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Combining UAV and Sentinel-2 Imagery for
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Abstract—In recent decades, remote sensing has been shown to
be useful for crop cover monitoring over smallholder agricultural
landscapes, such as agroforestry parklands. However, the fraction
of green vegetation cover (FCover) has received little attention.
Indeed, the collection of FCover ground data representative of
the within-field heterogeneity is time-consuming. Thus, this article
aims to bridge this gap by proposing an original methodological
framework combining FCover data derived from unmanned aerial
vehicle (UAV) and Sentinel-2 (S2) images for estimating millet
FCover at the landscape scale in an agroforestry parkland of the
groundnut basin of Senegal during the 2021 and 2022 cropping sea-
sons. UAV-based FCover was computed over a 3 m× 3 m grid using
a thresholding approach for six dates over the cropping seasons and
then used as ground observation for the upscaling of millet FCover
at the landscape scale with S2 data. Various spectral vegetation
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indices and textural features were derived from S2, and several
modeling approaches based on machine learning algorithms were
benchmarked. Our results showed that the modeling approach
using the full-time series in combination with a random forest algo-
rithm was able to explain 73% (root mean square error = 12.13%)
of the UAV-FCover variability after validation in 2021 and 2022.
In addition, UAV images are suitable for consistent monitoring
of millet FCover over heterogeneous agricultural landscapes by
training S2 satellite images. To further check its robustness, this
approach should be tested for different crops and practices across
a variety of agricultural landscapes in sub-Saharan Africa.

Index Terms—Drone, fraction of green vegetation cover
(FCover), machine learning, satellite, smallholder agriculture, sub-
Saharan Africa (SSA).

I. INTRODUCTION

MORE than one-third of people suffering from hunger
in the world in 2021 were in Sub-Saharan Africa

(SSA) [1].The SSA population is expected to reach 3.1 billion
in 2100 [2] while the continent is also challenged by the need
to reduce its footprint on the environment and increase food
production without further encroachment of natural ecosys-
tems [3] and comply with the sustainable development goals
(SDG) [4]. In addition, agricultural productivity is still far below
its potential, which is mainly a result of inherent low soil fertility,
nutrient limitations and suboptimal agricultural practices [5],
[6]. Consequently, this trend is expected to worsen in the coming
years. That is why the sustainable intensification of SSA small-
holder agriculture, i.e., the enhancement of agricultural produc-
tivity together with the maintenance of ecosystem services and
resilience to shocks, is recognized as a critical component to
reach a proper balance across all dimensions of the SDG [6].

Agroforestry is defined as the combination of trees or woody
shrubs and crops or pastures on the same land space [7]. This
practice is recognized as a sustainable intensification prac-
tices [8] and is considered one of the most promising strategies
to increase food production on land that currently has low
tree cover without additional deforestation [9], [10], [11], [12].
Trees and woody shrubs have been an integral part of SSA
agricultural landscapes for centuries [13], and there exists a
wide diversity of agroforestry systems shaped by environmental
conditions as well as farming strategies and practices (e.g., [14]).
Some prominent examples of SSA agroforestry systems cited by
Mbow et al. [11] are multistory home gardens on Mt. Kiliman-
jaro in Tanzania, cocoa systems in Ivory Coast, and rotational
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woodlots in Kenya. A specific case of agroforestry systems
well known in dry tropical Africa, particularly in Senegal, is
the Faidherbia albida (F. albida) parklands [15]. By providing
food, fuelwood or income diversification options, F. albida
parklands can contribute to improving farm household food
security, livelihoods, and resilience (e.g., [16]). In addition, F.
albida parklands have been shown to increase crop productivity
(e.g., [17], [18], and [19]) through an improvement in nutrient
concentrations [17], soil carbon [20], water infiltration [21], and
a modification of the microclimate below the crown [22]. How-
ever, F. albida parklands are also highly diversified in terms of
species composition and structure [23], which introduces a very
large within-field heterogeneity in terms of crop productivity,
with a decay-gradient effect with distance from the trunk [19].
For instance, using a geostatistical approach and multispectral
indices from unmanned aerial vehicle (UAV) imagery, Roup-
sard et al. [24] identified that the distance of influence of F. albida
trees on millet productivity was 17 m, while in more recent
studies, Leroux et al. [16] showed that the provision of multiple
ecosystem services by F. albida trees is optimal within a range of
10 m from the trunk. Hence, to define effective policy interven-
tions to meet the SDG, reliable estimates of crop productivity in
this type of challenging agricultural landscape are needed.

Because of its large and repetitive coverage, satellite remote
sensing has been widely used for crop cover monitoring and crop
productivity assessment over large areas (e.g., [25], [26], [27]).
However, until very recently, estimation of crop productivity by
satellite remote sensing was still challenging for smallholder
agricultural landscapes characterized by a small field size [28],
important cloud cover during the crop growing season [29] and
high intrafield heterogeneity due to the presence of isolated trees,
diversity in soil conditions and crop management practices [30].
Some promising results have been obtained for smallholder
farming systems by exploiting the capabilities of new satellites,
such as PlanetScope or Sentinel-2 (S2) (e.g., [31], [32], [33],
[34]). However, these studies failed to reproduce the variability
observed in farmers’ fields. In addition, despite their high spa-
tiotemporal resolution, these optical systems are still hampered
by the atmospheric conditions during the growing season.

