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A B S T R A C T   

Particle size fractionation enables a better understanding of soil organic carbon (C) dynamics since it separates 
fractions that differ in composition, residence time and function. However, this method is time-consuming and 
tedious; thus, its use has been greatly limited. Our objective was to evaluate the ability of an existing soil spectral 
library (SSL) from different regions of West Africa to predict the C amount in the fractions (gC kg− 1 soil) of the 
samples in a new target set from Benin. 

The SSL included 181 samples from five countries, and the target set included 94 samples (depth ≤ 40 cm), 
most of which were coarse-textured; near-infrared reflectance (NIR) spectra were collected for 2 mm sieved 
samples (non-fractionated samples). The predicted variables were the C amounts in the non-fractionated soil and 
in the < 20, 20–50, and > 50 µm fractions (F<20, F20–50, and F>50, respectively). Different methods were 
tested to optimize the predictions: (i) SSL enrichment with 10 or 15 samples selected from the target set (spiking) 
and replicated six times (i.e. extra-weighted); (ii) locally weighted (local) partial least squares regression (PLSR), 
which is calibration by the spectral neighbours with the highest weights attributed to closest neighbours, and was 
compared to “global” (i.e., common) PLSR, where all calibration samples equally contribute; and (iii) spectrum 
pretreatments (e.g., smoothing, centring, derivatization). In addition, the intermediate precision of the con-
ventional data (standard error of laboratory; SELint) was estimated through triplicate fractionation of three 
samples carried out by three operators (one per replicate). 

When the SSL alone was used for calibration, the predictions were inaccurate for the C amounts in the non- 
fractionated soil and in F<20; however, the predictions were accurate for the C amounts in F20-50 and F>50, with 
minimal benefit from the local PLSR over the global PLSR in general. For the non-fractionated soil, F<20, F20–50 and 
F>50, the ratios of performance to the interquartile range in the validation set, RPIQVAL, were 1.6–1.8, 1.6–1.7, 1.9 
and 1.9–2.1, respectively. Calibration with SSL spiked (i.e., completed with spiking samples) yielded an increase in 
RPIQVAL from 33 to 56% for the C amount in the non-fractionated soil and F<20 and from 0 to 20 % for F20-50 and 
F>50 (RPIQVAL reached 2.4–2.5, 2.2–2.3, 1.9–2.0 and 2.1–2.3, respectively), and the benefit of local PLSR was still 
limited. The SELint was based on a few samples and thus only provided a rough estimation; this estimate represented at 
least 65% of the prediction error for the C amounts in the fractions. Therefore, the SELint needs to be determined more 
extensively to both improve the model accuracy and refine the interpretation of the predictions based on NIR spectra. 
This library should be enriched with samples from other sites to represent other soil types.  
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1. Introduction 

Soil organic matter (SOM) contributes to the maintenance of soil 
physical (e.g., soil aeration and aggregation), chemical (e.g., pH regu-
lation and nutrient reserve), and biological functions (e.g., through soil 
organism activities; Lal, 2014). Moreover, soil organic carbon (SOC) 
sequestration appears to be a solution for limiting the ongoing increase 
in the atmospheric carbon dioxide (CO2) concentration (e.g., Dignac 
et al., 2017; “4 per 1000” Initiative, 2018). Thus, enhancing or at least 
maintaining the SOM stock, which is made up of at least 50% of SOC, is 
crucial considering its essential role in the ability of soils to provide 
ecosystem services (e.g., biomass supply and climate change 
mitigation). 

However, SOM is very complex and includes multiple compounds 
with contrasting C inputs, dynamics and responses to disturbances. 
Many methods of SOM fractionation have been developed to separate 
SOM pools that are as homogeneous and distinct as possible in terms of 
their dynamics and resilience in soils (von Lützow et al., 2007; Moni 
et al., 2012; Poeplau et al., 2018). Among these methods, the physical 
fractionation of particles according to their size and/or density reveals 
the importance of interactions between organic and inorganic soil 
components in SOM turnover and has been considered a particularly 
relevant fractionation approach (Balesdent, 1996; Christensen, 2001; 
Lavallee et al., 2020). This physical approach enables the differentiation 
of two radically different pools in terms of composition, residence time 
and functioning: (i) light and coarse particulate SOM (POM; one or two 
fractions >50 µm according to the fractionation protocol), which has 
predominantly a vegetal signature, is assumed to have high turnover 
rate and is relatively undecomposed and vulnerable to land use change; 
and (ii) finer mineral-associated SOM (MAOM; from one to four frac-
tions < 50 µm according to the protocol), generally with slow turnover 
due to chemical bonding to minerals and physical protection in fine 
aggregates (Lehmann and Kleber, 2015; Cotrufo et al., 2019; Lavallee 
et al., 2020). 

However, conventional methods for physical SOM separation are 
time-consuming and tedious, which limits the monitoring of SOC dy-
namics in space and time at the regional or territorial scale. Infrared 
spectroscopy, coupled with chemometrics, represents an alternative to 
conventional analytical methods for assessing soil properties; its cost- 
and time-effectiveness has been demonstrated for quantifying SOC and 
nitrogen contents (Stenberg et al., 2010; O’Rourke and Holden, 2011). 
Several studies have also shown the ability of near-infrared diffuse 
reflectance spectroscopy (NIRS), visible and NIRS (VNIRS) or mid- 
infrared reflectance spectroscopy (MIRS) applied to bulk soil (non- 
fractionated soil; < 2 mm) to predict the size of the SOC pools obtained 
with different fractionation methods (Zimmermann et al., 2007; Barthès 
et al., 2008; Yang et al., 2012; Baldock et al., 2013; Jaconi et al., 2019; 
Greenberg et al., 2022; Ramifehiarivo et al., 2023). Barthès et al. (2008) 
particularly studied the ability of NIRS to predict the SOC distribution in 
particle size fractions. Their work showed encouraging prediction re-
sults for the finest MAOM studied (0–20 µm fraction; F<20). This SOC 
fraction is particularly interesting to predict because, on the one hand, it 
is one of the most difficult fractions to separate (obtained at the last 
stages of the fractionation process), and on the other hand, it is the 
predominant SOC fraction in most soils (Feller and Beare, 1997; Pansu 
and Gautheyrou, 2006a; Barthès et al., 2008). However, in previous 
studies, the calibration set, which is used to build the prediction model, 
and the validation set, which is used to test the model, were not spe-
cifically selected to be location-independent; therefore, the prediction 
results could be overly optimistic (Brown et al., 2005). Since the first use 
of infrared spectroscopy to characterize soil properties, many soil 
spectral libraries (SSLs) have been built as parts of different projects 
within research laboratories. In particular, several wide-scale SSLs have 
been built and used to predict the SOC content or other soil properties on 
local or geographically independent target sample sets (Guerrero et al., 
2010; Gogé et al., 2014; Barthès et al., 2020; Gomez et al., 2020; Li et al., 

2020). Due to the tediousness and cost of SOC physical fractionation 
(labour time, analysis price of each SOC fraction), all the existing da-
tabases that include data on SOC fractions and bulk soil spectra should 
be pooled together. Then, this pooled SSL could be used to make pre-
dictions on new target sample sets, thus, avoiding the additional time- 
consuming work involved in fractionation. Moreover, this approach 
would add value to the existing SOC fractionations, as these would help 
predict SOC fractions in new samples. However, to date, no study has 
tested the ability of models calibrated on existing SSLs to accurately 
predict SOC pools on new, geographically independent sample sets. To 
fit infrared spectra to soil properties, different multivariate regression 
procedures can be used, such as partial least squares regression (PLSR); 
PLSR is commonly used due to its efficiency, interpretability and low 
computation time (Angelopoulou et al., 2020; Barthès and Chotte, 
2020). PLSR has most often been used in “global” calibration, where all 
calibration samples contribute equally to model development. However, 
several studies have demonstrated the benefits of calibration by spectral 
neighbours, often called “local” calibration, especially when using wide- 
scale calibration SSL for predictions on independent target sets (Barthès 
et al., 2020; Cambou et al., 2021; Mallet et al., 2022). Guerrero et al. 
(2014) showed that spiking and extra-weighting could improve model 
accuracy when validation was performed on an independent target 
sample set: spiking consists of enriching the calibration database with 
few samples from the target set, and extra-weighting consists of artifi-
cially replicating these spiking samples to increase their influence on the 
calibration. Barthès et al. (2020) compared the performances of global 
and local calibrations and studied the benefits of spiking and extra- 
weighting for predicting soil inorganic carbon (SIC) content via MIRS. 
They showed that spiking with extra-weighting was more useful for 
global than for local calibration and that the best predictions were ob-
tained with local calibrations. The performance of global vs. local cali-
bration, with or without spiking and extra-weighting, still needs to be 
studied for other variables and other spectral ranges. 

In the present study, databases from previous studies (1998–2019) 
were used; these included the following: (i) SOC physical fractionation 
results obtained with the same methodology and (ii) NIR spectra ac-
quired on non-fractionated soil using the same spectrometer (Foss 
NIRSystems 5000, Laurel, MD, USA). However, these procedures were 
carried out by different operators at different times. The objectives of the 
present study were as follows:  

- to optimize the predictions of SOC in the particle size fractions of a 
regional target sample set in Benin (94 samples studied in 2019, 
collected at 0–10 cm and 10–30 cm depths) using a NIR SSL from 
West Africa (184 samples studied between 1998 and 2017 and 
collected from different depth layers in the top 40 cm);  

- to compare the performance of global vs. local calibrations, with or 
without spiking and extra-weighting to predict the SOC fractions. 

2. Materials and methods 

2.1. Sample subsets included in the soil spectral library 

The SSL included seven sample subsets originating from previous 
studies carried out from 1998 to 2017 in Burkina Faso, Republic of 
Congo (Congo-Brazzaville), Togo, Cameroon and Benin (Table 1, Fig. 1). 

Two soil sample subsets were collected in Burkina Faso in 2008, and 
both were described by Barthès et al. (2008). Briefly, one set originated 
from Banh in northern Burkina Faso. The area was occupied by millet 
crops (with or without manure addition), and the soil type is mainly an 
Arenosol (IUSS Working Group WRB, 2015). This sample subset 
included 28 samples with depths ranging from 0–10 cm to 30–40 cm. 
The other sample subset originated from Torokoro in southern Burkina 
Faso. The soil type is a Lixisol (IUSS Working Group WRB, 2015). The 
studied land uses were crops (cotton, yam, sorghum), fallows, orchards 
and forests. This subset included 52 samples collected at a depth of 0–10 
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cm. 
In 2008, another sample subset was collected at several sites near 

Pointe-Noire, in Congo-Brazzaville, where the soil type is an Arenosol. 
The studied land uses were eucalyptus plantations and savanna. This 
subset included 34 samples from a depth of 0–10 cm and was also 
described by Barthès et al. (2008). 

