The associated GT data are highly sparse due
to operational constraints related to labor-intensive and costly
field campaigns spanning the year 2018, 2020, and 2021.

The rest of this article is organized as follows. Section II
presents the related literature in SITS-based land-cover map-
ping, self-training, and domain adaptation. Section III de-
scribes the tUDA problem setting and introduces the proposed
SpADANN framework to cope with tUDA for SITS-based land-
cover mapping. Section IV presents the study site and the
associated data while the experimental evaluation is reported in
Section V. Section VI discusses the obtained results and short-
term follow-ups. Finally, Section VII concludes this article.

II. RELATED WORKS

A. SITS-Based Land-Cover Mapping Under Sparsely
Annotated GT Data

Land-cover mapping from SITS data is of paramount impor-
tance to monitor and characterize spatiotemporal phenomena oc-
curring on the Earth surface, i.e., quantify natural resources [20],
estimate agricultural surfaces [21], or assess human settlement
evolution [7]. Inglada et al. [7] propose an operational frame-
work to perform large-scale land-cover mapping at national
scale from time-series data. The classification is achieved via
the random forest (RF) classifier that, still today, represents a
well-established approach for land-cover mapping-based from
SITS data. Ienco et al. [22], Rubwurm and Korner [23], and Minh
et al. [24] deal with land use and land-cover (LULC) mapping via
recurrent NN approaches. In both [22] and [23], SITS data are
managed via long short-term memory, while Minh et al. [24] deal
with LULC mapping, still considering recurrent NN strategies
but, this time, the performances of the gated recurrent unit were
inspected to perform classification. Pelletier et al. [3] propose
the use of 1-D (temporal) convolutional NNs for SITS-based
land-cover mapping, referred as TempCNN. In this model, the
convolutional operator is performed on the temporal dimension
of the SITS data with the purpose to manage and model short-
and long-time correlations. The conducted study highlights the
appropriateness of such approach w.r.t. the previous proposed
strategies in the context of general LULC mapping from SITS
data. Furthermore, Zhong et al. [25] provide a comparison of
both recurrent and convolutional NN for the classification of
summer crops highlighting that the latter approach achieves the
best performances in their study case. More recently, Garnot
et al. [26] propose the pixel-set encoder temporal attention
encoder, a transformer-based strategy equipped with a pixel-set
encoder and a self-attention module for agricultural parcels
classification.

Despite the recent progress in the field of SITS-based land-
cover mapping, the proposed algorithms still struggle to manage
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data coming from different temporal periods, thus limiting their
applicability in a temporal transfer scenario.

B. Self-Training Methods

Self-training [27] can be seen as a particular case of semi-
supervised learning [28], where a machine learning model is
trained using a reference dataset composed of a small set of
labeled samples and a big amount of unlabeled ones. More pre-
cisely, in the self-training setting, a model is trained iteratively by
assigning pseudolabels to the set of unlabeled training samples
and, successively, enriching the current labeled training set with
pseudolabeled samples on which the model exhibited a high
confidence. Cotraining [29] is one of the earliest and widely
popular techniques that have been proposed in the context of
self-training learning. In cotraining, examples are defined by two
views that are decorrelated to each other. The goal of learning
is to train a classifier on each view by first initializing it with
the available labeled training data. Then, one of the classifiers
assigns pseudolabels to unlabeled data, which the other one
will use to learn. Following training, the classifiers switch roles,
with the learned classifier assigning pseudolabels to unlabeled
examples, which will then be used to train the first classifier. This
procedure continues until there are no more unlabeled instances
to be pseudolabeled. Tritraining [30] is a direct extension of the
cotraining approach in which three classifiers from the original
labeled set are generated. These classifiers are then refined
using unlabeled examples in a tritraining process. In detail, in
each round of tritraining, an unlabeled example is labeled for a
classifier if the other two classifiers agree on the pseudolabels.
Another popular self-training techniques is mean teacher [31].
This method employs two NNs as supervised classifiers, one of
the models is named teacher, while the other is called student.
These two models are structurally identical, and their weights are
related in which the teacher’s weights are an exponential moving
average of the student’ weights. In this scenario, the student
model is the only one that is trained over the labeled training
set and a consistency loss is computed between the teacher’s
probability distribution prediction and the student’s one.

Banerjee et al. [32] proposed a clustering-based approach
to perform LULC mapping from multispectral satellite image
data in an unsupervised fashion. More in detail, first, pixels
are clustered together, then a clustering label procedure is em-
ployed to obtain initial labeled samples, and finally the machine
learning classifier is iteratively trained via self-training. More
recently, Wu et al. [33] propose to cope with hyperspectral
image classification under the lens of self-training. The authors
exploit self-training to alleviate issues related to tedious and
time-consuming process of data annotation. In addition to only
use classifier confidence to select pseudolabels, the proposed
approach leverages spatial consistency (in terms of spatial neigh-
borhood) to correct possible mistakes in the training enrichment
step. Paris et al. [34] introduce a framework that combines
self-training (referred as self-pace learning) and active learning
in order to iteratively enrich an initially small labeled training
set with informative samples for LULC classification of SITS

data via support vector machines on the google Earth engine
platform.

Self-training methodologies are receiving more and more
attention due to their ability to train machine learning models in
a data paucity scenario. While many frameworks have already
been proposed for image or scene classification [35], only few
research studies have leveraged self-training for time-series
analysis [36] or SITS-based land-cover mapping [34]. Further-
more, all the research studies associated to time-series analysis
work in a classical context where no domain shift exists between
the training and target data.

C. Unsupervised Domain Adaptation

UDA [12] methods belong to the family of transfer learning
approaches [37], which has the main objective to transfer a
model trained on a labeled source domain to an unlabeled target
domain. Recent advances in UDA focus their efforts to extract
domain-invariant features by either aligning domains through
data transformation or perform adversarial training with the aim
to reduce the distribution gap between the source and target do-
main [12]. Regarding the first category of methods, the one that
aligns domains through data transformation, Zhuang et al. [38]
proposed a geodesic flow kernel (GFK) based strategy to align
source and target data distributions. The method allows to project
both source and target data into a shared, low-dimensional space
in which the distribution shift between the two domains should
be reduced. Since GFK only provides the low-dimensional data
projection, a standard supervised model needs to be successively
trained to perform the final classification on the target data.
Concerning domain-invariant approaches based on adversarial
training, Tzeng et al. [39] define the adversarial discriminative
domain adaptation (ADDA) method. Inspired by the concept of
generative adversarial network, this approach set up a two-player
learning game where a discriminator network tries to distinguish
between source and target sample representations derived by
the generator while the generator tries to fool the discriminator
network. Currently, adversarial learning is one of the main trends
when it comes to UDA.

Still based on the adversarial training principle, Ganin
et al. [40] introduce the domain-adversarial neural network
(DANN) model where a standard NN model is augmented with a
domain classifier that may distinguish between source and target
samples in a multitask learning setting. The domain classifier is
associated with a gradient reversal layer (GRL) that enforces
the features extracted by the encoder to be invariant w.r.t. the
domains. The CDAN+E approaches [41] extend the DANN
framework conditioning the discriminator on the prediction of
the classification network for source and target data and it
introduces an entropy regularization to prioritize the transfer
of easy-to-transfer samples. This should, in theory, focus the
source–target matching of instances belonging to the same class.
The GRL principle introduced in the DANN framework is also
the core of more recent UDA approaches as the margin disparity
discrepancy (MDD) [42] and the adversarial-learned loss for
domain adaptation ALDA [43] frameworks.
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Concerning the remote sensing field, early research focused
on proposing UDA strategies for high spatial resolution im-
ages [44], while only recently some strategies are emerging in the
context of SITS [11]. More generally, in this context, distribution
shifts between training (source) and test (target) data can be
induced by different factors, and among others, differences in
sensor acquisitions and environmental conditions are the most
recurrent ones. However, such differences can be related to either
the geographical shift from a study site to another one [45] or the
temporal delay among acquisitions for data covering the same
area in two different periods [10].

Regarding differences in sensor acquisitions, Wang et al. [46]
propose a cross-sensor UDA framework to cope with spatial
and spectral distribution shifts between airbone and spaceborne
very high spatial resolution (VHR) imagery with a specific focus
on urban LCM. The domain adaptation process leverages a
self-training approach to transfer a classification model from the
source to the target domain. Concerning differences in environ-
mental condition, Chen et al. [45] propose an adversarial-based
strategy to adapt a semantic segmentation model to be trans-
ferred from a spatial location to a different one. The method
is conceived, also in this case, to cope with monodate VHR
imagery mainly considering urban land-cover mapping.