In the case of heterogeneous agricultural landscapes such as
agroforestry parklands, the combined use of satellite images with
UAV images offers a tangible solution since subdecimeter UAV
images can be acquired at low-altitudes below clouds [35]. In
addition, UAV images can assess within-field variability even in
the heterogeneous agricultural landscape of smallholder farming
systems [35], [36]. However, Pdua et al. [37] reviewed the use of
UAVs for agroforestry system monitoring and showed that most
of the studies focused on northern systems. Few examples fo-
cusing on crop monitoring with UAVs in agroforestry systems in
SSA can be found, such as the study of [38] for mango orchards
in Senegal or the study of [24] in an F. albida parkland in Senegal.
Consequently, the potential of UAVs for crop monitoring in SSA
agroforestry parklands remains to be fully exploited.

In recent years, visible and multispectral imaging sensors have
been integrated into UAVs to estimate crop vegetation cover
because of their low cost, efficiency, convenience, and spatial
accuracy [39], [40], [41]. At the same time, the recent advances
made in the past 10 years in terms of satellite spatiotemporal

resolution, such as the one offered by the S2 constellation,
have opened new avenues for the monitoring of smallholder
agriculture by reducing mixed pixel issues [35], [42].
However, the S2 constellation is still limited in terms of spatial
resolution [i.e., 10 m for the visible and near infrared (NIR)
bands] to capture the within-field variability in smallholder
agricultural landscapes. Consequently, we can assume that one
way of optimizing spatial resolution issues is to combine several
sources of information, such as UAV images and freely available
satellite images, such as S2. This represents an unprecedented
opportunity to improve and strengthen crop monitoring in het-
erogeneous agricultural landscapes. Even if the processing of
images from multiple sources is challenged by the different
radiometric characteristics and temporal and spatial resolutions,
their combination can add value by cumulating their respective
advantages. Specifically, the potential of UAV images to fill
the gap between ground data information and satellite infor-
mation for habitat mapping [43], [44], invasive plant species
mapping [45] or agricultural monitoring [35], [46] has been
recently demonstrated.

One of the vegetation cover biophysical parameters that are
important for agricultural monitoring but have raised little at-
tention in the scientific literature on satellite-based agricultural
monitoring in SSA is the fraction of green vegetation cover
(FCover). FCover is defined as the fraction of ground covered
by green vegetation and is a canopy architecture parameter and
hence is used to quantify the spatial extent of photosynthetically
active vegetation. FCover plays a crucial role in ecological
or biophysical processes [47]. It is, for instance, an important
parameter for predicting crop yield or other canopy biophysical
variables, such as the leaf area index or gross primary produc-
tivity, and it is also an indicator of surface phenology (e.g., [35],
[48], [49]. Satellite images have been shown to be very efficient
for crop FCover estimation in various ecosystems [45]. Like-
wise, other studies have also shown the potential of UAV-based
images to offer spatially continuous quasi-ground truth FCover
data [35], [44], [50].

Many approaches have been developed in the literature to
quantify biophysical variables, such as FCover from (proxy-)
remote sensing data, which can be categorized into statistical
(variable-driven) and physical-based (radiometric data-driven)
categories [51]. However, most of the studies rely on vegetation
indices (VIs) to estimate crop biophysical parameters. [52]
indicated that VIs from UAVs have good correlations with
vegetation cover parameters. Some authors have also shown
the benefit of considering textural indices [35], [50], [53], [54].
For instance, in a study on mapping the fractional cover of
invasive species combining S2 and UAV images, [45] observed
that textural indices allowed a higher accuracy for the mapping
of species occurrence. The same conclusion was reached by
Hall et al. [35] for mapping maize FCover with UAV images
in heterogeneous smallholder farming systems of Ghana and
by Kwak and Park [54] for different crop type cover mapping
in Korea. In terms of statistical approaches, machine learning
algorithms are now increasingly used in crop monitoring studies
mainly due to their abilities to deal with nonlinear relationships
between the spectral information and the targeted crop variables.
In Burkina Faso, Leroux et al. [55] demonstrated the ability
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Fig. 1. Study area. (a) Location of the study area (red square) in the Fatick region of Senegal, (b) location of the 8 farmers’ plots monitored over the 2021
cropping season (black boundaries) on the land use map of 2021 derived from S2 images and a RF algorithm, and (c) zoom over the 8 farmers’ plots of 2021 (red
boundaries) displayed on a Google Satellite ©background.

of the random forest (RF) algorithm in maize yield estimation.
Later, in the F. albida parklands of Senegal, Gbodjo et al. [31]
showed that deep learning algorithms provide promising options
for millet yield estimation, while Leroux et al. [33] used a
gradient boosting machine (GBM) algorithm to disentangle the
millet yield variability drivers. Under lower latitudes, in Ghana,
Hall et al. [35] also demonstrated the robustness of support vec-
tor machine (SVM) for maize FCover estimation with UAV im-
ages. Among the possibilities to further increase the accuracy of
machine learning approaches, the use of multitemporal images
over the season instead of using only one single image has been
demonstrated [54]. Model stacking is another way of improving
machine learning approaches. Model stacking is an ensemble
method that allows one to improve the model predictions by
combining the output of different individual models [56]. While
model stacking has been used in various applications linked to
agricultural monitoring using remote sensing data (e.g., [57],
[58], [59]), to the best of the authors knowledge, it has received
very little attention for the estimation of crop cover parameters
in heterogeneous smallholder agricultural landscapes. However,
we can mention the work of the authors in [60], [61], and [62]
on using a stacking approach for crop type mapping in South
Africa, Zimbabwe, and Mali, respectively.