One sample subset was collected in 2015–2016 in northern Togo, 
where the main soil type is Plinthosol (IUSS Working Group WRB, 
2015). This subset included six soil samples collected at 0–5 and 20–30 
cm depths under cereal crops or savanna. 

One sample subset was collected in 2017 in the Bokito district 
located in central Cameroon, where the main soil type is Ferralsol (IUSS 
Working Group WRB, 2015). The studied land uses were savanna and 
different types of cocoa plantations, cultivated in monoculture or asso-
ciated with shade trees. This subset included 38 composite soil samples 
collected at a depth of 0–10 cm. In shaded plantations, the sampling was 
carried out separately between the cocoa tree stems in the shade and 
between the unshaded cocoa tree stems. The detailed sampling design 
for this study was described by Sauvadet et al. (2020). 

Two sample subsets were collected in southern Benin. The first study 
was carried out in 1998 at an experimental station near the village of 
Agonkanmey in the Atlantique administrative department (southern 
Benin). The main soil type is Nitisol (IUSS Working Group WRB, 2015). 
The following four experimental plots were studied: (i) yearly maize- 
mucuna association; (ii) maize-mucuna association with maize every 
year and mucuna every two years; (iii) continuous maize with mineral 
fertilization; and (iv) continuous maize with burning and no input 
(traditional system; Azontonde, 2000). In each plot, one composite 

sample was prepared from three elementary samples collected at a depth 
of 0–10 cm; thus, the subset included four 0–10 cm composite samples. 
The second sample subset was obtained from 2010 to 2013 from two 
mature oil palm tree plantations in the Plateau department (south-
eastern Benin). The main soil type is Nitisol. In these plantations, the 
pruned leaves were returned to the tree rows as windrows for approxi-
mately 10 years. The samples were collected at depths of 0–5 cm and 
20–30 cm (i) under windrows in tree rows and (ii) in the inter-rows, in 
three 1-m deep pits in each case. This subset should have included 
24 samples but fractionation results were not available for one 0–5 cm 
sample under a windrow, resulting in a total of 23 samples. This sample 
subset was precisely described by Aholoukpè (2013) and Aholoukpè 
et al. (2016). 

The soil textures were mostly sandy, with some differences between 
the subsets; the textures were as follows: sandy for Cameroon, Togo, the 
Congo and both subsets from Burkina Faso; sandy loam or sandy clay 
loam for the subset from southern Benin; loamy sand for the topsoil (0–5 
cm) samples from southeastern Benin; and sandy loam for the subsoil 
(20–30 cm) samples from the same subset. 

2.2. Target set 

The target set included soil samples from southwestern Benin in the 
Atlantic department (Houssoukpèvi et al., 2022; Table 1 and Fig. 1). The 
sampling was carried out in 2019 in three villages on the Allada plateau 
(Allada, Toffo and Zè); they cover 1500 km2. The main soil type is 
Nitisol. The set included samples from two forest sites, two tree plan-
tations (teak plantations of 5 and 21 yrs old), two adult oil palm groves 

Table 1 
Description of the soil sample sets used as spectral library and target set.  

Location and year of 
conventional analysis 

Mean annual rainfall 
and temperature 

Climate 
classifica- 

tiona 

Soil typeb Mean sand 
content (%) 

Land use Number of 
samples 

Sample 
depth (cm) 

Soil spectral library 
Banh, northern Burkina 

Faso 
14◦04′N, 02◦26′W 
2008 

600 mm 
29 ◦C 

BSh Ferralic 
Arenosols 

73 Millet with or without 
manure addition (corralling) 

28 0–10 to 
30–40 

Torokoro, southern Burkina 
Faso 
10◦03′N, 04◦25′W 
2008 

1100 mm 
27 ◦C 

Aw Haplic Lixisols 80 Cotton, sorghum, yam, 
fallow, orchard, forest 

52 0–10 

Pointe-Noire, Congo- 
Brazzaville 
04◦S, 12◦E 
2008 

1200 mm 
25 ◦C 

Aw Ferralic 
Arenosols 

93 Eucalyptus plantations, 
savanna 

34 0–10 

Savanna Region, northern 
Togo 
11◦01′-02′N, 00◦08′-14′E 
2015–2016 

1050 mm 
29 ◦C 

Aw Pisoplinthic 
Plinthosols 

75 Cereals, savanna, forest 5c 0–5 and 
20–30 

Bokito district, Cameroon 
04◦30′N, 11◦10′E 
2017 

1400 mm 
25 ◦C 

Aw Orthic Ferrasols 81 Cocoa in monoculture or in 
agroforestry, savanna 

38 0–10 

Agonkanmey, southern 
Benin 
06◦24′N, 02◦20′E 
1998 

1100 mm 
27 ◦C 

Aw Dystric Nitisol 77 Maize with possible legume 
cover crop (mucuna) 

4 0–10 

Plateau district, 
southeastern Benin 
06◦45′-49′N, 02◦37′-38′E 
2010–2013 

1300 mm 
27 ◦C 

Aw Dystric Nitisols 80 Palm tree plantations 20c 0–5 and 
20–30  

Target set 
Allada plateau, 

southwestern Benin 
06◦20′-50′N, 02◦00′E 
2019–2020 

1100 mm 
27 ◦C 

Aw Dystric Nitisols 85 Palm tree plantations, maize, 
pineapple, forest 

94 0–10 and 
10–30  

a Köppen-Geiger climate classification (Rubel and Kottek, 2010): Aw refers to tropical savanna climate and BSh to hot semi-arid climate. 
b IUSS Working Group WRB (2015). 
c after outlier removal. 
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(10–12 yrs old), two young oil palm groves (ca. 5 yrs old, both in tem-
porary agroforestry, with maize and pineapple, respectively), and two 
croplands (maize and pineapple). Before cropping, the vegetation was 
often burnt, and the soil was subsequently hoed to a depth of 20 cm; 
moreover, mineral fertilizers were applied to the pineapple crop. In 
adult palm groves, pruned leaves were usually returned to the soil as 
windrows in the tree rows, and in this case, the soils under windrows and 
in the inter-rows were separately sampled. The soil samples were 
collected at 0–10 and 10–30 cm depths. In each studied plot and for each 
depth layer, one soil sample was collected in a hand-dug pit using a 
knife, and composite samples were also prepared from elementary 
samples collected all over the plot using a manual auger; this process led 
to a total of 96 fractionated samples. However, the fractionation results 
were not available for two samples, resulting in a total of 94 samples. All 
samples from this target set were sandy. 

2.3. Determination of the C amount in the fractions and in the non- 
fractionated soil 

All samples were initially air dried, gently crushed using a mortar 
and pestle, and subsequently sieved through a 2-mm mesh. For all 

sample sets, the fractionation methods used were adapted from Feller 
(1979), Balesdent et al. (1991) and Gavinelli et al. (1995); the frac-
tionation was carried out by different operators at different times. Most 
of the studies performed particle size and density fractionation (the 
three sets from Benin and the sets from Cameroon and Togo). However, 
only particle size fractionation was performed for sample sets from 
Burkina Faso and the Congo. 

For all sample sets, an aliquot (between 15 g for fine- or medium- 
textured soil samples and 40 g for sandy samples) of each 2-mm 
sieved, air-dried soil sample was immersed in a solution of deionized 
water and sodium hexametaphosphate (HMP; concentration of 1.7–2.5 
g HMP L− 1 water). After overnight soaking, the suspension was shaken 
with agate beads in a rotary shaker (40–50 rpm) for several hours, with 
the exception of the suspensions prepared with Benin southeastern 
samples; these were directly shaken without overnight soaking. For all 
sample sets, two wet sieving sequences were then carried out at 200 and 
50 µm. After each wet sieving, the fraction retained on the sieve was 
collected, and for the particle size and density procedure only, the POM 
was separated from the heavier fraction by repeated floatation panning 
and sedimentation of mineral particles in water. The particle size and 
density procedure yielded four fractions > 50 µm: (i) the POM with a 

Fig. 1. Location of sampled sites in and out of Benin. The yellow circles represent the locations of the soil spectral library sites and the grid rectangle is the location of 
the target set. Spatial layers come from openAFRICA website (https://africaopendata.org/) and https://benin.gep.kartoza.com/. 
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size of 200–2000 µm, (ii) the 200–2000 µm heavy fraction, (iii) the 
50–200 µm POM, and (iv) the 50–200 µm heavy fraction. In contrast, the 
particle size fractionation yielded only two fractions > 50 µm: the 
200–2000 and 50–200 µm fractions (both including the heavy fraction 
and POM). Then, ultrasonication was applied to the suspension < 50 µm 
for 10 min using an ultrasonic processor working at operating/inter-
ruption intervals (Fisher Bioblock Scientific, Illkirch, France). Then, the 
20–50 µm fraction (F20-50) and F<20 were separated by wet sieving at 
20 µm, except for the samples from southeastern Benin; these were 
extracted by sedimentation in water. Depending on the period and on 
the soil, especially its texture, some parts of the fractionation procedure 
might have varied to some extent, but the objective was always to 
achieve maximal dispersion of elementary particles with minimal 
alteration of SOM and especially POM. Thus, it was assumed that the 
slight differences in procedure did not noticeably affect the results. 
Fractionation was also carried out after SOM destruction using hydrogen 
peroxide (H2O2; i.e., usual particle size analysis, which is actually a size 
analysis of mineral particles; Pansu and Gautheyrou, 2006b), and the 
results from both fractionation methods were compared to validate the 
complete particle dispersion in the fractionation procedure without 
SOM destruction (data not shown). 

The non-fractionated soil (i.e., an aliquot of the 2 mm sieved, air- 
dried sample) and all fractions were then oven-dried at 40 ◦C, 
weighed, finely ground (< 200 µm) and analysed for C content based on 
the principle of the “Dumas method”, which involves the complete and 
instantaneous oxidation of the sample by dry flash combustion using an 
elemental analyser (Carlo Erba, ThermoFlash or Fison instruments 
depending on the set). The soil samples collected in the study areas were 
expected to be carbonate free; thus, all the carbon was considered 
organic. For the fractions, C analysis yielded concentrations 
(gC kg− 1 fraction); then, the C amount in each fraction (gC frac-
tion kg− 1 soil) was calculated as the product of the fraction C concen-
tration and the fraction mass (g fraction kg− 1 soil). For the non- 
fractionated soil, the C amount corresponds to the C concentration 
(both expressed in gC kg− 1 soil); thus, for the sake of simplification, the 
term “C amount” will be preferentially used thereafter. 