Related to SITS-based land-cover mapping, very few do-
main adaptation frameworks exist. Focusing on spatial transfer,
Wang et al. [47] propose a framework based on recurrent NN
and maximum mean discrepancy (MMD) principle in order
to embed both source and target SITS pixels in a common
shared space. This is achieved by using an encoder per source
and the MMD strategy to align the two domains. In [48], the
combination of a transformer encoder-based classifier and the
DANN strategy with GRL is evaluated to cope with spatial
transfer learning in the context of land-cover mapping from SITS
data. More recently, Nyborg et al. [11] propose a framework
to cope with agricultural parcel mapping under the objective to
achieve spatial transferability. The approach combines together a
module to align time-series information based on the estimation
of time shift between SITS coming from the source and the
target domain and a self-training strategy in order to adapt the
model to samples coming from the target domain. For the case of
temporal transferability, Tardy et al. [10] perform preliminaries
investigation via optimal transport baselines for the case of
tUDA from multiple source domain (multiple annual SITS) to
a specific target domain (annual SITS). The obtained findings
reveal that the use of optimal transport baselines results in a
low-level accuracy with respect to the use of a direct transfer
of a supervised classifier from the source to the target domain,
thus underlying that the problem of temporal transfer is quite
complex and the advanced methods are needed.

The extensive literature review we have performed clearly
underlines that recent UDA approaches, especially the ones
based on deep learning strategies, are still unexplored and un-
derexploited in the context of UDA for SITS analysis. More in
detail, a major lack is related to frameworks and methodologies
addressing the important challenge related to tUDA on which
we set the focus of this work.

III. SPADANN

In this section, we introduce our proposed framework
SpADANNwith self-training to deal with tUDA for SITS-based
land-cover mapping. We first provide the problem setting, then
we give an overview of SpADANN. Successively, we supply the
details of the different components on which SpADANN is built
on.

A. Problem Setting

In this work, we consider the problem of tUDA. We are
giving a source domainDs = {(xs

i , y
s
i )}n

s

i=1 and a target domain
Dt = {xt

i}n
t

i=1 with ns and nt the number of samples for the
source and target domain, respectively. We indicate with Xs,
Y s, and Xt the set of source samples, source labels, and target
samples, respectively, Ds = {Xs, Y s} and Dt = {Xt}. Each
sample xi ∈ R

T×B is a SITS pixel defined over T times-
tamps and characterized by B spectral bands. The land-cover
information (ysi ) is only available for the source domain and
ysi ∈ {1, . . . ,K} can take one value between 1 and K, with
K the number of land-cover classes on which the multiclass
classification problem is defined.

The set of SITS pixels belonging to the two domains covers
exactly the same spatial area but at different periods of time (i.e.,
different years). This means that the same spatial location is
covered by a SITS pixel coming from the source domain as well
as one coming from the target domain. Thus, ns is equal to nt

and location(xs
i ) is equal to location(xt

i), where location(·) is a
function providing the spatial location of a SITS pixel in terms of
geographical coordinates. Due to differences in environmental,
weather, or climate acquisition conditions between the pixel
SITS belonging to the source (Ds) and the target (Dt) domain,
distribution shifts can affect the two sets of data, thus impacting
the performances of standard inductive supervised classification
approaches [10], [11], [12].

Here, the goal is to train a robust (in terms of data distribution
shifts) SITS-based land-cover mapping model that exploits both
source (Ds) and target (Dt) domain information with the aim to
predict, for a given pixel xt

i belonging to the target domain (Dt)
the corresponding land-cover class yti . We remind that the set of
land-cover classes of the target domain spans exactly the same
set of land-cover classes of the source domain, as in a general
closed-set scenario [49].

B. SpADANN Overview

Hereafter, we provide a general overview of our framework,
with the aim to supply a picture of how SpADANN behaves as
well as describe the general principles behind it. Fig. 1 visually
sketches the SpADANN framework.

SpADANN combines both adversarial learning and self-
training with the aim to learn an invariant representation space
(features) with respect to possible distribution shifts between
source and target domains (in our case pixel, SITS coming
from two time periods—years—covering exactly the same
geographical area) and progressively transfer the underlying
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Fig. 1. Graphical overview of SpADANN. Our framework takes as input source (Ds) SITS and GT data and target (Ds) SITS data with the aim to train a
classification model to predict land-cover labels for target SITS data. During the iterative training process (self-training loop), it combines both adversarial learning
and pseudolabeling with the aim to progressively adapt the underlying classification model from the source to the target SITS data to cope with the tUDA problem.

classification model from the source to the target domain via
self-training/pseudolabeling on the target domain.

While the adversarial learning strategy is based on the model
proposed in [40] that we adapt for the special case of time-series
data, the pseudo-labeling procedure deeply exploits the features
characterizing the tUDA problem. The pseudolabel selection is
based on the fact that the source and the target domains are
spatially aligned (i.e., they cover exactly the same geographical
area). More precisely, given two spatially aligned pixels SITS
(location(xs

i ) = location(xt
i)), where the (xs

i ) comes from the
source domain and the (xt

i) comes from the target domain, if the
land-cover classifier provides the same decision for both pixels
(Cl(xs

i |ΘF ,ΘL) = Cl(xt
i|ΘF ,ΘL)) with Cl(·), the prediction

of the land-cover classifier L and the predicted class for the
source pixel SITS (xs

i ) is the correct one, then the target pixel
SITS (xt

i) is associated with the pseudolabel generated by the
land-cover classifier. Finally, as the iterative training procedure
goes on, pseudolabel information gets more importance with the
aim to progressively transfer the underlying classification model
from the source to the target data.

C. Adversarial Learning

With the aim to extract SITS pixel representations that are
invariant to the particular domain they come from (source or
target), we adapt the strategy proposed in [40], namely DANN

as backbone block in the SpADANN framework. Fig. 2 depicts
the architecture of the proposed backbone network.

The network architecture has three components, an encoder
network F relying on the ΘF parameters, a land-cover classifier
network L with parameters ΘL, and a domain classifier network
D with parameters ΘD. Due to the fact that we are dealing with
SITS pixels, we adopt an encoder model especially tailored
for such kind of data, namely the TempCNN model [3], due
to its confirmed ability to cope with the task of SITS-based
land-cover mapping in a standard in-domain setting through 1-D
convolution on the time dimension.

The SpADANN backbone is a multioutput network that has the
objective to generate a new data representation via the encoder
F ensuring high land-cover classification accuracy and, simul-
taneously, making difficult to distinguish between the domain
each SITS pixel comes from.

The DANN loss function is defined as follows:

LDANN(X
s, Y s, Xt|ΘF ,ΘL,ΘD) = Lc(X

s, Y s|ΘF ,ΘL)

−λLAdv(X
s, Xt|ΘF ,ΘD)

(1)

where Lc(X
s, Y s|ΘF ,ΘL) is the loss associated to the land-

cover classification problem modeled with standard categorical
cross-entropy function [40], whileLAdv(X

s, Xt|ΘF ,ΘD) is the
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Fig. 2. Internal classification architecture of SpADANN. It is based on the DANN adversarial learning strategy [40] coupled with the TempCNN [3] encoder
to customize the architecture for the special case of SITS data. The model has three components, an encoder network F (the TempcNN model), a land-cover
classifier network L, and a domain classifier D. The multitask network has the objective to generate a new data representation via the encoder F that has high
land-cover classification accuracy (maximizing the L performances) and, simultaneously, make difficult to distinguish between the domains the SITS pixels come
from (confusing the D component).

loss related to the domain classifier modeling a binary classifi-
cation problem in which class label represents the possibility to
belong exclusively to the source or the target domain. Also in
this case, the categorical cross-entropy function is employed.
Finally, the hyperparameter λ controls the influence of the
domain classifier loss on the learnt features.

In order to leverage standard stochastic gradient descent to
optimize theLDANN loss function, theLc(·|·) loss is optimized as
commonly done for general NN models, while for the LAdv(·|·)
loss, we employ the GRL trick [40]. More in detail, the GRL
acts as the identity transform during the forward propagation
pass, while it reverses the gradient (the gradient is multiplied by
-1) during the backward propagation pass when the gradient is
exploited for the update of the encoder F weights. In this way, the
GRL trick allows to implement the adversarial training strategy
with a standard backpropagation of the gradients without adding
any extra parameters to the model. More precisely, the domain
classifier parameters are updated in a standard way with the
aim to support the model to distinguish between source and
target samples, while the reversed gradient applied to the encoder
network forces the model to generate domain-invariant features
with the goal to fool the domain classifier [48].