As one additional step toward the improvement of crop
productivity monitoring to meet the challenges of smallholder

farmers in SSA, this study aims to propose an original method-
ological framework combining UAV and S2 images using up-to-
date machine learning approaches for estimating crop FCover at
the landscape scale. In particular, we aimed to (1) benchmark the
traditional approach based on one machine learning algorithm
applied on a unique date to two alternative approaches consid-
ering a full-time series over the crop cycle and model stacking,
(2) compare the performance of the combined use of UAV and
S2 images in estimating FCover with FCover estimated with
S2 data only, and (3) assess the crop FCover at the landscape
scale using the best approaches resulting from (1) and (2). We
argue that agroforestry systems inherently offer a wide range
of conditions to test those methods; therefore, this study was
conducted in a parkland in Senegal with pearl millet under F.
albida trees (see Fig. 1).

II. MATERIALS AND METHODS

A. Study Area

The study was conducted in 2021 and 2022 in a F. albida agro-
forestry parkland near the village of Niakhar in the Fatick depart-
ment located in the groundnut basin of Senegal [see Fig. 1(a)].
The study area covers approximately 16 km2 [see Fig. 1(b)].
The climate is Sudano–Sahelian, with one rainy season lasting
from July to October and with August and September being
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TABLE I
VIS USED IN THIS STUDY AND CALCULATED FROM OPTICAL BANDS OF UAV

AND S2 IMAGES

the wettest months. The annual rainfall in our area of interest
calculated from the weather station in the “Faidherbia-Flux”
experiment1 was 482 mm in 2021 and 822 mm in 2022. Soils
are mainly sandy soils located over dunes and flat areas, while
slightly more clayish soils are located in lowland areas and
interdunes [63]. In the study area, as in most parts of the country,
the livelihoods of rural populations are centered on small-scale
rainfed agriculture with low external input use and low soil
fertility and nutrient availability, with fertility decreasing with
increasing distance from homestead fields where farmers tend
to concentrate their nutrient resources [64]. The main crops
cultivated in the region are pearl millet (Pennisetum glaucum (L.)
R. Br); used as a staple crop, and groundnut (Arachis hypogaea
L.), used as cash crop. Pearl millet and groundnut are cultivated
in a typical biennial rotation in bush fields, while homestead
fields are continuously cultivated with pearl millet. In a typical
cropping season, pearl millet is sown around May-June, before
the first rain and harvested from October to November. The
study area is also characterized by a tree-based cropping system
dominated by F. albida, representing 42% of the trees among the
60 tree species inventoried in the study area [23]. F. albida is a
leguminous nitrogen-fixing species with phreatophytic behavior
and a reverse phenology [65]. F. albida is well known to improve
water and nutrient availability [19] and to foster microclimate
modification under the tree crown [22] and the concentration of
animal dejections. F. albida sheds leaves at the end of the dry
season, which provides green manure. Overall, these features
contribute to increasing soil fertility and crop yield under tree
crowns, creating a “fertility island” also termed the “albida
effect” [19], [66].

B. Data and Preprocessing

1) S2 Data: The S2 satellites (S2A and S2B) compose the
European Space Agency (ESA) optical high-resolution mission
for the Copernicus Program. Time series of S2 level-2 (S2-L2A)
were downloaded from the THEIA Platform.2 Level 2 A (L2A)
products provide surface reflectances corrected for atmospheric
effects and are supplied with a mask of clouds and their shad-
ows. The S2 multispectral imager provides a wide range of
multispectral observations from 13 bands in the visible, NIR
and shortwave infrared parts of the electromagnetic spectrum

1[Online]. Available: https://lped.info/wikiObsSN/?Faidherbia-Flux
2[Online]. Available: https://theia.cnes.fr/atdistrib/rocket#/search?

collection=SENTINEL2)

with spatial resolutions of 10, 20, and 60 m depending on the
wavelength (see Section III). The repetitiveness of sensors S2A
and S2B alternates over a ten-day period, offering a revisit of five
days at the equator under the same viewing conditions [67]. In
this study, six S2 images were acquired over the 2021 cropping
season and two images during the 2022 cropping season (see
Fig. 2) and only the visible spectral bands [red, green, and blue
(RGB)] and the NIR (band 8) with 10-m spatial resolution were
considered. For each acquisition date, four VIs and eight textural
features (TFs) were calculated.

a) Computation of VIs: The four selected bands (i.e., vis-
ible and NIR) were used to calculate four VIs, namely, the
normalized difference vegetation index (NDVI), green normal-
ized difference vegetation index (GNDVI), green chlorophyll
vegetation index (GCVI), and excess green index (ExGI) (see
Table I). These four VIs have been chosen due to their sensitivity
to chlorophyll contents of crop cover, and hence the presence of
green vegetation. NDVI is by far the most common VI used
for crop vegetation monitoring. In addition, in a recent study
conducted in the same area, GNDVI has been shown to be more
sensitive to pearl millet aboveground biomass than traditional
VIs, such as NDVI [33]. The main strength of GCVI compared
with the other VIs is that it can be used for a wide range of plant
species [68]. Lastly, excess green is a color VI that is therefore
very sensitive to the presence of the green color on (UAV or
satellite) images. In addition, it relies only on R,G, and B bands,
consequently it is a cost-effective solution for vegetation moni-
toring and mapping since it can be derived from any sensors. VIs
derived from the red-edge band (i.e., normalized difference red-
edge index) have been shown to be good proxies of chlorophyll
content toward the end of the growing season when crops reach
their maturity, and for high-density canopy cover. Due to (1) the
very low sowing density of pearl millet over our study area, with
a maximum leaf area index on average below 2, and (2) similar
performance of NDRE compared with NDVI to estimate pearl
millet aboveground biomass at harvest over our study area (not
shown), no index based on the red-edge band has been included
in this study to allow the applicability of the methodological
workflow to a broader range of sensors (e.g., Planet).

b) Calculation of TFs: For each VI, eight TFs were ex-
tracted in all directions and on 3 × 3 pixel windows using the
gray-level co-occurrence matrix (GLCM) developed by Haral-
ick et al. [72] for remote sensing processing. The GLCM has
already been applied in many domains, such as invasive species
monitoring [54]. TFs are also used to reduce noise effects.
The extracted TFs are mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation.