In the present study, for each sample, all fractions > 200 µm and 
50–200 µm (heavy fraction and POM when they had been separated) 
were grouped together and referred to as F>50. This choice was based 
on preliminary tests that showed poorer predictions for these fractions 
separated than grouped (suggesting that they were not well differenti-
ated; data not shown); this was consistent with Poeplau et al. (2018), 
who found no age difference between organic fractions > 200 µm and 
50–200 µm. Thus, the variables of interest were the C amounts in the 
non-fractionated soil, F>50, F20-50 and F<20. 

Precision in the determination of reference values has been recog-
nized as a critical element for consideration in the NIRS model cali-
bration and/or when assessing NIRS model accuracy (Coates, 2002; Yao 
et al., 2010). The standard error of laboratory, which is used to assess the 
precision of the reference method, can be calculated as follows 
(Workman, 2007): 

SEL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

∑n

i=1
(xij − xj)

2

m × (n − 1)

√
√
√
√
√

(1)  

where SEL is the standard error of laboratory; xij stands for the C amount 
in the considered fraction for each replicate i of each sample j; xj is the C 
amount in the same fraction averaged over the replicates of sample j; n is 
the number of replicates per sample; and m is the number of samples. 

For the target set, most fractionations were performed by one oper-
ator and the few others by two other operators, without replication in 
general. However, three of these samples were fractionated three times, 
and each replication was performed by a different operator; this enabled 
the estimation of the intermediate precision of the fractionation pro-
cedure (SELint; calculated from replicates on a given sample performed 

by different operators in a single laboratory; Ermer et al., 2005). The 
latter was considered the standard error of laboratory for the C amount 
in each fraction in the target sample set; in this case, Eq. (1) was used 
with n = 3 and m = 3. For the SSL subsets, fractionation was performed 
with two replicates per sample: on each of the four southern Benin 
samples, by one operator; on two of the five Togo samples, by another 
operator; to note, these operators were not involved in the fractionation 
of the target samples. These replications enabled the estimation of the 
repeatability of the fractionation procedure per sample subset (SELrepet; 
calculated from replicates on a given sample performed by a single 
operator under the same conditions over a short interval of time; 
Sørensen, 2002; Ermer et al., 2005); this was calculated for the C amount 
in each fraction. For the southern Benin subset, Eq. (1) was used with n 
= 2 and m = 4, and for the Togo subset, with n = 2 and m = 2. 

For C in the non-fractionated soil (i.e., SOC content), the SELint was 
not determined; however, considering the soil C range, SELint was esti-
mated to be approximately 1 gC kg− 1. Indeed, Brown et al. (2005) re-
ported a laboratory error of 1.1 gC kg− 1 for the SOC content by 
replicating 12 samples selected from a sample set from north-central 
Montana (USA) with an average SOC content close to that of the vali-
dation set in the present study (7.2 gC kg− 1 vs. 7.6 gC kg− 1); however, 
no details were provided on the number of operators, the time lapse 
between replications or the number of replications per sample. Stevens 
et al. (2013) also estimated SELint by duplication of C analyses on 
22 samples obtained at the European scale and found 2.0 gC kg− 1 (for a 
higher average SOC content in the total set, i.e., 29 gC kg− 1). 

To evaluate the linear correlations between the studied variables (i. 
e., the C amounts in the non-fractionated soil, F<20, F20-50, and F>50), 
a matrix of Pearson’s correlation coefficients was calculated for the 
entire sample set using the R package PerformanceAnalytics (chart.Cor-
relation function; Peterson and Carl, 2020). 

2.4. Spectrum acquisition 

For all the sample sets, the same spectrum acquisition procedure was 
followed with the same instrument, but the acquisitions were performed 
during different periods (2008–2019) by different operators. Soil 
reflectance was measured under laboratory conditions on two aliquots 
of 2-mm sieved, air-dried soil samples, which were oven-dried overnight 
at 40 ◦C just before spectrum acquisition. Aliquots of approximately 5 g 
were placed in a ring cup and scanned in the NIR region between 1100 
nm and 2498 nm every 2 nm (700 data points) using a Foss NIRSystems 
5000 spectrophotometer (Laurel, MD, USA). The spectra were then 
averaged per sample and converted into absorbance [1/ 
log10(reflectance)]. 

2.5. Pretreatments 

The spectrum pretreatments tested and retained by Cambou et al. 
(2022) for sandy Senegalese soil samples were used to amplify the useful 
parts of spectra and reduce irrelevant information (by reducing baseline 
variations, enhancing spectral features, reducing the particle size scat-
tering effect, removing linear or curvilinear trends of each spectrum, 
and/or removing additive or multiplicative signal effects): Savitzky- 
Golay smoothing (Smoo), centring (Centr), standard normal variate 
(SNV), 1st- and 2nd-order detrendings (D1, D2), 1st- and 2nd-order 
derivatives with 11- or 31-point gap (Der111, Der131, Der211 and 
Der231); SNV followed by D1 (SNVD1), D2 (SNVD2) or the 1st- or 2nd- 
order derivatives mentioned (e.g., SNVDer111); D1 or D2 followed by 
the 1st-order derivatives mentioned (e.g., D1Der111); SNVD1 or SNVD2 
followed by the 1st-order derivatives mentioned (e.g., SNVD1Der111). 
The raw absorbance spectra, with no pretreatment, were also studied 
(Raw). In total, 24 spectrum types were studied, including (i) 23 types of 
pretreated spectra and (ii) raw absorbance spectra. For simplicity, these 
spectrum types are referred to as spectral pretreatments. The spectral 
pretreatments were performed using the R packages rchemo (savgol, snv, 
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and detrend functions; Brandolini-Bunlon et al., 2023) and prospectr 
(gapDer function; Stevens and Ramirez-Lopez, 2022). 

Since the distributions of the C amount in the non-fractionated soil 
and in the fractions were skewed (see Section 3.1), the decimal loga-
rithmic transformation (log10) of these variables was carried out to 
achieve more normal distributions and was used for modelling to 
improve the prediction accuracy; then, the predictions (log10C) were 
back-transformed into C amounts (gC kg− 1 soil; Cambou et al., 2022). 

2.6. Selection of the calibration and validation sets 

The replicated SSL samples (four from southern Benin and two from 
Togo; Section 2.3) were averaged for model calibration; thus, the SSL 
included 185 samples with data on C amount in the fractions and 
184 samples with data on C amount in the non-fractionated soil (missing 
value for one sample in Congo-Brazzaville). However, four samples were 
then removed because they were considered outliers according to the C 
amount in the non-fractionated soil (> 39 gC kg− 1 for these four sam-
ples; the average C amount in the non-fractionated soil in the SSL 
decreased from 8.4 to 7.7 gC kg− 1 soil after outlier removal). Among 
these samples, three originated from southeastern Benin, and one from 
Togo. After outlier removal, the SSL included 181 samples with frac-
tionation data and 180 samples with C amount in the non-fractionated 
soil; these samples were used for calibration. 

Out of the 94 samples in the target set, 10 or 15 samples were not 
used for validation but were kept for spiking; specifically, they were 
used to enrich the calibration set. The 10 and 15 spiking samples were 
selected according to their spectral representativeness within the target 
set. For that purpose, a principal component analysis (PCA) was per-
formed on the Centr spectra of the target set using the R package Fac-
toMineR (PCA function; Lê et al., 2008). PCA condenses a large and 
redundant amount of information carried by spectra (here, absorbance 
at 700 wavelengths) into a small number of latent variables (LVs). The 
LVs are linear combinations of absorbances built to be orthogonal with 
each other (no redundancy) and to explain maximum variance (to 
represent at best spectral variability). Then, the Kennard-Stone algo-
rithm (Kennard and Stone, 1969) was applied to PCA scores (i.e., sample 
coordinates on LVs) on the first three LVs (99.8% of the total variance) to 
select 15 spectrally representative samples using the R package prospectr 
(kenStone function; Stevens and Ramirez-Lopez, 2022) for spiking, and 
the remaining samples were used for validation (validation set; 
79 samples). The second spiking subset, with 10 samples, was subse-
quently selected also using the Kennard-Stone algorithm applied to the 
same PCA scores, while ensuring that it was part of the initially selected 
subset of the 15 samples; then, the five remaining samples were 
removed and not considered such that the validation set was the same 
regardless of the spiking subset used. Finally, both spiking subsets (15 
and 10 samples) were extra-weighted six times. This process resulted in 
90 and 60 spiking samples, respectively, before addition to the SSL: 
these two subsets represented one-third and one-fourth of the final 
calibration set, respectively, which was assumed to be a sufficient pro-
portion in the present study; to note, the spiking samples needed to carry 
just enough weight to avoid being overrepresented. The search for the 
optimal extra-weight was not the focus of this study, as this topic has 
been studied by other authors (Guerrero et al., 2014 for SOC content; 
Barthès et al., 2020 for SOC and SIC contents). 

To assess both the benefits of using the SSL and of adding spiking 
with extra-weighting for calibrations, prediction models were separately 
built from five calibration sets: (i) SSL only (SSL; 180–181 samples); (ii) 
SSL with 15 spiking samples extra-weighted six times (SSL+6×15; 
270–271 samples); (iii) SSL with 10 spiking samples extra-weighted six 
times (SSL+6×10; 240–241 samples); (iv) only the subset of 15 target 
samples selected for spiking (15-target); and (v) only the subset of 
10 target samples selected for spiking (10-target). As mentioned previ-
ously, the validation set was constant and included 79 samples. 

2.7. Regression procedures 

Two partial least squares regression (PLSR) procedures were carried 
out: global PLSR and locally weighted PLSR. 