Fig. 2 visually highlights the difference between forward
propagation (solid line) and backward propagation (dashed line)
passes in the NN backbone model of the SpADANN framework.

D. Spatial Consistent Pseudolabeling

In order to further adapt the SITS classification model, as
presented in Section III-C, to effectively classify pixels coming

from the target domain, we leverage a self-training strategy that
allows to associate pseudolabels to a subset of data coming from
Dt. This is done with the aim to inject, in the training process,
pseudo-supervision on the target domain permitting to the land-
cover classifier subnetwork L to tackle the classification of SITS
pixels coming from Dt.

In a standard self-training pipeline [50], given a set of un-
labeled samples, the model output distribution is employed to
select a subset on which the model has high confidence. Succes-
sively, such pseudolabeled samples are used to enrich the current
training set as the training process proceeds. More precisely,
this mechanism is implemented by defining a threshold on the
model output softmax and, subsequently, choose all the samples
on which the value of the most probable prediction is greater
than the defined threshold. This widely adopted process suffers
from the fact that a threshold needs to be defined and the way this
hyperparameter is set can drastically affects the performance of
the underlying sampling process [51].

In our case, we leverage the specificity of the land-cover
mapping tUDA problem conceiving a process based on the
spatial consistency between the two SITS pixels xs

i and xt
i

sharing the same spatial location (location(xt
i) = location(xs

i )).
Such a strategy provides a solution to the pseudolabeling
selection process that avoids the definition of any kind of
threshold, thus reducing possible hyperparameter tuning as-
sociated to our framework. More precisely, the set of target
pixels to which pseudolabels will be associated is chosen based
on two criteria that need to be met simultaneously. The first
criteria is based on spatial consistency as described below:
Cl(xs

i |ΘF ,ΘL) = Cl(xt
i|ΘF ,ΘL) (given that location(xt

i) =
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location(xs
i )) and the second criteria requires that the land-cover

classifier L supplies the correct prediction for the source sample
(Cl(xs

i |ΘF ,ΘL) = ysi ). The idea behind this selection process
is to choose target samples that remain stable, in terms of model
output prediction, w.r.t. the corresponding source pixel in terms
of spatial location, and simultaneously, we enforce the fact that
the model predicts the correct land-cover class on the source
sample xs

i . In this way, the procedure allows to select pseudola-
beled samples that act as anchor points between the source and
the target domains exploiting the model output stability and, at
the same time, leveraging target samples that are in principle
characterized by a small distribution gap, thus more effective to
support the classification model transfer from the source to the
target domain.

More formally, we can define the loss associated to the pseu-
dolabeled samples as follows:

Lp(X
s, Xt, Y s, Ŷ t|ΘF ,ΘL)

=
∑

xt
i∈Xt

1{Cl(xs
i )=Cl(xt

i) and Cl(xs
i )=ys

i )}H(ŷti , Clprob(x
t
i))

(2)

where 1cond is an indicator function that returns 1 if the condition
cond is verified and 0 otherwise, Clprob(·) provides the model
output distribution over the possible land-cover set, H(·, ·) is
the classical categorical cross-entropy function, Ŷ t is the whole
set of possible pseudolabel for the target domain, and ŷti is
the pseudolabel land-cover class with the highest model output
probability w.r.t. Clprob(x

t
i) for the pixel xt

i coming from the
target domain.

E. SpADANN Training Procedure

In this section, we introduce the general training procedure
used to optimize the parameters of the SpADANN framework.
Algorithm 1 briefly summarizes the pseudocode of the training
procedure. The inputs of the procedure are constituted by the
data coming from the source (Ds = (Xs, Y s)) and the target
(Dt = (Xt)) domains, the hyperparameter β associated to the
progressive transfer strategy and Ne, the number of epochs
associated to the learning procedure.

First, the current classification model is applied to the target
data Xt in order to obtain the set of possible pseudolabels Ŷ t

(line 3). Then, we compute the tradeoff value α as a linear
function of the current epoch (e), the total number of epochs
(Ne), and the input hyperparameter β (line 4). The α value is
subsequently employed to weight the contribution of the LDANN

and the Lp losses in a convex combination of the two terms with
the aim to vary their importance during the learning procedure
(line 5). More in detail, at the beginning of the procedure, the α
value starts from zero and linearly increases with the objective
to, progressively, give more importance to the Lp term.

This is done since at the early iterations of the procedure, we
want that the model exploits as much information as possible
from the labeled source domain while learning SITS pixels’
representations that are invariant w.r.t. the specific domain. The
reason is that, at the first iterations, the trained model is not yet

Algorithm 1: SpADANN Training Procedure.
Require: Xs (the source SITS pixels), Y s (the source
labels), Xt (the target SITS pixels), β (the progressive
transfer hyperparameter), Ne (the number of epochs).
Ensure: ΘF (param. of the encoder), ΘL (param. of the
land-cover classifier).
1: e = 0
2: while e < Ne do
3: Ŷ t = Clprob(X

t)
4: α = β × e

Ne

5: LTOT = (1-α) × LDANN(X
s, Xt, Y s|ΘF ,ΘL,ΘD) +

α × Lp(X
s, Xt, Y s, Ŷ t|ΘF ,ΘL)

6: ∇ΘF ,ΘL,ΘD
LTOT with minibatch SGD

7: e = e + 1
8: end while
9: return ΘF , ΘL

effective so that the prediction on the target data could be highly
biased. As the learning procedure goes on, theα value increases,
hence decreasing the importance of the first term, while increas-
ing the weight of the second one Lp(X

s, Xt, Y s, Ŷ t|ΘF ,ΘL).
This mechanism implements a kind of progressive transfer from
the first to the second term during the learning procedure,
allowing the underlying classification model to smoothly focus
on the specificity of the target SITS pixels via the use of the
pseudolabels selected as described in Section III-D. The hyper-
parameter β controls the range of the α tradeoff value with the
aim to avoid the latter to get extreme values that can completely
move the learning process toward the target domain, resulting in
a degeneration of the behavior of SpADANN. For this reason,β is
supposed to range between 0.5 and 1. After that, the current loss
LTOT is computed, the network weights ΘF , ΘL, and ΘD are
updated by minibatch stochastic gradient descent (line 6). At the
end of the training procedure (line 9), the network weights ΘF

and ΘL associated to the encoder F and the land-cover classifier
L are returned as output of the training process associated to our
framework. This set of parameters represents the classification
model that will be finally employed to provide the land-cover
mapping predictions on the SITS pixels coming from the target
domain.

IV. DATA

The study site covers an area around the town of Koumbia,
in the Province of Tuy, Hauts-Bassins region, in the south-west
of Burkina Faso. This area has a surface of about 2 338 km2

and is situated in the subhumid sudanian zone. The surface is
covered mainly by natural savannah (herbaceous and shrubby)
and forests, interleaved with a large portion of land (around 35%)
used for rainfed agricultural production (mostly smallholder
farming). The main crops are cereals (maize, sorghum, and mil-
let) and cotton, followed by oleaginous and leguminous. Several
temporary watercourses constitute the hydrographic network
around the city of Koumbia.

Fig. 3 presents the study site with the 2018 reference data (GT)
superposed on a Sentinel-2 image of September 12, 2018. A
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Fig. 3. View and location of Koumbia study site. The GT data coming from the 2018 year is superposed to a Sentinel-2 image covering the whole area. In the
red box (bottom right), a more detailed view of the study site is depicted.

Fig. 4. Acquisition dates of Sentinel-2 SITS.

more detailed view corresponding to the red box in the overview
is also depicted on the bottom right of the figure. A specific
analysis of the GT is provided in Section IV-B.

A. Satellite Image Time Series

We collected SITS of Sentinel-2 imagery spanning the years
2018, 2020, and 2021, amounting for a total of, respectively, 35,
41, and 39 available scenes. Based on the available acquisitions,
we conducted a visual analysis and we select 24 images for
each year. Acquisitions are selected in order to account for a
uniform temporal distribution among the three years. The main
selection criteria used were filtering out images that were visu-
ally impacted by cloud coverage and keep a sufficient amount of
acquisitions over the rainy (cropping) season, occurring between
May and October. Fig. 4 depicts the acquisition dates of the three
Sentinel-2 SITS.