2) UAV Data: Eight and four farmers’ millet fields were
monitored over the 2021 and 2022 cropping seasons, respec-
tively. The UAV system used in this study is a DJI Phantom 4
equipped with a multispectral camera acquiring information on
six spectral bands (RGB NIR, and red edge, see Section IV).
Since it was not possible to cover all the fields on the same day
due to battery limitations, UAV image acquisition was performed
over a five-day period centered on the S2 acquisition dates (see
Fig. 2). UAV flights were carried out in open sky conditions
and low wind speeds between noon and 4 P.M. local time. The
DJI Gs Pro application was used to define the flight missions.
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Fig. 2. Overview of the acquisition dates of S2 and UAV images over the 2021 and 2022 cropping seasons. UAV acquisitions were performed over a five-day
period centered on the S2 acquisitions.

Images were acquired every 2 s at a flight altitude of 25 m with a
longitudinal overlap rate of 80% and lateral overlap rate of 70%
to obtain gapless orthoimages. Based on these flight settings,
a total of 1300–2000 images were acquired per flight, and the
UAV image spatial resolution was 1.3 cm. Then, the UAV images
were mosaicked to obtain multispectral orthoimages, and these
orthoimages were coregistered with S2 images to align them.
Since the UAV image is already aligned with the S2 image, the
corresponding pixels should be relatively superposed.

3) Land Use and Land Cover Data (LULC): A LULC [see
Fig. 1(b)] of the study area was used to locate millet fields
in 2021 and to extrapolate the FCover over millet areas. The
LULC map was obtained from a ground survey conducted before
the harvest time of the 2021 cropping season and a S2 time
series. A RF algorithm [73] implemented on the Google Earth
Engine cloud-based platform was used to implement the LULC
classification [74].The global accuracy was 88%, and the user
and producer accuracy for the cereal class were 80% and 87%,
respectively. Then, we assumed that individual or contiguous
pearl millet fields, having similar biophysical and management
characteristics, would have similar spectral signatures and con-
sequently could be grouped under a unique “millet patch.”
Those millet patches were derived from the intersection of (1)
an object-based segmentation into homogeneous patches using
the multitemporal S2 NDVI data and (2) the 2021 LULC map.
Object-based large-scale segmentation was performed using
the MeanShift algorithm implemented in the Orfeo Toolbox.3

Finally, to extract the main LULC class in each patch and select
only patches of millet, majority voting was applied.

3[Online]. Available: https://www.orfeo-toolbox.org/)

C. Methodology

For the sake of clarity, the methodological workflow for the
S2-UAV FCover modeling and assessment is presented in Fig. 3.
First, the observed FCover was derived from the UAV images
(see Section II-C1). Then, the S2-UAV FCover was modeled
and assessed by analyzing the statistical relationships between
S2 VIs and TFs and the UAV-based FCover (see Section II-C2).
To that end, three different machine learning algorithms were
tested: RF, GBM, and SVM. In addition, 3 modeling options
were compared: 1) a baseline option where the models were
calibrated on a date-by-date basis, and two optimized options 2)
model stacking and 3) modeling considering the full-time series
(see Section II-C2). Finally, the S2-UAV FCover was assessed
against accuracy metrics and an FCover derived from the SNAP
algorithm (see Section II-C1) and spatialized over the study area
(see Section II-C4).

1) UAV-Based Fcover: UAV-based FCover (hereafter UAV-
FCover) was used in this study as the calibration and validation
observation to upscale FCover estimation at the landscape scale.
When applied to remote sensing images, FCover represents
the percentage of green pixels out of the total pixels. FCover
determination was performed based on the following four
steps.

1) Coregistration between UAV orthomosaic images and S2
images to correct the misalignment between UAV and S2
data. Coregistration is a way to increase the accuracy of
directly georeferenced UAV orthoimages to other high-
resolution aerial or satellite imagery [75]. To that end
each individual S2 image (i.e., date) was considered as
a reference while each corresponding UAV image as the
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Fig. 3. Methodological workflow used to estimate pearl millet FCover from UAV and S2 images where baseline corresponds to the modeling on a date-by-date
basis, optimized 1 corresponds to the first optimized option for modeling, the model stacking, and optimized 2 to the second optimized option, the modeling on
the full-time series.

image with an offset to be corrected with respect to S2. To
that end, a maximum absolute radius (shift) was set to 3
with an increment equal to 1.

2) Calculation of the ExGI (see Table I) on each UAV image.
Snchez et al. [76] demonstrated that ExGI is a powerful
index to discriminate vegetation due to its simplicity and
its satisfactory mean accuracy and SD accuracy at 30 and
60 m flight altitudes for any image acquisition date.