The PLSR condenses the information carried by spectra into a small 
number of LVs that are both linear combinations of absorbances and 
orthogonal with each other, similar to PCA but also built to maximize 
their covariance with the response variable (e.g., the C amount in the 
non-fractionated soil). Then, regression is carried out with LVs as 
explanatory variables. Global PLSR is the common PLSR procedure: one 
prediction model is built using all calibration samples and is subse-
quently applied to all validation samples (Wold et al., 1983). Locally 
weighted PLSR (hereinafter called local PLSR) builds one prediction 
model for each validation sample individually and weights the contri-
bution of all calibration samples to model building based on their 
spectral distance (or spectral similarity) from that validation sample 
(Boysworth and Booksh, 2008). The spectral distance was the Mahala-
nobis distance between the validation and calibration samples in a space 
of 10 PLS-LVs (number of PLS-LVs fixed arbitrarily) built on the cali-
bration set. The weights assigned to the calibration samples to predict 
the validation sample considered were then calculated according to 
Brandolini-Bunlon et al. (2023) using Eq. (2): 

w = e

(

− d
h×MAD(d)

)

(2)  

where w is the weight assigned to one calibration sample according to d, 
which is the Mahalanobis distance between this calibration spectrum 
and the validation spectrum considered; MAD(d) is the mean absolute 
deviation of the d values of the entire calibration dataset for the vali-
dation sample considered; and h is a positive scalar defining the shape of 
w (here, h = 1). 

When the Mahalanobis distance between a calibration spectrum and 
the validation spectrum considered was greater than median(d) + 5 ×
MAD(d), the weight assigned to this calibration sample was set to zero. 

Finally, the weights were standardized between 0 and 1 using Eq. 
(3): 

wnorm =
w

max(w)
(3)  

As a result, for each log-transformed variable (the C amount in the non- 
fractionated soil, F<20, F20-50, and F>50), two regression procedures 
(global and local) were performed using five calibration sets (SSL, 
SSL+6×15, SSL+6×10, 15-target, 10-target) with 24 spectral pre-
treatments. In each case, a randomly selected fivefold cross-validation 
(CV) with 10 replicates was performed on the calibration set, except 
for both target sets where the leave-one-out CV was performed due to 
their small size. Based on the CV results, the optimal number of LVs was 
selected between 3 and 15 according to the three following methods. In 
the first and most parsimonious method, a precision gain ratio (Rg) was 
calculated according to Eq. (4) (Brandolini-Bunlon et al., 2023): 

Rg = 1 −
RMSECVNLV+1

RMSECVNLV
(4)  

where Rg is the relative gain in efficiency after a new LV was added to 
the model and RMSECV is the root mean square error of cross-validation 
for the two successive numbers of LVs (NLV and NLV+1). In the present 
study, the iterations stopped when Rg became lower than a threshold 
value, which was set at 2% after the preliminary tests, and the corre-
sponding NLV was considered optimal. In the second and least parsi-
monious method, the selected number of LVs was the one that 
minimized the RMSECV (NLVmin). In the third and intermediate 
method, the precision loss ratio (Rl) was calculated according to Eq. (5): 

Rl =
RMSECVNLVmin− i − RMSECVNLVmin

RMSECVNLVmin
(5) 
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where Rl is the relative loss in efficiency after removing i LVs from 
NLVmin, which minimizes the RMSECV. The selected number of LVs 
was the lowest when Rl was lower than a certain threshold value, which 
was set at 5% after preliminary tests. 

Finally, when a prediction yielded a negative value, it was replaced 
by zero. 

All regression procedures were performed using the R package 
rchemo (segmkf, gridcvlv, selwold, plskern, predict.Plsr, lwplsr, and predict. 
Lwplsr functions; Brandolini-Bunlon et al., 2023). 

2.8. Evaluation of model accuracy 

Model accuracy was evaluated on back-transformed predictions (the 
C amounts in units of gC kg− 1 soil since the predictions were performed 
on log-transformed data). 

The first parameter used for assessing the prediction accuracy was 
the root mean square error of the prediction over the validation set 
(RMSEP). RMSEP actually includes the laboratory uncertainty (SELint in 
the present study) as follows (Fernández-Ahumada et al., 2006): 

RMSEP2 = SELint
2 +RMSEP2

nir (6)  

where RMSEPnir is the root mean square error of prediction only due to 
prediction using NIR spectra. However, the number of samples on which 
replications had been carried out was too small to allow a proper esti-
mation of SELint. 

Additional parameters were also considered to evaluate model 
accuracy:  

- the bias, which is the mean residue over the validation set; 
- the coefficient of determination (i.e., the squared correlation coef-

ficient; R2) between the predictions and observations calculated over 
the validation set (R2

VAL);  
- the ratio of performance to the interquartile range in the validation 

set (RPIQVAL), which is the ratio of the interquartile range (i.e., dif-
ference between the third and first quartiles; IQR) over the validation 
set to the RMSEP. This ratio has been recommended instead of the 
ratio of performance to the deviation (RPDVAL, which is the ratio of 
the standard deviation, SD, calculated over the validation set to the 
RMSEP) for variables that do not follow a normal distribution (Bel-
lon-Maurel et al., 2010). In the present study, the log-transformed 
variables did not systematically follow a normal distribution; thus, 

RPIQVAL was preferred to RPDVAL for interpreting model accuracy. 
The threshold proposed by Ludwig et al. (2018) was used, and a 
successful (or accurate) prediction was defined by RPIQVAL ≥ 1.9. 

3. Results 

3.1. Conventional analyses 

When referring to the C amount in the non-fractionated samples, the 
C recovery after fractionation averaged 91% across all samples; how-
ever, there were differences between sets: 88% and 99% for Burkina 
Faso (two sets), 92% for the Congo, 101% for Togo, 96% for Cameroon, 
84% for southern Benin, 78% for southeastern Benin, and 90% for the 
target set. 

Table 2 and Fig. S1 (Supplementary Material) show the distribution 
statistics of the C amount in the non-fractionated soil and in F<20, F20- 
50 and F>50 for the SSL, 10-target, 15-target, and validation set. The 
distributions of the C amount in the non-fractionated soil and in the 
different fractions followed the same trend; the distributions were quite 
similar between the validation set and the 10-target subset but tended to 
include higher values in the 15-target subset and were wider in the SSL. 
The distribution of each response variable in the validation set was 
generally included or close to the distribution of this variable in the 
calibration sets. Most distributions were markedly asymmetric, which 
was the reason for using log-transformed values of the C amounts (log10) 
for modelling. 

The largest C amounts were found in F<20 (40–50% on average) and 
F>50 (30–40%), while F20-50 had much less C (ca. 10%). The C amount 
in each fraction was closely correlated with the C amount in the non- 
fractionated soil (Pearson’s correlation coefficient = 0.82–0.93) and, 
to a lesser extent, with the C amounts in the other fractions (Pearson’s 
correlation coefficient = 0.72–0.74; Fig. 2). 

The study of the effects of land use and management on the C dis-
tribution in particle size and/or density fractions (e.g., more POM under 
forest than under permanent cropping) was not the topic of the present 
study, as it has already been studied by many authors (Feller and Beare, 
1997; Balesdent et al., 1998; d’Annunzio et al., 2008; Ramesh et al., 
2019). 

3.2. Spectra 

Fig. 3 shows the space of the two first dimensions (Dim1, Dim2) of 

Table 2 
Distribution of C amount (gC kg− 1 soil) in the non-fractionated soil and in the studied particle size fractions 0–20 µm (F<20), 20–50 µm (F20-50), and 50–2000 µm 
(F>50) in the soil spectral library (SSL), both sets used for spiking (15-target and 10-target) and the validation set. N is the number of samples, SD the standard 
deviation, IQR the interquartile range (difference between third and first quartiles) and Skew the skewness (unitless).  

Fraction Set N Median IQR Mean SD Min Max Skew 

Non-fractionated soil (<2 mm) SSL 180 7.3 7.7 9.7 7.1 1.6 36.0 1.5 
15-target 15 7.5 11.4 11.1 7.8 2.3 28.2 0.8 
10-target 10 6.2 4.1 7.8 5.6 2.3 23.3 1.7 
Validation 79 6.6 4.9 7.6 4.0 2.4 23.9 1.5  

F<20 SSL 181 3.2 2.6 4.1 2.6 1.1 14.3 1.4 
15-target 15 4.4 4.1 4.9 3.0 1.1 11.9 0.8 
10-target 10 3.1 2.4 3.7 2.0 1.1 8.3 0.8 
Validation 79 3.0 2.1 3.4 1.6 1.3 10.3 1.6  

F20-50 SSL 181 0.5 0.7 0.7 0.7 0.1 3.4 1.6 
15-target 15 0.8 1.1 1.0 0.8 0.2 2.9 0.8 
10-target 10 0.5 0.5 0.7 0.8 0.2 2.9 1.8 
Validation 79 0.6 0.6 0.8 0.5 0.1 2.1 1.0  

F>50 SSL 181 2.5 3.6 3.9 3.7 0.3 21.6 1.9 
15-target 15 1.6 5.2 4.0 3.9 0.5 13.3 1.0 
10-target 10 1.3 0.8 2.4 2.7 0.5 10.0 1.9 
Validation 79 1.9 2.3 2.6 1.9 0.5 11.0 1.7  
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Fig. 2. Matrix of Pearson’s correlation coefficients (on the top of the diagonal) and bivariate scatter plots with fitted lines (on the bottom of the diagonal) between 
the observed C amounts (gC kg− 1 soil) in the non-fractionated soil, F<20, F20-50, and F>50 for the whole dataset (274 samples). The symbol “***” is associated to a 
significant correlation with a p-value < 0.001. 

Fig. 3. Projection of the studied soil samples, grouped by countries, on the two first components of the PCA built on smoothed then centred NIR spectra of the soil 
spectral library, where the target samples (15-target selected for spiking and the validation set) were then added as supplementary individuals. 
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the PCA built using the Centr spectra of the SSL, where the Centr spectra 
of the target set were then projected. A noticeable proportion of the 
target spectra were outside the area circumscribed by the SSL samples in 
the PCA plane, which indicated that they were not effectively repre-
sented by the SSL in this space, and justified spiking. In the PCA plane 
considered, however, some SSL samples from the Congo, Cameroon and 
southeastern Benin were close to the validation samples. 

3.3. Predictions of the C amounts in the non-fractionated soil and 
fractions 

Briefly, the global PLSR builds one prediction model using all cali-
bration samples, which is subsequently applied to all validation samples, 
while the local PLSR builds one prediction model for each validation 
sample individually by weighting the contribution of calibration sam-
ples based on their spectral similarity to that validation sample. 

In the preliminary step, when the SSL was used for calibration, the 
RMSEP was almost always lower when the number of LVs was optimized 
with the most parsimonious method than when the other methods were 
used (data not shown). Thus, only the results obtained with the most 
parsimonious method are reported hereafter. 

For each fraction, the PLSR procedure and calibration set considered, 
the text of this section will focus on the results achieved with the 
spectrum pretreatment (i.e., raw or pretreated) that yielded the lowest 
RMSEP; additionally, the tables also provide the average results (with 
SDs) achieved over the 24 spectral pretreatments tested. 