All images were provided by the THEIA Pole platform1 at
level-2 A, which consist in atmospherically corrected surface

1[Online]. Available:http://theia.cnes.fr

reflectances (cf. MAJA processing chain [52]) and relative
cloud/shadow masks. Only 10-m spatial resolution bands (Blue,
Green, Red, and Near-infrared spectrum) were considered in
this analysis in order to limit the computational burden related
to the experimental assessment. A standard preprocessing was
performed over each band to replace cloudy pixel values as
detected by the available cloud masks based on the method
proposed in [53]. In this preprocessing, the value of a cloudy
pixel (w.r.t cloud/shadow mask and a threshold of 0) is linearly
interpolated considering precedent and posterior acquisitions.

B. GT Data

GT data for 2018, 2020, and 2021 have been derived from
a large agricultural land-cover dataset available online [54],
mainly consisting of field data collected by local experts on
several sites all over the tropics. For the Koumbia site, these
field surveys were conducted yearly around the growing peak
of the cropping season from 2013 to 2021. GPS waypoints
were gathered following an opportunistic sampling approach

http://theia.cnes.fr
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TABLE I
GT STATISTICS FOR YEARS 2018, 2020, AND 2021

along the roads or tracks according to their accessibility while
ensuring the best representativity of the existing cropping prac-
tices in place. Records were also provided on different types of
noncrop classes (e.g., natural vegetation, settlement areas, and
water bodies) to allow differentiating crop and noncrop classes.
Moreover, some additional noncrop reference polygons are also
provided, obtained by photointerpretation of VHR (SPOT 6/7
and PLEIADES) optical satellite images.

Our final GT has been assembled in a geographic information
system vector file, containing a collection of polygons, each
attributed with a land-cover category based on information
reported in the original database. Statistics about the yearly
reference datasets used here are reported in Table I. In order
to ensure consistency with the proposed method, we kept the
exact same surface for the three reference years by perform-
ing a year-by-year intersection of the polygons of the original
database.

This also allows measuring the changes occurring in the GT
from one year to another, which are obviously more important
on crop classes due to the presence of cropping cycles in this
type of agricultural system. It is important to note that, for
year 2018, the surface of cotton crop is about two times that
of oleaginous/leguminous when this ratio is balanced for years
2020 and 2021.

Fig. 5 quantifies these changes in terms of land-cover classes
between each couple of reference years. They indeed highlight
the presence of cereals, cotton, and oleaginous/leguminous
crops on the same agricultural parcels over the years. Conversely,
bare soil/built-up and water classes remain unchanged, and few
changes occur on noncrop classes, mainly due to the occasional

TABLE II
AVERAGE PERCENTAGE OF LABELED PIXELS ASSOCIATED FOR YEARS 2018,

2020, AND 2021 COVERED BY CLOUDS

shifts in the density of natural vegetation or conversion to active
cropland (e.g., 16% of grassland in 2018 became shrubland—
10%—or was converted to cereal crops—6%).

Fig. 6 shows the normalized difference vegetation index
(NDVI) profiles over 2018, 2020, and 2021 for the three agricul-
tural classes: cereals, cotton, and oleaginous/leguminous. We
can observe that the profiles over the years are similar. In the
case of cereals and cotton classes, 2018 profile presents its value
peak about ten days earlier than for 2020 and 2021.

Finally, Table II reports the average (and standard deviation)
percentage associated to how many times a labeled pixel is
covered by clouds in the whole time series as well as con-
sidering the portion of the time series covering the growing
and harvesting stages (between days 150 and 300). This latter
period is of particular interest in order to distinguish between
the crops’ classes. Inspecting Table II, we can see that the 2018
SITS data exhibit the highest percentage of cloudiness when
statistics are computed considering the whole time series of 24
dates. Although when only the period covering both growing
and harvesting stages is considered, we can clearly observe
that both 2018 and 2021 SITS data are more affected by cloud
coverage than the SITS data from 2020. The cloudiness diversity
is probably due to the differences in the environmental and
climatic conditions that have affected the study areas in three
considered periods. More precisely, the three considered years
are affected by nonhomogeneous weather conditions that result
in a heterogeneous level of noncloudiness per time series.

These preliminaries analysis clearly indicates the presence
of interannual differences in environmental, weather, or climate
conditions that can challenge the “naive” transfer of supervised
machine learning models from one year to another one.

V. EXPERIMENTS

In this section, we describe and discuss the experimental
results obtained on the study site introduced in Section IV.
We carried out several experiments with the aim to provide an
extensive analysis of the performance of SpADANN. We inves-
tigate different aspects: we perform an in-depth analysis of the
performance of SpADANN with respect to competing methods;
and we provide a qualitative evaluation through the visualization
of the internal representation learnt by our framework and the
exploration of the LCMs.

A. Competing Methods

With the aim to compare the performance of SpADANN
to state-of-the-art UDA strategies, we consider the following
competitors.
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Fig. 5. GT class transition between each pair of considered years. (a) From 2018 (rows) to 2020 (columns). (b) From 2018 (rows) to 2021 (columns). (c) From
2020 (rows) to 2021 (columns).

Fig. 6. NDVI profiles for a representative parcel of (a) cereal, (b) cotton, and (c) oleaginous and leguminous land-cover classes over the years 2018, 2020, and
2021.
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1) The GFK approach introduced in [38]: This approach
leverages a kernel-based method that projects both source
and target information in a low-dimensional manifold.
Since GFK only provides the low-dimensional data pro-
jection, a standard supervised model needs to be succes-
sively trained to perform the final classification on target
data. To this end, we couple the GFK with a multilayer per-
ceptron as well as a RF classifier. We indicate the former
approach with GFK-MLP and the latter with GFK-RF.

2) The ADDA method proposed in [39]: This approach
employs adversarial learning with a two players game
(discriminator and generator) in order to learn invariant
representations w.r.t. the domain. Due to the fact that
we are dealing with multivariate time-series analysis, we
use as backbone the TempCNN network [3] that was
especially designed to perform land-cover mapping from
SITS data.

3) The DANN method originally introduced in [40]: This
is a standard UDA approach that exploits GRL in order
to obtain data representations that are invariant to the
particular domain they come from. Also, in this case,
we use as backbone model the TempCNN network. This
competitor can indeed be considered as an ablation of our
proposed framework.

4) The conditional adversarial domain adaptation with en-
tropy conditioning (CDAN+E) approach proposed in [41]
upgrades DANN by conditioning the domain discrimina-
tor on the classification output and minimizing an entropy
loss on target data. We use as backbone the TempCNN
network.

5) The MDD method introduced in [42]: This theory-inspired
technique is designed to measure the distribution discrep-
ancy in domain adaptation and it is built on top of the
DANN approach. We use as backbone the TempCNN
network.

6) The FixMatch method proposed in [35]: This competitor is
a state-of-the-art semi-supervised learning approach that
exploits consistency regularization between a weak and a
strong augmentation of the unlabeled data. We include
this competitor in order to further highlight the need
for domain adaptation in the temporal transfer task. To
adapt FixMatch to time-series data, we follow what is
proposed in [11] where identity function (resp. random
time steps selection) corresponds to weak (resp. strong)
data augmentation. We use as backbone the TempCNN
network.

7) The adversarial-learned loss for domain adaptation
(ALDA) method presented in [43]: ALDA combines self-
training and domain-adversarial learning to reduce the gap
and align the feature distributions by means of a noise-
correcting domain discriminator. We use as backbone the
TempCNN network.

Moreover, we also consider three baseline strategies in which
a supervised classification model is trained with only source data
and directly deployed on target data, referred as “only Ds”; a
supervised classification model is trained on labeled target data
and deployed on the rest of the target examples referred as “only

Dt”; and a supervised classification model is trained on the union
of the source data and a portion of the target data and deployed
on the rest of the target examples referred as “Ds +Dt.” The
first constitutes a straightforward baseline that does not take into
account the necessity to deal with temporal distribution shifts.
The second represents the performances we can (theoretically)
achieve if we have knowledge about the labels associated to the
target domain Dt. The third provides a baseline that directly
combines all the source domain data with some labeled samples
from the target domain in order to assess the possibility to
combine data from different domains.

For all the baseline strategies, we consider, as supervised
classification methods, both the RF and the TempCNN [3]
models. These two models are chosen due to the fact that they
are standard and widely adopted methodologies for land-cover
mapping from SITS data. More in detail, the former has an es-
tablished popularity in the remote sensing community due to the
accuracy of its classifications [55], while the latter approach is
representative of the recent deep learning methods that explicitly
manage the temporal dimension that heavily characterizes SITS
data [56].