3) Binarization of UAV-ExGI images based on a threshold
approach defined iteratively for each acquisition date to
discriminate green vegetation from bare soil. The thresh-
old was defined based on visual inspection of RGB com-
posite images. The basic principle of this method is to
set the threshold of the ExGI and compare it with each
pixel to obtain the vegetation information. When the pixel
value is larger than this threshold, it is a vegetation pixel;
otherwise, it is a nonvegetation pixel [77].

4) A 3 m grid was constructed, and then the percentage of
green vegetation in each grid was computed to obtain the
FCover (see Fig. 4).

2) S2-UAV FCover Modeling: The mean of each S2 VI and
TF (see Section 2.2.1) was extracted over the 3-m grid. In our
modeling framework, the VIs and TFs were used as independent
variables, while the UAV-FCover was used as the dependent
variable (see Fig. 3).

a) Variables selection: To avoid overfitting of our models,
the number of VIs and TFs was reduced. To that end, two
techniques were applied. First, multicollinearity is known to
influence the parameters of variable selection. The variable
inflation factor [VIF; (1)] was calculated and used to test all the
VIs and TFs for multicollinearity and remove highly correlated
variables. A stepwise approach was used, in which VIF was
recalculated at each step, and the variables with the highest
VIF were dropped until all VIF values were smaller than 10.
Then, the remaining variables were used in a recursive feature
elimination (RFE) algorithm to finally select the optimal number
of variables and increase the computational efficiency. RFE is a
backward feature selection algorithm, meaning that the number
of variables is reduced at each step by removing the variables
that decrease the model quality

VIFi =
1

1−R2
i

(1)

where VIFi stands for the VIF of the variable i and R2
i stands

for unadjusted coefficient of determination for regressing the ith
independent variable on the remaining ones.

b) Tested machine learning algorithms. RF: The RF is a
popular and powerful machine learning algorithm proposed by
Breiman [73] and based on the ensemble learning technique
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Fig. 4. Illustration of the UAV-FCover steps for one field and for the image of 04-09-2021, with (a) UAV RGB image, (b) ExGI used for the binarization based
on a threshold approach, (c) resulting binarization, and (d) FCover estimated from (c) on a 3-m grid, where the percentage of millet pixels within a 3-m grid has
been computed.

(bagging). It is a nonparametric algorithm based on the com-
bination of decisions from multiple decision trees. Among its
main advantages, RF is easy to implement, robust to outliers,
and stable and limits overfitting, which explains that it is now
widely used in crop monitoring, both for crop yield modeling
and cropland mapping included in smallholder agricultural land-
scapes (e.g., [31], [55], [78]).

Gradient boosting machine: The GBM is a machine learn-
ing algorithm that is less popular so far in crop monitoring
than RF (e.g., [78]). GBM is an ensemble learning technique
that minimizes overfitting risks and optimizes the predictive
performance through the combination of a large number of
simple trees [28]. GBM is also a nonparametric approach that is
relatively insensitive to outliers and able to account for nonlinear
interactions between dependent and independent variables or
between independent variables.

Support vector machine: SVM also belongs to the machine
learning algorithm category. While SVM is widely used to
solve classification problems [79], [80], it is rarely applied to
regression problems. When applied to a regression problem,
SVM is called support vector regression (SVR). SVR is also
a nonparametric algorithm that seeks to find a hyperplane that
best fits the observation data points in a continuous space. To that
end, the independent variables are mapped to a high-dimensional
feature space to find the hyperplane that maximizes the distance
between the hyperplane and the closest data points while mini-
mizing the prediction error. SVR is also able to address nonlinear
and complex relationships between the dependent variable and
independent variables by using a kernel function to map the data
to a higher-dimensional space. To improve the modeling accu-
racy, the hyperparameters of each algorithm were tuned based
on a grid search assessing the top-performing combination: mtry
for RF, C and Sigma for SVM and interaction.depth, and n.trees,
shrinkage, and n.minobsinnode for GBM (see Table S3).

c) Modeling options. Date-by-date modeling (Baseline op-
tion): In the baseline option, each machine learning algorithm
was calibrated and validated on a date-by-date basis, resulting in
the calibration-validation of 15 models during the 2021 cropping
season (3 algorithms × 5 dates). By crossing all the possible
algorithms×dates, this is the most detailed modeling framework
that can be setup. In addition, it will help in the determination

of the best algorithm but also of the most sensitive period for
FCover estimation over the cropping season.

Model stacking (Optimised option 1): Model stacking is an
ensemble method that allows improving the model predictions
by combining the output of different individual models, called
base learners, and running them through a meta-learner to gen-
erate final predictions that are generally more robust than the
predictions coming from the individual base learners [56]. In
this study, the base learners were the S2-UAV FCover predicted
by RF, GBM, and SVM, and the UAV-FCover was used as
the dependent variable. The meta-learner was based on a mul-
tiple linear regression algorithm. Linear regression is usually
used for the meta-learner because it does not require tuning
hyperparameters [81]. The model stacking was constructed for
the date reaching the best accuracies in the baseline option.

Modeling on full-time series (Optimised option 2): Instead
of considering each date as an individual dataset for modeling,
all the dates were pulled together to form a unique dataset, and
the date information was considered an additional independent
variable. By doing this, we increased the size of the dataset and
the range of FCover variability. Hence, we assumed that it will
improve the robustness of the modeling framework while taking
better advantage of the potential of machine learning algorithms.
Consequently, date information, VIs and TFs time series were
used together for FCover modeling and to gain insight into the
impacts of date information on the model accuracy. The mod-
eling on the full-time series was applied on the best performing
algorithm in the baseline option.