3.3.1. Prediction of the C amount in the non-fractionated soil 
Table 3 provides the validation results for the C amount in the non- 

fractionated soil. The most accurate model was obtained with local 
calibration on 10-target: the RMSEP was 1.8 gC kg− 1, and the corre-
sponding RPIQVAL and R2

VAL were 2.8 and 0.82, respectively. The pre-
dictions were comparable when using 15-target or SSL spiked in both 
local and global PLSR (lowest RMSEP = 1.8–2.1 gC kg− 1). The pre-
dictions were much poorer when using SSL alone (lowest RMSEP =
2.6–3.1 gC kg− 1), due to a particularly large bias, especially in local 
calibration; moreover, the result was less stable over the spectral pre-
treatments (SD of RMSEP was 0.6–0.7 gC kg− 1 when using SSL alone vs. 
0.2–0.4 gC kg− 1 when SSL was spiked). Except for the SSL alone, local 
calibration tended to provide better predictions than global calibration 
when using the most appropriate spectral pretreatments; to note, this 
was not clear for the average over all spectral pretreatments. 

Fig. 4 shows the comparisons between the measured C amounts and 

the predicted C amounts in the non-fractionated soil and in the fractions 
for the validation set using the models built with different calibration 
sets. Specifically, it shows for each variable and calibration set, the PLSR 
model (global or local) and spectral pretreatment, which minimized 
RMSEP. With regard to the non-fractionated soil, Fig. 4a highlights that 
predictions were biased when using SSL alone, especially at low C values 
(< 8 gC kg− 1) and that spiking both reduced the bias and improved the 
predictions for the highest C values (> 20 gC kg− 1). 

3.3.2. Prediction of the C amount in F<20 
Table 4 presents the validation results for the C amount in F<20. The 

most accurate predictions were achieved with global PLSR on 
SSL+6×15 and local PLSR on SSL+6×10 (the lowest RMSEP was 
0.9 gC kg− 1 soil, and the corresponding RPIQVAL and R2

VAL were 2.3 and 
0.68, respectively). However, the global PLSR on SSL+6×10 and the 
local PLSR on SSL+6×15 yielded nearly identical results. The prediction 
accuracy tended to be slightly lower when using 10-target or 15-target 
only (lowest RMSEP = 0.9–1.0 gC kg− 1 soil) but was clearly lower 
when using SSL alone (lowest RMSEP = 1.2–1.3 gC kg− 1 soil), with 
noticeable bias in both cases (negative for target samples only, positive 
for SSL alone, and negligible when using both). Moreover, over the five 
calibration sets considered, the prediction accuracy was nearly identical 
for the global and local calibration. Fig. 4b shows that using SSL+6×10 
improved the prediction for all validation samples compared to using 
SSL alone. 

3.3.3. Prediction of the C amount in F20-50 
Table 5 presents the validation results for C in F20-50. The most 

accurate model was achieved with local PLSR on SSL+6×15 (the lowest 
RMSEP was 0.3 gC kg− 1 soil, and the corresponding RPIQVAL and R2

VAL 
were 2.0 and 0.60, respectively). However, differences according to the 
regression procedure (global or local), calibration set (with or without 
SSL or spiking) and/or spectral pretreatment were limited (e.g., the 
lowest RMSEP was always 0.3 gC kg− 1 soil), which is highlighted in 
Fig. 4c. 

3.3.4. Prediction of the C amount in F>50 
Table 6 presents the validation results for the C amount in F>50. The 

most accurate model was achieved with local PLSR calibrated on 
SSL+6×10; the lowest RMSEP was 1.0 gC kg− 1 soil, and the corre-
sponding RPIQVAL and R2

VAL were 2.3 and 0.73, respectively. However, 
comparable predictions were achieved with the global calibration using 
SSL+6×15 with the same lowest RMSEP, bias and RPIQVAL; however, a 

Table 3 
Validation results for NIRS predictions of C amount in the non-fractionated soil (gC kg− 1) for each PLSR method, which was calibrated on (i) the soil spectral library 
(SSL) alone, (ii) SSL with spiking sets extra-weighted six times, or (iii) the target sets used for spiking alone (15-target and 10-target). For each parameter, the left-hand 
number was obtained with the spectral pretreatment that minimized RMSEP (i.e. raw or pretreated spectra, specified in table footnotes); the right-hand number is the 
value averaged over the 24 spectral pretreatments (with the standard deviation, SD). The mean ± SD of C amount in non-fractionated soil was 7.6 ± 4.0 gC kg− 1 in the 
validation set. The RMSEP and bias are expressed in gC kg− 1; the other parameters are unitless.  

CAL set NCAL N LV R2
VAL Bias RMSEP RPIQVAL 

Global PLSR 
SSLa 180 7; 9 (2) 0.71; 0.71 (0.03) 1.3; 2.7 (0.7) 2.6; 3.6 (0.6) 1.8; 1.4 (0.2) 
SSL+6×15b 270 8; 10 (2) 0.75; 0.72 (0.02) 0.4; 0.7 (0.3) 2.1; 2.3 (0.2) 2.4; 2.1 (0.1) 
SSL+6×10c 240 9; 9 (1) 0.76; 0.73 (0.02) 0.3; 0.7 (0.3) 2.0; 2.4 (0.3) 2.4; 2.1 (0.2) 
15-targetd 15 3; 3 (1) 0.73; 0.71 (0.02) 0.0; − 0.2 (0.1) 2.1; 2.2 (0.1) 2.3; 2.2 (0.1) 
10-targete 10 3; 3 (1) 0.75; 0.70 (0.03) − 0.1; − 0.2 (0.2) 2.0; 2.3 (0.1) 2.4; 2.2 (0.1)  

Local PLSR 
SSLf 180 6; 8 (2) 0.77; 0.71 (0.05) 2.3; 3.2 (0.6) 3.1; 4.2 (0.7) 1.6; 1.2 (0.2) 
SSL+6×15c 270 3; 7 (2) 0.77; 0.73 (0.04) 0.1; 0.7 (0.3) 1.9; 2.4 (0.3) 2.5; 2.1 (0.3) 
SSL+6×10c 240 4; 7 (2) 0.77; 0.73 (0.04) 0.4; 0.7 (0.3) 2.0; 2.5 (0.4) 2.5; 2.0 (0.3) 
15-targetf 15 3; 3 (1) 0.80; 0.73 (0.07) 0.2; 0.2 (0.4) 1.8; 2.3 (0.6) 2.7; 2.2 (0.4) 
10-targetg 10 3; 3 (1) 0.82; 0.73 (0.06) 0.0; − 0.1 (0.1) 1.8; 2.1 (0.2) 2.8; 2.3 (0.3) 

aSNV; bSNVDer111; cSNVD1Der131; dD1Der111; eDer211; fDer131; gSNVD1Der111. 
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slight loss in the prediction accuracy was observed when considering the 
average results over the 24 pretreatments. Additionally, comparable 
predictions were obtained with local calibration using SSL+6×15 
(lowest RMSEP = 1.0 gC kg− 1 soil). Compared with the calibration on 
SSL spiked, the calibration on 10-target, 15-target or SSL alone could 

cause a slight decrease in prediction accuracy. This was slightly 
noticeable with local calibration (lowest RMSEP = 1.0–1.1 gC kg− 1 soil) 
but more noticeable with global calibration (lowest RMSEP =

1.2 gC kg− 1 soil); these both were caused by a larger bias. In the local 
calibration, compared with the calibration on SSL spiked, the calibration 

Fig. 4. Observed vs. predicted C amounts (gC kg− 1 soil) in (a) the non-fractionated soil, and the particle size fractions (b) 0–20 µm (F<20), (c) 20–50 µm (F20-50), 
and (d) 50–2000 µm (F>50), for the validation set, using three calibration datasets: (i) the spectral library alone (SSL), (ii) the 10-target alone, and (iii) SSL with 
10 spiking samples extra-weighted six times (SSL+6×10). In each case, the model shown was obtained with the spectral pretreatment (i.e. raw or pretreated) and the 
PLSR method that minimized RMSEP (global PLSR for the non-fractionated soil, local PLSR for the fractions). The line represents y = x. 
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on SSL, 10-target or 15-target alone affected the variability of the 
RMSEP depending on the spectral pretreatment; the SDs of the RMSEP 
were 0.2–0.4 for SSL, 10-target or 15-target alone vs. 0.1 gC kg− 1 soil for 
SSL spiked. 

When spiking samples were added to SSL, the global and local 
models yielded nearly identical accuracies; however, the prediction 
accuracy for SSL, 10-target or 15-target alone was slightly better when 
using the local calibration rather than the global calibration. Fig. 4d 
shows that adding spiking samples to the SSL improved the predictions 
of the lowest C values (< 2 gC kg− 1 soil) compared to the predictions 
with the SSL alone. 

3.3.5. Prediction accuracy for all variables 
The benefit of spiking (with extra-weighting) was large for the C 

amount in the non-fractionated soil (the best models did not even use the 
SSL), noticeable for the C amount in F<20, limited for the C amount in 
F>50 and negligible for the C amount in F20-50. The optimal number of 
spiking samples (15 vs. 10) added to the SSL depended on the studied 
variable and the regression procedure. No clear trend could be drawn, 

except that prediction accuracy tended to be more affected by the 
spectral pretreatment with 10 than with 15 spiking samples; specifically, 
the SD of RMSEP over 24 spectral pretreatments tended to be higher 
with 10 than 15 spiking samples. The benefit of adding the SSL to the 
target samples for predicting C amounts was generally lower, and even 
nil for C in the non-fractionated soil. Moreover, when compared to the 
global calibration, the local calibration generally had a limited benefit 
and was even detrimental in some cases (e.g., when using SSL alone for 
predicting the C amount in the non-fractionated soil). 