B. Experimental Settings

1) Evaluation of Baseline Strategies: Concerning the first
baseline strategy (only Ds), the supervised classification model
is trained over all the source data and then deployed on the target
data. Regarding the second baseline strategy (only Dt), solely
the target data are exploited. More in detail, target data are split
into three parts: training, validation, and test sets following a
proportion of 70%, 10%, and 20% of the original target dataset,
respectively. Furthermore, with the aim to avoid possible spatial
bias in the evaluation procedure [57], we impose that all the
pixels belonging to the same object will be exclusively associ-
ated to one of the data partition (training, validation, or test).
The splitting procedure is repeated ten times and the average
results are reported. To what concern the third baseline strategy
(Ds +Dt), the complete set of data from the source domain is
combined with 80% of the target data. The amount of target
samples corresponds to the union of training and validation
set for the baseline strategy (only Dt). Successively, the learnt
classifier is deployed on the rest of the target data. The procedure
is repeated ten times (fixing the source data and varying the
selected labeled target data) and the average results are reported.

2) Evaluation of UDA Competing Methods: All the UDA
models are trained exploiting the whole set of source and target
samples with the sole access to label information coming from
the source domain.

Concerning the evaluation tasks, according to the data pre-
sented in Section IV, we set up three temporal transfer tasks
(Ds →Dt) where the right arrow indicates the transfer direction
from the source (Ds) to the target (Dt) domain: (2018 → 2020),
(2018 → 2021), and (2020 → 2021).

To evaluate the different methodologies, once the models
are trained, we consider two different scenarios referring to
three different tasks. Regarding the evaluation scenarios, we
distinguish between the following.
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1) We use the same test set as the one employed for the second
baseline strategies (only Dt). Following this evaluation,
we compare all the approaches to each other. We name
such context Subset Dt.

2) We use the whole target data Dt as test set (this is possible
for all the baseline and UDA methods except for the second
baseline strategy). We name such a context Full Dt.

The values of the three SITS benchmarks (2018, 2020, and
2021) were normalized per band in the interval [0,1], with
min–max method. The assessment of the model performances
was done considering the following metrics: accuracy (global
precision), weighted F1-score, and Cohen’s Kappa (level of
agreement between two raters relative to chance).

3) Implementation Details: For the NN approaches, the
training stage has been conducted for 300 epochs, with a learning
rate of 10−4 and a batch size of 32. Batch normalization layers
have been inserted after each fully connected or convolutional
layer (except for the classification layer). The drop out value
is set to 50%. For SpADANN, we set the value of β equal
to 0.8 and the value of the hyperparameter λ as suggested
by Ganin et al. [40]. In addition, similar to the article presented
in [11], SpADANN implements domain-specific batch normal-
ization [58] by processing the source and target minibatches
separately. This ensures that batch normalization [59] statistics
are computed separately for each domain.

Considering RF classifiers, we optimize the model via the tun-
ing of one parameter: the number of trees in the forest. We vary
this parameter in the range {100, 200, 300, 400, 500}. The mul-
tilayer perceptron classifier coupled with the GFK approach has
two fully connected layers both with ReLU activation function,
each one with 512 neurons and followed by batch normalization
and drop out layers. A final output layer, with softmax activation
function, is employed to perform classification.

Regarding ALDA and according to the recent literature on
pseudolabeling in the context of SITS-based land-cover map-
ping [11], we set the threshold of pseudolabels to 0.9. The same
value of pseudolabels threshold is also used for FixMatch. For
this latter method, we set the relative weight of the unlabeled
loss (λu) to 2, the strong data augmentation is implemented
by means of the Python TSAUG library2 via the “dropout”
function with parameters p = 0.05 (probability to drop
timestamps).

Experiments are carried out on a workstation with a dual Intel
(R) Xeon (R) CPU E5-2667v4 (@3.20 GHz) with 256 GB
of RAM and four TITAN X (Pascal) GPU. All the deep
learning methods are implemented using the Python Tensor-
Flow library except ALDA that was implemented in Pytorch
based on the original open-source implementation.3 The MDD
and CDAN+E competitors are implemented via the Python
ADAPT library [60]. All the models run on a single GPU.
The RF is implemented using the Python Scikit-learn library.
The code implementation of SpADANN is available at this
link.4

2[Online]. Available:https://tsaug.readthedocs.io/en/stable/
3[Online]. Available:https://github.com/ZJULearning/ALDA
4[Online]. Available:https://github.com/ecapliez/SpADANN

C. Quantitative Analysis

The results, in terms of F1-score, Accuracy, and Kappa, are
reported in Tables III, IV, and V for the (2018 → 2020), (2018
→ 2021), and (2020 → 2021) transfer tasks, respectively.

First, we can notice that, whatever the transfer task is, a direct
application of a model learnt on the source domain to data
coming from the target domain results in poor performances
as expected. This is evident when we compare, for each ta-
ble, the metric values achieved by the Only Ds and Only Dt

strategies. We can also observe that supervised learning models
trained under Only Dt and Ds +Dt strategies achieve very
similar performances, thus providing empirical evidences that,
when the training set contains samples coming from different
distributions, increasing the amount of training data does not
result in an increasing of classification performances. All these
points clearly indicate that a serious distribution shift exists
between two years of SITS data on the considered study site.
The highest gap is shown by the task (2018 → 2021) where
the best supervised machine learning method (RF) degrades its
performances of around 18 points of F1-score.

Second, we can see that, generally, UDA strategies allow to
reduce the performances gap induced by the distribution shifts
between the source (Ds) and the target (Dt) domains. While this
improvement is evident for the deep learning based techniques,
it is not so explicit for the GFK approach. This is probably due
to the fact that the GFK approach aligns domains independently
from the underlying classification task, while all the other ap-
proaches perform an end-to-end process that optimizes together
the data distribution alignment and the classification process.

Third, we can observe than SpADANN always obtains the
best scores among the UDA methods. The gains compared with
DANN and CDAN+E, which are the two most competitive
approaches for all the transfer tasks, vary between 1.5 and 8.5
points of F1-score. Regarding the transfer task (2018 → 2020),
the gap induced by the data distribution shift is largely reduced,
especially in terms of accuracy and Kappa score.

Concerning the other two transfer tasks (2018 → 2021) and
(2020→ 2021), SpADANN outperforms the supervised classifier
approaches when they are trained on the target data (Dt). This
unexpected result is tightly related to several factors associated
to the SITS data covering the 2021 year that describes the
target domain (Dt) in both transfer tasks. More precisely, as
highlighted by the statistics reported in Table II, the cloud cover
associated to the 2021 SITS data (regarding the GT pixels)
is quite high and it affects periods of the year (growing and
harvesting stages) that are crucial for the monitoring of the
agricultural classes involved in the study site. Due to the gap
filling process, we have used to obtain complete time-series data,
and the standard supervised machine learning methods could be
biased by such synthetic information, thus leveraging the gap
filled information in order to derive their decision boundary.
Conversely, SpADANN is based on a domain alignment process,
implemented via adversarial learning, that forces the whole
pipeline to extract invariant features w.r.t. the two domains (Ds

and Dt). Such quest for invariant characteristics allows our
framework to focus on common information, hence reasonably

https://tsaug.readthedocs.io/en/stable/
https://github.com/ZJULearning/ALDA
https://github.com/ecapliez/SpADANN
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TABLE III
WEIGHTED F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE COMPETING APPROACHES FOR THE TRANSFER TASK (2018 → 2020)

TABLE IV
WEIGHTED F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE COMPETING APPROACHES FOR THE TRANSFER TASK (2018 → 2021)

TABLE V
WEIGHTED F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE COMPETING APPROACHES FOR THE TRANSFER TASK (2020 → 2021)
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Fig. 7. Per land-cover class F1-score considering different competing approaches considering the direct transfer strategy (only Ds), the model trained on the
target domain (only Dt) as well as SpADANN, and the best UDA competitor on the transfer task (2018 → 2020).

Fig. 8. Per land-cover class F1-score considering different competing approaches considering the direct transfer strategy (only Ds), the model trained on the
target domain (only Dt), as well as SpADANN and the best UDA competitor on the transfer task (2018 → 2021).

discarding specific per-year information that can be related to
local (in terms of domain) behaviors or artifacts.