3) Assessment and Validation of S2–UAV FCover Modeling:

a) Accuracy metrics: The performance of the different
modeling options was assessed using the coefficient of deter-
mination R2 and the root mean square error (RMSE) when
compared with UAV-based FCover. In the calibration phase, a
fivefold cross validation with five repetitions was adopted to
avoid overfitting of the models since all the data were used for
both training and validation (70% of the total dataset). This
means that the data are equally assigned to five equally sized
subdatasets, called folds. Each fold is subsequently removed,
while the remaining data are used to fit the regression model and
to predict the missing data. This step is repeated five times. In the
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validation phase (30% of the total dataset), the S2-UAV FCover
estimations were directly compared with the UAV-FCover. The
best modeling option, i.e., the one with the largest R2 and the
smallest RMSE, was selected for comparison with the FCover
estimated from the SNAP algorithm and for the spatialization
over the study area (see Section II-C4).

b) Comparison with the FCover estimated from the SNAP
algorithm: The S2-UAV FCover was compared against a
FCover obtained from the Sentinel Simplified Level 2 Product
Prototype Processor embedded in the ESA Sentinel Application
Platform (SNAP) that has been designed to retrieve biophys-
ical parameters from S2 observations. The SNAP biophysical
processor was chosen in this study due to its simplicity and
efficiency for estimating vegetation biophysical variables across
different ecosystems (e.g., [82], [83], [84]). The biophysical
modules of SNAP allow for the retrieval of biophysical parame-
ters (i.e., leaf area index, fraction of absorbed photosynthetically
active radiation, canopy chlorophyll, canopy water content, and
FCover) based on artificial neural networks trained with radia-
tive transfer model simulations from PROSPECT+SAIL [85].
We applied the SNAP algorithm to estimate the FCover of the
six dates over the 2021 cropping season using the eight S2
reflectance bands (B3, B4, B5, B6, B7, B8A, B11, and B12,
see Table S1). The SNAP-FCover was rescaled at a 10-m spatial
resolution using the nearest neighbor resampling technique. The
FCover values were then extracted on a 3-m grid to match
the S2-UAV FCover estimation resolution, and the agreement
between the two FCover estimations was examined using R2

and RMSE accuracy metrics (see Section II-C3).
Estimation of the S2-UAV FCover in 2022
To test the robustness of the approach, the best option (i.e.,

baseline option, optimized option 1 and optimized option 2)
was applied for the two dates of the 2022 cropping season and
compared with the 2022 UAV-based FCover.

4) S2-UAV FCover Spatialization Over the Study Area: The
modeling option with the best accuracy (R2 and RMSE) was
used to estimate the S2-UAV FCover over the study area by
using the pearl millet patch map (see Section II-B3). The model
was applied on the five dates of the 2021 cropping season to
estimate the spatial and temporal distribution of pearl millet
FCover. The “raster” [86], “sp” [87], “rgdal” [88], ranger [89],
“RF” [90], “rpart” [91], “car” [92], and tidyverse [93] packages
from R software version 4.1 [94] were used during the process of
FCover model calibration, validation and spatialization. QGIS
3.18 was used to produce the different maps, while all the
statistical graphics were plotted with the ggplot2 [95] package
from R software.

III. RESULTS

A. UAV-FCover

The UAV-FCover for the six acquisition dates along the 2021
cropping season are shown in Fig. 5. The UAV-FCover exhibited
high temporal variability following the pearl millet development
cycle, with coefficient of variation values of 71.64%. The UAV-
FCover increased from 5 August, 2021, corresponding to the
emergence date, up to 4 September, 2021, corresponding to the

Fig. 5. Temporal variability of the UAV-based FCover over the pearl millet
2021 cropping season. The UAV-based FCover was obtained from a threshold
approach applied to ExGI UAV images.

TABLE II
R2 AND RMSE OBTAINED BY THE MODEL STACKING (I.E., OPTIMIZED OPTION

1) RUN FOR THE DATE WITH THE HIGHEST ACCURACY IN THE BASELINE

OPTION—5 AUGUST, 2021

start of the maturing phase with the maximum aboveground
biomass, and then decreased over the last two dates, corre-
sponding to the maturing phase up to harvest. Spatial variability
was also observed with a higher range of values for the date of
maximum vegetation (i.e., 4 September, 2021).

B. S2-UAV FCover Date-by-Date Modeling

Table S4 presents the results of the variable selection steps.
Overall, GCVI and ExGI were the two VIs consistently selected
for the six dates. For TFs no clear pattern were observed since all
TFs were selected at one time or another. On the 32 potential TFs
(8 TFs× 4 VIs), between 12 and 14 TFs were selected depending
on the date. Fig. 6 presents the results of the calibration and
validation phase for the baseline option, i.e., estimation of the
S2-UAV FCover on a date-by-date basis. On the basis of R2

and RMSE, Fig. 6 shows that the performance ranged between
0.60 and 0.83 for R2 (2.5%–12% for RMSE) in calibration
and between 0.48 and 0.69 for R2 (2.76–14.28% for RMSE) in
validation. Among the machine learning algorithms tested, RF
showed higher accuracies. GBM and SVM performed similarly.
When the performance is analyzed regarding the growing season



DIACK et al.: COMBINING UAV AND S2 IMAGERY FOR ESTIMATING MILLET FCOVER IN A HETEROGENEOUS AGRICULTURAL LANDSCAPE 7313

Fig. 6. S2-UAV FCover estimation for the baseline option where the S2-UAV FCover has been estimated on a date-by-date basis. (a) R2 and (b) RMSE are
provided for the calibration and validation phases for each tested algorithm (RF, SVM, and RF) and for each of the fivedates over the 2021 cropping season.

the beginning of the growing season (i.e., around the emergence
stage) showed the highest accuracy.