The comparison of model accuracies between the variables when 
considering RPIQVAL showed that the best predictions of the C amount 
were achieved for the non-fractionated soil (highest RPIQVAL = 2.8) and 
the worst for F20-50 (highest RPIQVAL = 2.0), with intermediate results 
for F<20 and F>50 (highest RPIQVAL = 2.3 in both cases). These results 
were achieved with SSL spiked, except for C in the non-fractionated soil 
(target samples alone), and in local calibration, except for F<20. When 
the SSL was used alone, the model accuracy was the highest for F>50 
(local calibration; RPIQVAL = 2.1), followed by F20-50 (global or local 
calibration; RPIQVAL = 1.9), the non-fractionated soil (global 

Table 4 
Validation results for NIRS predictions of C amount in F<20 (gC kg− 1 soil) for each PLSR method, which was calibrated on (i) the soil spectral library (SSL) alone, (ii) 
SSL with spiking sets extra-weighted six times, or (iii) the target sets used for spiking alone (15-target and 10-target). For each parameter, the left-hand number was 
obtained using the spectral pretreatment that minimized RMSEP (i.e. raw or pretreated spectra, specified in table footnotes); the right-hand number is the value 
averaged over the 24 spectral pretreatments (with the standard deviation, SD). The mean ± SD of C amount in F<20 was 3.4 ± 1.6 gC kg− 1 soil in the validation set. 
The RMSEP and bias are expressed in gC kg− 1 soil; the other parameters are unitless.  

CAL set NCAL N LV R2
VAL Bias RMSEP RPIQVAL 

Global PLSR 
SSLa 181 6; 10 (2) 0.49; 0.41 (0.08) 0.6; 0.8 (0.1) 1.3; 1.5 (0.1) 1.6; 1.4 (0.1) 
SSL+6×15b 271 11; 11 (2) 0.68; 0.63 (0.03) 0.1; 0.0 (0.1) 0.9; 1.0 (0.0) 2.3; 2.1 (0.1) 
SSL+6×10c 241 15; 11 (2) 0.67; 0.63 (0.02) 0.1; 0.1 (0.1) 0.9; 1.0 (0.0) 2.3; 2.1 (0.1) 
15-targetd 15 4; 4 (1) 0.69; 0.52 (0.11) − 0.3; − 0.3 (0.1) 1.0; 1.2 (0.2) 2.2; 1.8 (0.3) 
10-targete 10 4; 4 (1) 0.73; 0.63 (0.07) − 0.3; − 0.4 (0.0) 0.9; 1.0 (0.1) 2.2; 2.0 (0.1)  

Local PLSR 
SSLd 181 3; 8 (2) 0.48; 0.44 (0.05) 0.5; 1.0 (0.2) 1.2; 1.6 (0.2) 1.7; 1.3 (0.1) 
SSL+6×15f 271 9; 7 (2) 0.66; 0.60 (0.04) − 0.1; 0.0 (0.1) 0.9; 1.0 (0.1) 2.2; 2.0 (0.1) 
SSL+6×10f 241 9; 8 (2) 0.68; 0.60 (0.05) − 0.1; 0.0 (0.1) 0.9; 1.0 (0.1) 2.3; 2.0 (0.2) 
15-targetg 15 3; 4 (1) 0.74; 0.54 (0.10) − 0.5; − 0.3 (0.1) 1.0; 1.2 (0.2) 2.2; 1.8 (0.3) 
10-targete 10 4; 4 (1) 0.70; 0.64 (0.04) − 0.3; − 0.3 (0.0) 0.9; 1.0 (0.1) 2.2; 2.1 (0.1) 

aSNVDer131; bCentr; cD2Der131; dRaw; eSNVDer211; fSNVDer111; gSmoo. 

Table 5 
Validation results for NIRS predictions of C amount in F20-50 (gC kg− 1 soil) for each PLSR method, which was calibrated on (i) the soil spectral library (SSL) alone, (ii) 
SSL with spiking sets extra-weighted six times, or (iii) the target sets used for spiking alone (15-target and 10-target). For each parameter, the left-hand number was 
obtained using the spectral pretreatment that minimized RMSEP (i.e. raw or pretreated spectra, specified in table footnotes); the right-hand number is the value 
averaged over the 24 spectral pretreatments (with the standard deviation, SD). The mean ± SD of C amount in F20-50 was 0.8 ± 0.5 gC kg− 1 soil in the validation set. 
The RMSEP and bias are expressed in gC kg− 1 soil; the other parameters are unitless.  

CAL set NCAL N LV R2
VAL Bias RMSEP RPIQVAL 

Global PLSR 
SSLa 181 6; 8 (2) 0.57; 0.46 (0.05) 0.1; − 0.1 (0.1) 0.3; 0.4 (0.0) 1.9; 1.6 (0.2) 
SSL+6×15b 271 9; 11 (2) 0.57; 0.52 (0.04) − 0.1; 0.0 (0.0) 0.3; 0.3 (0.0) 1.9; 1.8 (0.1) 
SSL+6×10c 241 5; 11 (3) 0.57; 0.52 (0.03) − 0.1; 0.0 (0.0) 0.3; 0.4 (0.0) 1.9; 1.7 (0.1) 
15-targetd 15 3; 4 (1) 0.56; 0.52 (0.03) 0.0; 0.0 (0.1) 0.3; 0.4 (0.1) 1.9; 1.7 (0.2) 
10-targete 10 3; 3 (1) 0.52; 0.51 (0.02) 0.0; 0.0 (0.0) 0.3; 0.4 (0.0) 1.8; 1.7 (0.1)  

Local PLSR 
SSLf 181 7; 6 (1) 0.58; 0.54 (0.03) − 0.1; − 0.1 (0.1) 0.3; 0.4 (0.0) 1.9; 1.7 (0.1) 
SSL+6×15g 271 6; 7 (2) 0.60; 0.57 (0.02) 0.0; 0.0 (0.0) 0.3; 0.3 (0.0) 2.0; 1.8 (0.1) 
SSL+6×10h 241 5; 7 (2) 0.60; 0.55 (0.03) − 0.1; 0.0 (0.1) 0.3; 0.4 (0.0) 2.0; 1.6 (0.2) 
15-targeti 15 3; 4 (1) 0.56; 0.53 (0.05) − 0.1; 0.0 (0.1) 0.3; 0.4 (0.1) 1.9; 1.7 (0.3) 
10-targetg 10 3; 3 (1) 0.58; 0.53 (0.03) 0.0; 0.0 (0.0) 0.3; 0.4 (0.0) 1.9; 1.7 (0.1) 

aDer231; bDer111; cSNVDer231; dDer211; eSNVD1Der111; fSNV; gSNVD1Der111; hSNVD1; iSNVDer211. 
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calibration; RPIQVAL = 1.8) and F<20 (local calibration; RPIQVAL = 1.7). 
Fig. 5 shows an example of regression coefficients obtained for each 

response variable by global PLSR calibrated on SSL+6×15, with Centr 
spectral pretreatment (the number of LVs was chosen using the most 
parsimonious method presented in Section 2.7). The regions that 
contributed most to the prediction of the C amounts in the non- 
fractionated soil and in all fractions were approximately 1380–1400 
nm (positive then negative peaks for all variables), 1910–1930 nm 
(negative peaks for the non-fractionated soil and F<20; positive peaks 
for F20-50 and F>50), and 2225–2400 nm (positive then negative peaks 
for all variables). However, some regions strongly contributed to the 
prediction of the C amount in the fractions but not to the prediction of 
the C amount in the non-fractionated soil; these regions include the 
following: 1780–1850 nm (for F20-50 only), 1888–1896 nm (for the 
three fractions), and 2208–2210 nm (for F20-50 and F>50 only). In 
contrast, the regions that contributed strongly to the prediction of the C 
amount in the non-fractionated soil also contributed to the prediction of 
the C amount in at least one fraction. 

3.4. Consideration of laboratory uncertainty 

The SELint reached 0.6, 0.6 and 0.8 gC kg− 1 soil for the three frac-
tions F<20, F20-50 and F>50, respectively (Table S1; Supplementary 
Material), while the lowest RMSEP values for these fractions were 0.9, 
0.3 and 1.0 gC kg− 1 soil, respectively (Tables 4, 5 and 6). When per-
formed by different operators, the fractionation procedure was thus a 
high source of variation that could affect the evaluation of prediction 
accuracy. In contrast, the SELrepet values calculated for four replicated 
samples from southern Benin and two replicated samples from Togo 
were much lower. Specifically, the SELrepet reached 0.1, < 0.1 and 
0.2 gC kg− 1 soil in both cases for the three fractions F<20, F20-50 and 
F>50, respectively. 

4. Discussion 

4.1. Ability of near-infrared spectroscopy to predict the C amount in the 
non-fractionated soil 

When considering the RPIQ threshold proposed by Ludwig et al. 
(2018), SSL without spiking yielded inaccurate predictions of the C 
amount in the non-fractionated soil (i.e., SOC content) in the global and 
local calibrations. The difficulty in estimating SOC content at a local site 
using an independent SSL confirmed the results reported by Brown et al. 

(2005). In their study, the prediction of SOC content at one site using a 
model calibrated on five other sites in north central Montana (USA) 
yielded a RMSEP up to four times greater than that obtained when 
calibration and validation samples were randomly selected. Gogé et al. 
(2014) used a large VNIR SSL that represented the topsoils in France 
(2126 samples collected at 0–30 cm depth) to predict the SOC content in 
a 24-km2 agricultural area in southern France. These authors obtained 
poorer results than in the present study (RPDVAL was 0.6 with global 
PLSR and 1.2 with local PLSR vs. 1.5 and 1.3, respectively, in the present 
study, when using SSL alone; data not shown). However, they achieved 
much better predictions with local than with global calibration; this was 
opposite to the results from the present study, where global calibration 
was moderately more accurate than local calibration. In the present 
study, a high bias was observed for models calibrated on SSL alone. In 
addition to differences between the soils of the SSL and the validation 
set, differences in the conditions of spectral acquisition over time could 
also contribute to the biases observed (Shahbazikhah and Kalivas, 2013; 
Mark and Workman, 2017); indeed, spectral acquisitions were per-
formed with the same spectrometer but by different operators between 
2008 and 2019. 