Finally, we can observe that, in all transfer tasks, the per-
formances obtained on the Full Dt scenario are similar with
those obtained by evaluating the method on subsets of the target
domain Subset Dt. This fact pinpoints that the test subsets
extracted from the whole target domain are well representative
of the whole target distribution.

1) Per-Class Analysis: In this section, we report and discuss
per-class analysis regarding the competing methods on the three
transfer tasks we have considered. We first report per-class
F1-score and, successively, we examine the different confusion
matrices to understand possible interclass mistakes. For this
analysis, we focus our attention on the supervised methods (Only

Ds and Only Dt) as well as SpADANN and its direct ablation
DANN.

The per-class F1-score is depicted in Figs. 7, 8, and 9 for the
(2018 → 2020), (2018 → 2021), and (2020 → 2021) transfer
tasks, respectively.

We can clearly note that our framework achieves superior per-
formances on the majority of the land-cover classes (grassland,
shrubland, forest, bare soil/built-up, and water). Such land-
cover classes show a more stable pattern among the years,
hence exhibiting a smaller gap in terms of distribution shifts
to fill between source and target domain. Interestingly, on such
classes, SpADANN always achieves better performances than
a supervised machine learning model directly learnt on the
considered target domain.
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Fig. 9. Per land-cover class F1-score considering different competing approaches considering the direct transfer strategy (only Ds), the model trained on the
target domain (only Dt), as well as SpADANN and the best UDA competitor on the transfer task (2020 → 2021).

Concerning the remaining classes (cereals, cotton, and
oleaginous), a different pattern is exhibited. When the 2018 year
is considered as source domain (Ds), the transfer on the agricul-
tural classes has some issues to achieve performances on pair
with the supervised methods trained on the target domain with
the (2018 → 2021) task showing better transferability behavior,
using SpADANN, than the (2018 → 2020) one. Another inter-
esting point is related to the poor performances that all the UDA
methods exhibit for the oleaginous class. This is probably due to
the fact that between 2018 and the other two subsequently years,
the distribution of the GT data on such class drastically changes
(see Table I). More precisely, in 2018, the oleaginous class covers
an area of 350 000 m2, while in 2020 and 2021, this surface
doubles attaining a surface bigger than 730 000 m2. This indicate
that, in 2018, the oleaginous surfaces are under-represented
w.r.t. the other land-cover classes, thus producing a dataset
featured by high unbalancedness. Matter of facts, this shift in
such agricultural practice significantly affects the capacity of
all the models to generalize on the oleaginous land-cover class
when 2018 is considered as the source domain. In addition, due
to the pseudolabeling procedure associated to our framework,
if a class in the source domain is highly under-represented, the
same class in the target domain will inherit this feature, with
all the possible issues related to learning classification models
under imbalance scenarios.

Regarding the (2020 → 2021) transfer task, here SpADANN
effectively shows transfer capabilities also on the agricultural
classes. The same behavior can be observed for all the other
competing methods. These results can be explained, also in this
case, by the fact that all the land-cover classes are sufficiently
represented in the source domain with a more balanced represen-
tation, while class distributions in the source and target domain
are more similar to each other (see Table I).

Figs. 10, 11, and 12 depict confusion matrices for the (2018
→ 2020), (2018 → 2021), and (2020 → 2021) transfer tasks,
respectively.

TABLE VI
TIME PERFORMANCES OF THE DIFFERENT UDA METHODS REGARDING THE

TRANSFER TASK (2018 → 2020)

Globally, the confusion matrices confirm the trend observed in
the per-class F1-score analysis. All the methods have some trou-
bles in discriminating among the different agricultural classes.
As discussed before in Section V-C1, the UDA approaches
suffer from class imbalance related to transfer tasks, such as
(2018 → 2020) and (2018 → 2021). We can also note that
some other coherent confusions arise between grassland and
shrubland, and shrubland and forest land-cover classes. This is
expected since these three classes refer to three different degrees
of density of woody vegetation in natural areas, which vary in a
continuous way over the site, making a neat discrimination more
challenging.

Despite this fact, SpADANN provides a more visible diagonal
structure (the dark red blocks concentrated on the diagonal) than
the second best competing UDA method alleviating some of
the major confusions exhibited by the competing approaches.
Same goes for the (2020→2021) transfer task, where SpADANN
clearly outperforms the supervised approaches trained on the
target domain.

2) Running Time of the UDA Competing Methods: Table VI
summarizes the training time of the different UDA methods
involved in the experimental evaluation. Beyond the GFK+RF
strategy that requires only few minutes to learn its classification
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Fig. 10. Confusion matrices of the land-cover classification for the transfer task (2018 → 2020); True class (rows) and Predicted class (columns). (a) (ONLY
Ds) TempCNN. (b) (ONLY Ds) RF. (c) DANN. (d) SpADANN. (e) (ONLY Dt) TempCNN. (f) (ONLY Dt) RF.
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Fig. 11. Confusion matrices of the land-cover classification for the transfer task (2018 → 2021); True class (rows) and Predicted class (columns). (a) (ONLY
Ds) TempCNN. (b) (ONLY Ds) RF. (c) DANN. (d) SpADANN. (e) (ONLY Dt) TempCNN. (f) (ONLY Dt) RF.
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Fig. 12. Confusion matrices of the land-cover classification for the transfer task (2020 → 2021); True class (rows) and Predicted class (columns). (a) (ONLY
Ds) TempCNN. (b) (ONLY Ds) RF. (c) DANN. (d) SpADANN. (e) (ONLY Dt) TempCNN. (f) (ONLY Dt) RF.
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TABLE VII
F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE SPADANN ABLATIONS FOR

THE TRANSFER TASK (2018 → 2020)

model, all the other methods require between 2 and 15 h with
SpADANN demanding around 7.5 h in order to learn its internal
parameters. Due to the fact that, in our situation, an LULC
classification model demands to be trained once per season (or
year), and all the exhibited times remain more than reasonable
with respect to the constraints associated to the downstream task.

3) Ablation Analysis: In this section, we disentangle the
added value of the different components on which SpADANN
relies. Table VII summarizes the behavior of the different abla-
tions of SpADANN for the (2018 → 2020) task. In particular, we
make reference to three specific ablations of SpADANN.

1) SpADANNnoST , an ablation of the proposed method with-
out the self-training step in the overall training stage.
In this ablation for each source pixel in a batch, the
corresponding target pixel (in terms of spatial location)
is present in the same batch. In this way, the adversarial
learning stage is constrained to extract domain-invariant
features for spatially correspondent source and target pix-
els conversely to what is done during the training of the
DANN method where source and target pixels, in a batch,
are selected completely at random. Here, LTOT = LDANN.

2) SpADANNTh, an ablation of the proposed method where
the selection of pseudolabeled samples is achieved by the
traditional thresholding approach [61]. More precisely,
during the iterative process, samples from the target do-
main are associated to pseudolabel if the most confident
class predicted by the land-cover classifier has an associ-
ated confidence bigger than a specific threshold θ. We set
θ equal to 0.9 similarly to what is done for the ALDA and
FixMatch approaches.

3) SpADANNonlyC1, an ablation of the proposed method
that removes the pseudolabel condition requiring that the
predicted class is equal to the true class (Cl(xs

i ) = ysi ) for
the self-training stage. Here, the Lp loss is redefined as
follows:

Lp(X
s, Xt, Y s, Ŷ t|ΘF ,ΘL)

=
∑

xt
i∈Xt

1{Cl(xs
i )=Cl(xt

i)}H(ŷti , Clprob(x
t
i)). (3)

We can first note that SpADANN provides far better behaviors
than DANN. This latter can be seen as a baseline ablation of
our framework. Second, we can see that no real difference exists
between DANN and SpADANNnoST . This underlines that the
spatial alignment between source and target training batches,
alone, does not provide any added value. Moreover, we observe

Fig. 13. Influence of β hyperparameter on SpADANN performance, in terms
of accuracy, for the three transfer tasks (2018 → 2020), (2018 → 2021), and
(2020 → 2021).

that choosing pseudolabels based on a traditional thresholding
mechanism (SpADANNTh) or only based on the spatial con-
sistency of the model output classification (SpADANNonlyC1)
degrades the performances. This is probably due to the fact that
the condition (Cl(xs

i ) = ysi ), in conjunction with the condition
(Cl(xs

i ) = Cl(xt
i)), allows to filter out spurious information,

consequently providing more guarantees on the quality of the
pseudolabels selected (from the target domain) to enrich the
current training set. Finally, we observe that SpADANN always
outperforms all its ablations underlying that the interplay among
the different components on which it is built eventually provides
a robust strategy for the tUDA problem from SITS data.