C. S2-UAV FCover Modeling Based on the Optimized Options

1) Model Stacking: The results of the model stacking (i.e.,
optimized option 1) are presented in Table II. The model stacking
was tested for 5 August, 2021, the date with the highest accuracy
in the baseline option. The R2 and RMSE values for each of the
base learners (i.e., each algorithm) were similar to the R2 and
RMSE values for the meta learner. The R2 and RMSE values
for each of the base learners (i.e., each algorithm) were similar
to the R2 and RMSE values for the meta learner (R2 = 0.68,
RMSE= 2.73%). Hence, overall, our results showed that the use
of model stacking did not significantly improve the accuracy,
suggesting that RF, GBM, and SVM are robust enough for pearl
millet FCover estimation in our study area.

2) Modeling on the Full-Time Series: Fig. 7 presents the
results of optimized option 2, i.e., using the full-time series as
a unique dataset and based on the RF algorithm since it gave
the best result in the baseline option. The model achieved an
accuracy of 0.86% in calibration (RMSE = 8.84%) and 0.73%
in validation (RMSE = 12.13%) [see Fig. 7(a)], hence outper-
forming the baseline option and optimized option 1. The density
distribution of the predicted S2-UAV FCover showed an increase
in the FCover values from the beginning of the cropping season
to early September and then a decrease in the FCover values
corresponding to leaf senescence. The FCover distribution was
also more heterogeneous when moving toward the end of the
cropping season (see Fig. 7). The visual comparison of the
UAV-FCover and the predicted S2-UAV FCover showed overall
good agreement in terms of both spatial and temporal variability
[see Fig. 7(c)].

D. Assessment of S2-UAV FCover Modeling

1) Comparison With FCover Estimates From the SNAP Al-
gorithm: The results obtained by the best modeling approach
of this study (i.e., optimized option 2: RF + full-time series)

was compared against the FCover computed with the SNAP
algorithm (see Fig. 8). The SNAP-based FCover showed a weak
relationship when compared with the reference UAV-FCover
[Fig. 8(a); R2=0.18; RMSE = 21.47]. A systematic overes-
timation of the SNAP-FCover was observed, particularly for
high FCover values. Consequently, the comparison between the
S2-UAV FCover and the SNAP-FCover showed low agreement
as well [Fig. 8(b); R2=0.15, RMSE = 19.17%]. The S2-UAV
FCover seemed more suited than the SNAP-FCover when the
vegetation density was low, with FCover <= 40%. Above this
threshold, the UAV FCover and SNAP-FCover performed more
similarly (see Supplementary Material Table S5).

2) Estimation of the FCover in 2022: The best modeling
approach of this study (i.e., optimized option 2: RF + full-
time series) was then applied over the 2022 cropping season
(see Fig. 9).When considering the whole cropping season, the
calibration and validation results were similar to those ob-
tained for the 2021 cropping season (R2 = 0.73 and RMSE
= 13.16% in validation). Analysis of Fig. 9 shows two main
groups of data ranging from 0% to 12% corresponding to the
emergence stage (10 July, 2022) and ranging from 35% to
75% corresponding to the preheading stage (04 September,
2022). This result also showed that the method can be used
for FCover estimation throughout the cropping season (R2 =
0.64 and RMSE = 14.8% for 10 July, 2022 and 04 September,
2022, respectively, in validation, see Fig. S1 in Supplementary
Material).

E. Spatial and Temporal Variability of S2-UAV FCover Over
the Study Area

Optimized option 2 (RF + full-time series) was used to map
the spatiotemporal variability in the FCover over our study
area (see Fig. 10) based on the S2-UAV FCover and LULC
data (see Section II-B3). High spatiotemporal variability in the
FCover was observed. Around the emergence date (2021-08-15),
low FCover values (<16%), were observed, followed by an
increase in FCover values up to the start of the maturing stage
(4 September, 2021), where the maximum FCover values were
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Fig. 7. S2-UAV FCover estimation based on the use of the full-time series (i.e., optimized option 2). (a) Comparison between the predicted S2-UAV FCover
values and the UAV-FCover values for the calibration and validation phases. The red solid line is the regression line between the observed and predicted FCover,
while the dashed line is the 1:1 line. The RF algorithm was applied based on the output of the baseline option. (b) Density distribution of the predicted S2-UAV
FCover. (c) Details showing the UAV RGB image, the UAV-FCover and the predicted S2-UAV FCover for one field.

reached (<=64%). From the maturing stage to the harvest
time, FCover values decreased (32% –48%) together with leaf
senescence and fall. A higher spatial heterogeneity was also
observed toward the end of the cropping season (04 September,
2021), where FCover values were between <16% and >64%
suggesting that a large-scale difference in the timing of the
cropping season can be observed for the same crop.

IV. DISCUSSION

A. Modeling on the Full-Time Series With RF Allows
Improvement of the FCover Estimation

In this study, the following three modeling options have been
compared.

1) A baseline option where the estimation of the S2-UAV
FCover has been performed on a date-by-date basis and for
three machine learning algorithms (RF, GBM, and SVM),
and two optimized options.