4.2 . Prediction of fraction C amounts 

The calibration based on SSL alone also yielded inaccurate pre-
dictions for the C amount in F<20 (RPIQVAL = 1.7) but accurate pre-
dictions for the C amount in F20-50 and F>50 (RPIQVAL = 1.9–2.1). To 
our knowledge, no study has reported predictions of SOC pools with 
such independent validation procedure. However, some studies have 
predicted SOC pools without independent validation. Barthès et al. 
(2008) used NIRS and global PLSR to predict the C amount in soil par-
ticle size fractions at three sites in Burkina Faso and at one site in Congo- 
Brazzaville (some samples were used in the SSL of the present study; 
Section 2.1). In their study, all samples were considered to belong to the 
same set, and the calibration and validation datasets were selected ac-
cording to spectral representativeness, such as the method used in the 
present study to select the spiking samples. Indeed, the validation results 
achieved in the present study when using SSL spiked were comparable to 
those in their study for the C amounts in F<20 (R2

VAL = 0.66–0.68 vs. 
0.70, respectively) and F>50 (R2

VAL = 0.68–0.73 vs. 0.65–0.78, respec-
tively), and moderately less accurate than those in their study for the C 
amounts in F20-50 (R2

VAL = 0.57–0.60 vs. 0.69, respectively). In the 
present study, the spiking samples represented a small proportion of the 
target set, while in Barthès et al. (2008), the calibration set represented 

Table 6 
Validation results for NIRS predictions of C amount in F>50 (gC kg− 1 soil) for each PLSR method, which was calibrated on (i) the soil spectral library (SSL) alone, (ii) 
SSL with spiking sets extra-weighted six times, or (iii) the target sets used for spiking alone (15-target and 10-target). For each parameter, the left-hand number was 
obtained using the spectral pretreatment that minimized RMSEP (i.e. raw or pretreated spectra, specified in table footnotes); the right-hand number is the value 
averaged over the 24 spectral pretreatments (with the standard deviation, SD). The mean ± SD of C amount in F >50 was 2.6 ± 1.9 gC kg− 1 soil in the validation set. 
The RMSEP and bias are expressed in gC kg− 1 soil; the other parameters are unitless.  

CAL set NCAL N LV R2
VAL Bias RMSEP RPIQVAL 

Global PLSR 
SSLa 181 6; 7 (1) 0.61; 0.58 (0.04) 0.2; 0.6 (0.4) 1.2; 1.5 (0.2) 1.9; 1.6 (0.2) 
SSL+6×15b 271 7; 8 (1) 0.71; 0.65 (0.03) − 0.1; 0.1 (0.1) 1.0; 1.2 (0.1) 2.3; 2.0 (0.2) 
SSL+6×10c 241 8; 8 (2) 0.68; 0.63 (0.02) − 0.1; 0.0 (0.2) 1.1; 1.3 (0.1) 2.1; 1.8 (0.2) 
15-targetd 15 3; 4 (1) 0.65; 0.63 (0.02) − 0.3; − 0.2 (0.2) 1.2; 1.4 (0.2) 2.0; 1.7 (0.2) 
10-targete 10 3; 3 (1) 0.66; 0.60 (0.03) − 0.4; − 0.4 (0.1) 1.2; 1.3 (0.1) 2.0; 1.8 (0.2)  

Local PLSR 
SSLf 181 5; 5 (1) 0.67; 0.62 (0.06) 0.1; 0.4 (0.2) 1.1; 1.3 (0.2) 2.1; 1.8 (0.2) 
SSL+6×15f 271 5; 5 (1) 0.71; 0.66 (0.02) − 0.1; − 0.1 (0.1) 1.0; 1.2 (0.1) 2.2; 2.0 (0.1) 
SSL+6×10g 241 6; 5 (1) 0.73; 0.67 (0.04) − 0.1; − 0.1 (0.1) 1.0; 1.1 (0.1) 2.3; 2.0 (0.2) 
15-targete 15 3; 3 (1) 0.74; 0.67 (0.04) − 0.4; 0.0 (0.3) 1.0; 1.3 (0.4) 2.2; 1.8 (0.4) 
10-targeth 10 3; 3 (1) 0.75; 0.63 (0.07) − 0.2; − 0.2 (0.1) 1.0; 1.2 (0.2) 2.3; 1.9 (0.3) 

aSNVDer111; bSNV; cSNVDer231; dD2Der111; eSNVDer211; fSNVD1; gSNVDer131; hSNVD2Der111. 
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more than half of the total set, which could justify more accurate pre-
dictions in the latter case. However, the soil diversity in the target set of 
the present study (one small region) was lower than that in the total set 
of Barthès et al., (2008; one small region in the Congo and three sites in 
Burkina Faso) and could therefore be represented by a smaller number of 
samples. Yang et al. (2012) studied a set of clay loam soils on one Ca-
nadian farm and obtained excellent NIRS predictions for C amount in 
POM (> 50 µm; R2 = 0.92); however, these results were achieved via 
leave-one-out cross-validation, which provides optimistic prediction 
results when several samples originate from the same site and soil profile 
(Brown et al., 2005); moreover, the sample soil diversity was limited 
(mineralogy, texture, land use, etc.). Ramifehiarivo et al. (2023) also 
used NIR spectra of non-fractionated soil to predict the C amount in 
particle size and density fractions for a set of 134 topsoil samples from 
Madagascar (seven sites, with one containing 56 samples). In their 
study, the calibration and validation sets (80% and 20%, respectively, 
which requires a great effort of fractionation) were selected according to 
spectral representativeness, and models were built using local PLSR. 
They reported better predictions for POM than in the present study for 
F>50 (RPIQVAL = 3.4 vs. 2.3, respectively). However, the greater ac-
curacy of their models was particularly notable for F<20 (RPIQVAL = 8.4 
vs. 2.2 in the present study). This result could be explained by the 
following: (i) the different strategies used for selecting calibration 
samples between the two studies, since in their case, all calibration 
samples were selected to be spectrally representative of the target set; 
(ii) the smaller proportion of samples used for validation in their study 
(20%, i.e., 25 samples); (iii) the high proportion of F<20 in the soils of 
their set and the large C amount it accounted for (on average 22 vs. 
4 gC kg− 1 soil in the present study, where soils were mostly coarse- 
textured); and (iv) fine sample grinding before NIRS acquisitions (<
0.2 mm vs. < 2 mm in the present study), which results in uniform SOM 
distribution in the sample, and therefore in the subsamples used for 
conventional and spectral measurements; that facilitates modelling 
(Barthès et al., 2006) but requires additional soil preparation. Other 

results are available in the literature but are barely comparable to those 
of the present study since quite different SOM pools were studied (e.g., 
Zimmermann et al., 2007; Baldock et al., 2013; Greenberg et al., 2022). 

4.3. Benefits of using spiking samples and/or the library 

Several authors have reported the relevance of spiking with or 
without extra-weighting for bias correction and increasing prediction 
accuracy when large SSLs are used to estimate the soil properties of 
independent target sets. For example, for SOC or SIC prediction using 
VNIRS, NIRS or MIRS, the reduction in RMSEP when spiking samples 
were added with or without extra-weighting could reach 15–20% for 
local PLSR and 20–90% for global PLSR due to the addition of infor-
mation from the target site into the calibration dataset (Gogé et al., 
2014; Guerrero et al., 2014; Barthès et al., 2020; Ng et al., 2022). This 
result was in accordance with the results of the present study; consid-
ering both calibration procedures, the reduction in RMSEP allowed by 
spiking and extra-weighting reached 20 to 40% for the non-fractionated 
soil (20–25% in global calibration, 35–40% in local calibration), 
25–30% for F<20, 0% for F20-50, and 10–15% for F>50 (with no clear 
difference between global and local calibrations for the C amount pre-
dictions in the fractions). However, an important result from the present 
study was that adding SSL to spiking samples did not always improve the 
predictions of the C amount. Adding SSL improved the prediction in 
some cases for F<20, F20-50 and F>50 (RMSEP decreased by 0–20%), 
but not for the non-fractionated soil (RMSEP increased by 0–10%). Ng 
et al. (2022) studied one VNIR SSL and four target sets in Australia and 
observed that when SSL was added to the spiking samples, the total SOC 
prediction was not improved during global calibration, although it was 
improved during local calibration. On the one hand, the limited benefit 
provided by the SSL for the C amount predictions could be explained by 
its limited spectral representativeness of the validation set, as shown in 
Fig. 3, as a consequence of the nonexhaustive calibration database and 
strictly independent validation. Thus, the model calibrated with SSL was 

Fig. 5. Regression coefficients for the prediction of C amount in the non-fractionated soil, and in the three fractions (F<20, F20-50, F>50) calibrated with global 
PLSR on the centred spectra (Centr) using the dataset including the soil spectral library (SSL) with 15 spiking samples extra-weighted six times (SSL+6×15). The 
dotted rectangles highlight some examples of peaks present for at least two fractions but absent for the non-fractionated soil. 
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partly extrapolated when applied to the validation spectra. On the other 
hand, adding SSL to the spiking samples could be useful for predicting 
the C amount in the fractions but not in the non-fractionated soil, 
possibly because of the uncertainty of conventional determinations. For 
the C amounts in the fractions, the SELint was high (cf. Sections 3.4 and 
4.6); thus, adding the SSL potentially “diluted” the possible errors in 
conventional determinations on some spiking samples. In contrast, the 
SELint was relatively smaller for the C amount in the non-fractionated 
soil (ca. 1 gC kg− 1; cf. Section 2.3); thus, diluting the possible errors 
was not necessary. 

The benefit of using 15 instead of 10 spiking samples (for a target set 
of 94 samples) depended on the variable and regression procedure, with 
no clear trend except that the result was less stable with 10 than 
15 spiking samples. Therefore, selecting the appropriate spectral pre-
treatment was more challenging with 10 than with 15 spiking samples, 
but the conventional fractionation of 5 additional samples (i.e., 50% 
more) was not necessarily justified by its benefit. Barthès et al. (2020) 
used a national MIR SSL for predicting SIC in a regional target set and 
observed for both global and local PLSR that increasing the number of 
spiking samples had no clear benefit beyond a rather low threshold 
(10 spiking samples for a validation set of 134 samples). 

4.4. Benefit of local calibration 

Compared with global PLSR, local PLSR did not yield noticeably 
more accurate predictions (except when predicting the C amount in the 
non-fractionated soil with target samples alone) and sometimes yielded 
less accurate predictions (e.g., when predicting the C amount in the non- 
fractionated soil with SSL alone). This result indicated that global PLSR 
models were generally as robust as local models since minimal benefit 
was achieved from the specific calibrations by spectral neighbours. The 
weak effect of weighting the spectral neighbours in local models could 
be due to a lack of proximity of the nearest neighbours to the validation 
samples. In contrast, the spiking samples contained the spectral infor-
mation from the target set. The use of the spiking samples, either to 
enrich the SSL or alone, improved both the global and local predictions. 
The limited benefit of local calibration in these tropical soils contradicts 
most published results that have addressed such comparisons in 
temperate areas (Clairotte et al., 2016; Barthès et al., 2020; Cambou 
et al., 2021; comparisons between Nocita et al., 2014, and Stevens et al., 
2013). However, similar prediction results have sometimes been re-
ported. Gomez et al. (2020) used a MIR SSL from France to predict the 
SOC content in Tunisia; they achieved better predictions with global 
PLSR model than with local PLSR model when the SOC data were log- 
transformed (as also done in the present study), but the opposite and 
poorer predictions were obtained without log-transformation. These 
authors concluded that correcting the distribution of the response var-
iable (through log-transformation) was more effective than calibrating 
the model through spectral neighbours to improve prediction accuracy. 
Therefore, it might be hypothesized that the variable log-transformation 
also limited the benefits of local calibration in the present study. How-
ever, despite the log-transformation of SOC data, Ng et al. (2022) ach-
ieved better predictions with the local calibration than with the global 
calibration when using a VNIR SSL to predict the SOC content in target 
sets. Thus, by considering our results and published results, no clear 
conclusion could be drawn, although the prediction of soil organic 
properties tended to be more accurate in local calibrations when the 
response variable was not log-transformed and sometimes in global 
calibrations when it was log-transformed. More research also needs to be 
performed to address the uncertainty of conventional analysis, which 
potentially has a greater impact on the accuracy of the local models than 
on that of the global models when the nearest spectral neighbours are 
affected. 