4) Sensitivity to the β Hyperparameter: In this section, we
test the sensitivity of SpADANN to the value of the β hyper-
parameter. Fig. 13 summarizes the behavior of SpADANN, in
terms of accuracy, on the three transfer tasks when the value of
β varies between 0.5 and 1.0.

For the transfer tasks (2018 → 2021) and (2020 → 2021), we
can note that, generally, as the value of the β hyperparameter
increases, the performances of our framework increases as well.
The only exception is represented by the transfer task (2018 →
2021) in which a value ofβ equal to 1 (only consider pseudolabel
extracted from the target domain at the end of the training
process) degrades the final performances. This is probably due
to the fact that, as highlighted by the previous results, a serious
distribution shift exists between SITS data coming from 2018
and 2021 so that forcing the learning process to make a com-
plete transfer from the source to the target domain results in
a less appropriate classification model. Regarding the transfer
task (2018 → 2020), SpADANN exhibits a slightly fluctuating
behavior with a variation of less than a point around an accuracy
value of 76%.

As empirical rule, we can state that considering the values of
theβ hyperparameter between 0.7 and 0.9 is the most appropriate
choice since this setting can prevent the model to suddenly
degenerate due to a complete transition from a source to a target
domain characterized by very different data distributions.
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Fig. 14. Qualitative investigation of LCMs produced by the RF methods - (ONLY Dt) and (ONLY Ds), DANN, and SpADANN for the transfer task (2018 →
2020): zoom on the Koumbia city.(a) Sentinel-2 image acquired on September 21, 2020. b) (ONLY Dt) RF. (c) (ONLY Ds) RF. (d) DANN. (e) SpADANN.

D. Visual Analysis

In this part of the experimental evaluation, we conduct some
qualitative analysis to assess further the behavior of SpADANN
in the case of transfer task (2018→2020), other transfer tasks are
provided as Tables VIII and IX and are evaluated in Appendix A.

More precisely, we first investigate some extracts related to
the LCMs provided by SpADANN and some of the competing
approaches and, successively, we visually investigate the internal
representations learnt by the involved deep learning models.

1) LCMs: In Fig. 14(b)–(e), maps corresponding to the
2018–2020 transfer task are compared, referred to the scene
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Fig. 15. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2018 → 2020): zoom on Area n◦1. (a) Sentinel-2 image
acquired on September 21, 2020. (b) DANN. (c) SpADANN.

subset, as depicted in Fig. 14(a). Maps shown here are, respec-
tively, the one obtained using the RF classifier trained on the
target domainDt followed by the one obtained through a “naive”
transfer (direct transfer without UDA of the RF model trained
on source domain Ds), and the two maps obtained through the
DANN and SpADANN domain adaptation methods.

Accordingly to what is reported in the quantitative analysis of
Fig. 10, the visual analysis confirms that transferring knowledge
from 2018 to 2020 is a challenging task, probably due to longer
term changes in seasonal vegetation dynamics that appear after
a 2 year delay, as well as a redistribution of the proportions
among the different crop classes. The main difference concerns
the strong underestimation of the oleaginous/leguminous and
cotton classes in almost all maps using a transfer approach [see
Fig. 14(c)–(e)], to the benefit of the cereal class, with the direct
transfer method being particularly destructive. However, if both
UDA methods seem to effectively restore the extent of the cotton
class, it appears quite evidently that the SpADANN map is less
noisy w.r.t. the DANN map, once again confirming a better
potential in recovering spatial structures than its competitor.

To better appreciate the spatial precision of the SpADANN
maps w.r.t. its direct competitor, we also report some zoomed-in
areas in Figs. 15 and 16. In both cases, spatial details better
emerge in the maps provided by SpADANN, both over agricul-
tural fields, with more structured and less noisy plots (in terms
of salt and pepper error), especially over the cotton and cereals
classes and over natural spaces.

The underestimation phenomena related to the oleaginous/
leguminous and cotton classes can be related to the crop class
unbalancedness that features the 2018 GT data. More precisely,
as shown in Section IV, the collected reference data for 2018 for
both oleaginous/leguminous and cotton, in terms of surfaces,
are much lesser than the one collected for the cereal class.
This evident unbalancedness among crop classes affects both
the direct transfer as well as the domain adaptation strategies,
thus bringing distribution bias related to the source domain to
the target one.

Such effects can be once again better observed in the zoomed-
in areas of Figs. 15 and 16. This last observation seems to be in an
opposite direction to the quantitative results previously reported
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Fig. 16. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2018 → 2020): zoom on Area n◦2. (a) Sentinel-2 image
acquired on September 21, 2020. (b) DANN. (c) SpADANN.

on the same land-cover classes. This is probably due to the fact
that the GT data that we use to both train and validate the different
models can only partially represent the study area, in terms of
land-cover class distributions. This fact underlines that, when
the GT data collection is affected by operational constraints
associated to costly and labor-intensive field campaigns, the
investigation of the produced LCMs is encouraged to evaluate
the behavior of the land-cover classifiers. Only relying on quan-
titative analysis, via standard classification metrics, can provide
a limited comprehension of the methods behavior regarding the
whole study area.

2) Visualization of Internal Feature Representations: In this
last stage of our experimental evaluation, we provide a visual
inspection of the internal feature representation learned by GFK,
ADDA, DANN, and SpADANN on the transfer task (2018
→ 2020). To this end, we randomly chose 300 samples per
land-cover class from the target domain and we extracted the
corresponding feature representation per method. Subsequently,
we have applied t-SNE [62] to reduce the feature dimensionality
for visualization purposes. Results are depicted in Fig. 17. We

can note that all the methods well separate samples coming from
the water and bare soil/built-up classes from the rest of the data.
While GFK and ADDA clearly mix samples from all the other
land-cover classes together, DANN and SpADANN partially
alleviate clutter issues on the remaining classes with the latter
providing a slightly better visual behavior in terms of cluster
structure, on the considered subset of target data, than the former.
This can be noted, for instance, regarding both the grassland,
shrubland, and the forest classes. Overall, the visualization of
internal features representation is coherent with the quantitative
as well as qualitative findings we previously discussed.

VI. DISCUSSION

To summarize, our research study proposes a novel framework
to perform tUDA for land-cover mapping from SITS data. It
couples together adversarial and self-training learning with the
aim to cope with the distribution shifts affecting data coming
from different years and hindering the transfer of standard
machine learning models. In addition, to the best of our literature
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Fig. 17. t-SNE visualization of internal feature representation learned by (a) GFK, (b) ADDA, (c) DANN, and (d) SpADANN over 200 randomly selected samples
per class from the target domain considering the transfer task (2018 → 2020).

survey, this is the first time that recent deep learning methods are
leveraged in the context of temporal transfer of LULC models
from SITS data.

First, we underline that our framework exploits the spatiotem-
poral information carried out by remote sensing data in order
to temporally transfer the final LULC classification model. It
explicitly leverages spatial information in order to transfer the
model from one year (the source domain) to another year (the
target domain) via self-training. The spatial alignment facili-
tates the identification of stable regions that act as tie points
between the two domains, while the self-training strategy allows
the model to learn from its predictions. As underlined by the
ablation analysis, such components are fundamental to support
the behavior of SpADANN in order to achieve its final goal.

Second, we have observed that, in general, performances vary
from one transfer task to another. This is well-known in the
general field of domain adaption since not all transfer tasks are
equal [63]. More precisely, in our experimental evaluation, we
have noted that class imbalance in the source domain (i.e., Ds

= 2018) can negatively influence the transfer from one year
to another one as well as major changes in class distributions

(i.e., the underlying cropping practices). These points suggest
that SpADANN can be deployed in situations where no dramatic
changes in the underlying landscape happen, thus potentially
limiting costs and human efforts associated to field campaigns
while reducing their frequency, for instance, from annual to
every two or three years.

Third, the use of domain adaptation for temporal LULC
transfer opens new room for investigation in order to reuse
already acquired data (on the same study site) with the aim to
increase the return of investment on field campaigns and efforts
done in the past. We have observed that, in some cases, com-
bining together two years of SITS data and previously acquired
reference data can ameliorate the classification performances
on the target domain (i.e., transfer task 2020→ 2021) due to the
fact that SpADANN is steered to extract invariant representations
w.r.t. a specific domain, thus alleviating year/domain specific
issues (i.e., complex and unfavorable acquisition conditions). In
addition, here, we have focused our attention on the monosource
(monoyear) setting in which only a specific year is used as
source domain, while in different real-world LULC applications,
we could access reference and satellite data spanning several
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previous years, thus allowing the process to exploit multiyear
information under the lens of unsupervised multisource domain
adaptation [12], [64], a recent family of techniques that extends
standard UDA to consider multiple (related) source domains
with the aim to generalize on the unlabeled target domain.

Fourth, connections between recent spatial [11], [47] and
tUDA approaches for SITS land-cover mapping can be drawn.
Both families of methods have the objective to cope with pos-
sible distribution shifts between source and target SITS data,
thus coping with intrinsic domain shifts that can be caused
by different environmental, weather, or climate conditions of
acquisition. In our framework, in order to cope with the tUDA
scenario, the spatial alignment between source and target data is
explicitly exploited with the aim to alleviate distribution shifts,
while this characteristic cannot be leveraged in the context of
spatial UDA since the two domains are spatially unrelated. This
fact prevents the use of SpADANN, as it is, for the spatial UDA
scenario while the contrary should be possible. Nevertheless,
as shown in Section V-C3, the use of spatial alignment derived
information constitutes a crucial asset that effectively guides
the self-training process. For this reason, methods that will
not integrate such knowledge will probably fail to provide an
effective solution for the tUDA scenario.

Finally, we remind that our task is characterized by opera-
tional/realistic constraints, implying a limited and sparse amount
of reference data from which the relationships between remote
sensing data and the fine land-cover classes are learnt. This is
why, in our case study, the TempCNN deep learning approach
does not exhibit competitive behavior compared with the stan-
dard machine learning techniques, such as RF, regarding intrado-
main classification. Conversely, the use of both source and target
domains, simultaneously, together with the self-training strategy
we have proposed permits to increase the amount of data labels
the model can access to learn its internal classification function.
This means that the proposed framework can be deployed in
situations characterized by moderate data labels availability
due to its capacity to progressively and incrementally exploit
knowledge coming from the two domains in a complementary
manner.

The conducted research opens the way to several future works.
As of now, SpADANN works in a standard (monosource) UDA
setting where only a single labeled source domain is considered.
Due to the fact that previous field campaigns can span multiple
years, a possible research direction is the extension of SpADANN
to a multisource UDA setting where multiple labeled source
domains can be exploited in order to further improve the tem-
poral transferability performances. Another possible follow-up
is related to extend our framework to a multiple modality sce-
nario where the study area is described by multisensor remote
sensing data, such as, for instance, SITS coming from both
synthetic aperture radar and optical sensors (e.g., Sentinel-1 and
Sentinel-2). While the majority of UDA approaches consider a
monomodality setting where domains are described by only one
modality, very few research studies exist for the UDA under the
multimodality scenario, even in the general field of computer
vision and signal processing.

VII. CONCLUSION

In this work, we have presented SpADANN, a new framework
to cope with tUDA for land-cover mapping from SITS data.
Our approach combines adversarial learning and self-training
with the aim to progressively transfer/adapt an NN model from
a source domain (a specific year featured by GT data) to a
target domain (a successive year where no label information
is available) in order to provide land-cover classification on the
latter. While the adversarial learning strategy is implemented
by means of GRL, in order to extract domain-invariant features,
the self-training stage selects pseudolabels on the target domain
leveraging spatial consistency between domains.

The obtained results on the Koumbia study site have high-
lighted the quality of our framework regarding both quanti-
tative and qualitative analyses with respect to all the UDA
competitors. This is tightly related to the fact that SpADANN
explicitly takes advantage of the spatiotemporal features that
highly characterize SITS data. In addition, we could also show
that, when the general land-cover distribution does not ex-
hibit drastic changes between source and target domain, the
proposed method is highly competitive compared to a model
directly trained on the target domain. This last point can be
explained by the fact that our framework focuses its attention
on domain-invariant characteristics, thus, probably, discarding
specific per-year information that can be related to local (in
terms of domain) behaviors or artifacts and leveraging more
training data due to the new self-training strategy we have
proposed.

APPENDIX A

A. Ablation Analysis for the (2018 → 2021) and the (2020 →
2021) Transfer Tasks

The results obtained per (2018 → 2021) and (2020 → 2021)
transfer tasks, and detailed in Tables VIII and IX, confirm

TABLE VIII
F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE SPADANN ABLATIONS FOR

THE TRANSFER TASK (2018 → 2021)

TABLE IX
F1-SCORE, ACCURACY, AND KAPPA SCORE OF THE SPADANN ABLATIONS FOR

THE TRANSFER TASK (2020 → 2021).
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Fig. 18. Qualitative investigation of LCMs produced by the RF methods - (ONLY Dt) and (ONLY Ds), DANN and SpADANN for the transfer task (2018 →
2021): zoom on the Koumbia city. (a) Sentinel-2 image acquired on September 29, 2021. (ONLY Dt) RF. (c) (ONLY DS ) RF (d) DANN. (e) SpADANN.

the findings presented for (2018 → 2020) transfer task in
Section V-C3.

B. LCMs for the (2018 → 2021) and the (2020 → 2021)
Transfer Tasks

As with (2018→ 2020), the challenging transfer task (2018→
2021) is affected by a longer term changes in seasonal vegetation
dynamics that appear after a 3 year delay and a redistribution
of the proportions among the different crop classes. That is
why, we can formulate after visual analysis of Figs. 18, 19,

and 20 the same findings as for transfer task (2018 →
2021).

In the case of task (2020 → 2021), Fig. 21, using the direct
transfer strategy (ONLY Ds) with RF, the provided map mainly
shows a significant reduction of the surface covered by the cotton
and cereals class with respect to the baseline to the profit of
the oleaginous/legouminous class. An increased noise in the
natural vegetation areas is also present. When a UDA approach
is used, things improve neatly: using DANN, the extent of the
cotton class is mainly restored, but some disproportion is present
between the cereals and oleaginous/leguminous class, whose
discrimination is more challenging. Finally, SpADANN seems
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Fig. 19. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2018 → 2021): zoom on Area n◦1. (a) Sentinel-2 image
acquired on September 29, 2021. (b) DANN. (c) SpADANN.

Fig. 20. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2018 → 2021): zoom on Area n◦2. (a) Sentinel-2 image
acquired on September 29, 2021. (b) DANN. (c) SpADANN.
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Fig. 21. Qualitative investigation of LCMs produced by the RF methods - (ONLY Dt) and (ONLY Ds), DANN and SpADANN for the transfer task (2020 →
2021): zoom on the Koumbia city. (a) Sentinel-2 image acquired on September 29, 2021. (b) (ONLY Dt) RF. (c) (ONLY Ds) RF.(d) DANN. (e) SpADANN.

to visually provide the best results, with an almost completely
restored balance among crop classes, as well as improved details
over natural vegetation areas. To better appreciate the spatial
precision of the SpADANN maps w.r.t. its direct competitor,
we also report some zoomed-in areas in Figs. 22 and 23. In

both cases, spatial details better emerge in the maps provided
by SpADANN, both over agricultural fields, with more struc-
tured and less noisy plots (in terms of salt and pepper error),
especially over the cotton and cereals classes, and over natural
spaces.
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Fig. 22. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2020 → 2021): zoom on Area n◦1. (a) Sentinel-2 image
acquired on September 29, 2021. (b) DANN. (c) SpADANN.

Fig. 23. Qualitative investigation of LCMs produced by DANN and SpADANN for the transfer task (2020 → 2021): zoom on Area n◦2. (a) Sentinel-2 image
acquired on September 29, 2021. (b) DANN. (c) SpADANN.
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Fig. 24. t-SNE visualization of internal feature representation learned by (a) GFK, (b) ADDA, (c) DANN, and (d) SpADANN over 300 randomly selected samples
per class from the target domain considering the transfer task (2018 → 2021).

Fig. 25. t-SNE visualizsation of internal feature representation learned by (a) GFK, (b) ADDA, (c) DANN, and (d) SpADANN over 300 randomly selected
samples per class from the target domain considering the transfer task (2020 → 2021).
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C. Visualization of Internal Feature Representations for the
(2018 → 2021) and the (2020 → 2021) Transfer Tasks

Regarding statements mentioned in Section V-D2, they also
apply to t-SNE visualization for transfer task (2018 → 2021)
and (2020 → 2021), which are, respectively, detailed in Figs. 24
and 25.
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