It should be noted that among the published studies that allowed 
comparisons between global and local PLSR, few involved spiking, and 
even fewer involved extra-weighting; moreover, they often concerned 

temperate areas. 

4.5 . Differences in the prediction models according to the studied 
variables 

In the present study, when the models were calibrated using SSL with 
spiking and extra-weighting, the accuracy of the C amount predictions 
decreased from the non-fractionated soil to F<20 and F>50 and then to 
F20-50. This was partially in accordance with Barthès et al. (2008), who 
found better predictions for the non-fractionated soil and F<20 than for 
F20-50; however, the lowest accuracy was achieved for F50-200 and 
F200-2000. Ramifehiarivo et al. (2023) also found better predictions of 
the C amount in F<20 than in the > 50 µm fractions, and explained this 
result by the different contributions of the fractions to total C; in 
particular, the fractionation method was unreliable for the fractions >
50 µm due to their low C amounts in the studied Malagasy soils. The 
same assumption could be made in the present study, as the prediction 
accuracy was the lowest for F20-50, which contributed the least to the 
total C amount. Finally, the C amount in F>50 was accurately predicted 
in the present study, while Barthès et al. (2008) and Ramifehiarivo et al. 
(2023) reported poor predictions for F50-200 and F>200 separately. 
This finding indicated that these fractions should not be separately 
predicted because they were not clearly separated by conventional 
fractionation and/or by NIRS. 

The C amount in each fraction was closely correlated with the C 
amount in the non-fractionated soil; thus, it could have been assumed 
that the former was indirectly predicted from the latter. However, the 
study of the regression coefficients showed strong contributions from 
both similar and different spectral regions between the fractions and 
non-fractionated soil (Fig. 5). The regions that strongly contributed to all 
variables were 1380–1400 nm, 1910–1930 nm, and 2225–2400 nm. The 
1380–1400 nm region was assigned to aliphatic organic compounds and 
water; the 1910–1930 nm region was assigned to water, polysaccharides 
and carboxylic acids; and the 2225–2400 nm region was assigned to 
different organic compounds (e.g., polysaccharides and aliphatic 
organic compounds; Demattê et al., 2006; Rinnan and Rinnan, 2007; 
Stenberg et al., 2010; Workman and Weyer, 2008). The contribution of 
these three regions to predict the C amount in the physical (and possibly 
chemical) fractions has already been reported in the literature (Cozzo-
lino and Morón, 2006; Yang et al., 2012; Greenberg et al., 2022). In 
contrast, some regions were involved in the prediction of the C amount 
in the fractions but not in the non-fractionated soil; these regions 
included the wavelength ranges of 1780–1850 nm, 1888–1896 nm, and 
2208–2210 nm and could be assigned to cellulose, carboxylic acids, clay 
and water (Demattê et al., 2006; Workman and Weyer, 2008). Green-
berg et al. (2022) also reported the involvement of different NIR regions 
when predicting the C amount in the non-fractionated soil and in the 
studied fractions (e.g., under laboratory conditions, the region at 
approximately 1400 nm was only important for predicting the frac-
tions). These results strongly suggested that the prediction of the C 
amount in the fractions was direct, rather than indirect through their 
correlations with the C amount in the non-fractionated soil, although 
these correlations were strong. 

4.6. Consideration of the effect of the uncertainty of conventional 
determination on predictions 

The prediction accuracy directly depends upon the reliability of 
reference data used for model calibration, while the estimation of NIRS 
prediction accuracy depends upon the reliability of reference data used 
for model validation. However, the reliability of reference data has not 
been extensively studied; few studies have reported replications of SOM 
fractionation, and most of the time, this information can only be found 
in Master’s or PhD theses. With respect to the SOM fractionations where 
the dispersion involved beads, HMP and (for the fraction < 50 µm) 
ultrasonication, the replications mentioned in the limited literature 
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references (Feller et al., 1991; Razafimbelo, 2002, 2005; Hien, 2004) 
indicated that for a given sample and fraction, the SD/mean ratio for the 
fraction C could reach 10% and was sometimes greater than 20% 
(Table S1). Moreover, replications in each of the cited works were per-
formed by a unique operator; this was also the case for replications 
carried out on the Togo and southern Benin samples of the present study. 
In the latter, the fractionation precisions for F<20, F20-50, and F>50 
were highly variable: the SD/mean ratio for the C amount in the frac-
tions per duplicated sample ranged from 0.2% to 16% (Table S1). 
However, over the entire SSL, fractionation was carried out by different 
operators (one per site in general), and another operator performed most 
of the fractionation on the target samples. The diversity of operators 
could increase the variability in the SOM fractionation results. This was 
confirmed by the high variability of replication results on some target 
samples, which were carried out by three operators (one per replicate): 
in each fraction of each sample, the SD/mean calculated for the C 
amount over the three replicates was at least 10% (in all cases, i.e. in 
3 fractions for 3 samples; cf. samples #7 to #9 in Table S1), mostly 
greater than 20% (6 out of 9 cases), and sometimes greater than 50% (3 
out of 9 cases). 

Although the limited number of replicates in the present study 
allowed only a rough estimate of the uncertainty of the SOM fraction-
ation, this uncertainty was high and reflected its potential impact on 
NIRS prediction accuracy or on the estimation of NIRS prediction ac-
curacy. This is in contradiction with Coates (2002), Sørensen (2002) and 
Yao et al. (2010) who showed that the degradation of reference data 
used for calibration generally had a limited effect on the NIRS prediction 
accuracy during the validation. However, the noise voluntarily added to 
their reference data by Coates (2002) and Yao et al. (2010) represented 
at most 10–20% of the mean observation. In the present study, the un-
certainty of the reference data represented up to 50% of the mean 
observation, and SELint represented at least two-thirds of the RMSEP 
(Section 3.4). As suggested by Sorensen (2002), when the uncertainty in 
the reference data (SELint) is great, it should be removed from the 
RMSEP using Eq. (6) to accurately evaluate NIRS performance. The 
uncertainty in reference data used for calibration in the present study 
could have a great impact on NIRS prediction accuracy, greater than 
reported by Coates (2002), Sørensen (2002) and Yao et al. (2010). 
Moreover, a large part of what could be interpreted as insufficient NIRS 
prediction accuracy could in fact result from the uncertainty of con-
ventional fractionation. 

Increasing the number of samples with replicated SOM fractionations 
could help to improve NIRS predictions. The question arises whether it is 
preferable (i) to carry out additional SOM fractionations to increase the 
number of spiking samples or (ii) to carry out additional fractionation 
replications to improve the quality of reference data. The results of the 
present study indicated that increasing the number of spiking samples 
from 10 to 15 had little benefit. Thus, replications of the SOM frac-
tionations would be particularly useful on the calibration samples to 
improve the accuracy of calibration models. In contrast, replications of 
reference measurements on validation samples would not affect NIRS 
predictions (these depend only on the calibration model and on vali-
dation spectra), but it would improve the estimation of validation ac-
curacy and the calculation of RMSEPnir. 

5. Conclusion 

In the present work, NIRS data were calibrated using a West African 
SSL with or without spiking and extra-weighting, and on these spiking 
samples (i.e., target samples) alone to predict the C amount in the par-
ticle size fractions of a local target set in Benin using global (i.e., com-
mon) PLSR or more sophisticated local PLSR (calibration by spectral 
neighbours). Without spiking and extra-weighting, the global models 
were inaccurate for the non-fractionated soil and F<20 according to 
RPIQVAL (between 1.6 and 1.8), but were accurate for F20-50 and F>50 
(RPIQVAL = 1.9). Using a local approach, the models were also 

inaccurate for the non-fractionated soil and F<20 (RPIQVAL = 1.6–1.7), 
and were accurate for F20-50 and F>50 (RPIQVAL = 1.9–2.1). Therefore, 
local PLSR could outperform global PLSR in some cases, but the possible 
benefit was generally limited. Spiking and extra-weighting systemati-
cally improved the predictions compared to using the SSL alone, mainly 
due to a reduction in the bias. In contrast, adding SSL to the target 
samples was not systematically useful and could even yield poorer 
predictions than using only target samples for calibration; this was 
particularly the case for the C amount in the non-fractionated soil. The 
benefit of adding 15 instead of 10 spiking samples to SSL was often 
limited and depended on the studied variable and procedure; however, 
adding 15 instead of 10 samples to SSL generally reduced the variation 
in prediction accuracy depending on the spectral pretreatment (i.e., raw 
or pretreated spectra). The consideration of the uncertainty of the con-
ventional determination of fraction C amounts (SELint), which was 
noticeable, showed that it could strongly affect the assessment of spec-
tral prediction accuracy; thus, it should be systematically estimated. To 
date, this has rarely been done in published studies, although conven-
tional determinations, particularly for sandy soils, may lack accuracy. 
The exclusion of the laboratory uncertainty could lead to underestimate 
and question the ability of NIRS to predict several variables. The present 
work opens promising perspectives, as it showed that an SSL consisting 
of multiregional soil data, with spectral acquisitions spread over 10 
years, could enable the accurate prediction of the C amount in the 
particle size fractions for a new local target set with only a small number 
of target (spiking) samples to be additionally fractionated. The SSL 
should continue to be enriched with new samples dissimilar to those 
already existing in order to progressively gain exhaustiveness. 
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dans un sol ferrallitique argileux (Brésil). Institut National Agronomique Paris- 
Grignon, France. MsC thesis.  

Razafimbelo, T., 2005. Stockage et protection du carbone dans un sol ferrallitique sous 
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