2) Model stacking.
3) Modeling on the full-time series.
Our results showed that modeling using multitemporal infor-

mation (i.e., using the full-time series) combined with an RF al-
gorithm was the option allowing us to capture the millet FCover
variability with highest accuracy [R2 = 0.86 in calibration and
R2 = 0.73 in validation; Fig. 7(a)] when compared with the
baseline option (R2 in validation ranging from 0.48 and 0.69 for
RF depending on the dates; Fig. 6). We considered that these
figures were within the range of validity for upscaling millet
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Fig. 8. Comparison of FCover estimated from the SNAP algorithms for all the dates over the cropping season in 2021. (a) SNAP-FCover vs. UAV-FCover;
(b) S2-UAV FCover versus SNAP-FCover. The black line shows the linear regression line. The color gradient represents the number of points in each hexagon.

Fig. 9. Comparison between the predicted S2-UAV FCover values and the UAV-FCover values in the 2022 season for (a) calibration and (b) validation. The black
line is the regression line between the observed and predicted FCover, while the dashed line is the 1:1 line.

FCover at the landscape scale with S2. Hence, our results suggest
that using a multitemporal approach can better distinguish the
phenological development of pearl millet than a date-by-date
analysis (baseline option). Our results are in line with those
found by Kamenova and Dimitrov [96] for mapping wheat
FCover in Bulgaria using S2 data or [45] for mapping the FCover
of the invasive shrub Ulex europaeus using UAV and S2 images.
The modeling framework based on the full-time series is also
more flexible in that it can be used to estimate FCover regardless
of the developmental stage of pearl millet between emergence
and harvesting. This is all the more convenient when reasoning at
the landscape scale, where substantial differences can be found
in the phenological development of the same crop. The second
optimized option we tested was model stacking, which uses a
diversity of models in an attempt to improve the overall ensemble
performance. Surprisingly, model stacking performed similarly
to the baseline option and hence did not show any additional
value. This can be explained by the fact that each base learner
performed relatively similarly (R2 and RMSE values in the same
range of values) and by the fact that the three algorithms are
closed in the way they operate, hence limiting the diversity in

terms of base learners [97]. In the future, more machine learning
algorithms could be used as base learners to increase the diver-
sity. In addition, a machine learning algorithm can be used as a
meta-learner, instead of the linear regression used here, to better
account for the potential nonlinear relationships between VIs
and TFs with the UAV-FCover [98]. Our results also showed the
higher performance of RF compared with SVM and GBM. This
is in line with a previous study conducted over the same study
area showing that RF outperformed other machine learning/deep
learning approaches for millet yield estimations based on S2
and Sentinel-1 data [31]. However, an underestimation of high
FCover values (> 50%) was observed, which can be explained
by an overall tendency of RF to overestimate low values and
to underestimate higher values, as already shown in previous
studies [45], [55], [99], [100].

B. S2 Data Have Good Potential for Estimating FCover When
Combined With UAV Data

To validate our methodological approach, the S2-UAV FCover
obtained with the best modeling option (i.e., optimized option 2
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Fig. 10. S2-UAV FCover estimation over the study area for millet crop patches for five dates along the 2021 cropping season, displayed on a Google Satellite
©background.

using the full-time series) was compared against the FCover
obtained from the SNAP algorithm using S2 data only (see
Fig. 8). We have shown that the FCover estimated using the
combination of S2 and UAV images clearly outperformed the
one estimated through the SNAP biophysical model (PROSAIL)
using S2 only (R2 = 0.73 in validation versus R2 = 0.18 when
compared to UAV-based FCover). The SNAP FCover overesti-
mated full range of values mesured by UAV. Furthermore the
overestimation affect mostly higer values (> 50%). Our results
are in line with the study in [96] and [101] showing a higher
accuracy for PROSAIL when estimating the FCover of row
crops than empirical approaches. However, the authors agreed
on the strong influence of the background on the capacity of
PROSAIL to retrieve the FCover. Hence, in our case, this can
be explained by the higher proportion of mixed pixels at the
beginning of the cropping season when the FCover is low and the

background reflectance dominates the S2 spectral signal, which
might strongly influence the variable retrieval by the SNAP
algorithm. This is all the more true in our case because the level
of analysis and calibration of the S2-UAV FCover model is over a
grid of 3m × 3m, thus better taking into account the variability
in the vegetation cover, compared with the SNAP algorithm,
which works only at the native spatial resolution of S2 of 10 m.
This is reinforced by the fact that UAV data, even aggregated at a
spatial resolution of 3 m, also allow a better discrimination of the
vegetation signature due to the use of the thresholding approach
to remove background pixels, particularly at the beginning of
the season when the vegetation cover is low. In addition, to test
the robustness of the methodological framework over time, the
best modeling option was applied to the 2022 dataset (see Fig. 9).
Similar performances to those observed in 2021 (see Fig. 7) were
found. Hence, even if the combined S2-UAV approach added



DIACK et al.: COMBINING UAV AND S2 IMAGERY FOR ESTIMATING MILLET FCOVER IN A HETEROGENEOUS AGRICULTURAL LANDSCAPE 7317

more steps in the methodological workflow (e.g., orthoimage
processing and coregistration), this method added value for
FCover estimation by improving accuracy, confirming in other
studies (e.g. [44]) and was robust over time. In addition, for
moderate spatial resolution satellite sensors, such as S2, for
which it is almost impossible to find a pure pixel of vegetation
in heterogeneous agricultural fields, we have shown here that
using UAV data as pseudoground data can significantly improve
the ground data collection for satellite images.

C. S2-UAV FCover is Able to Depict the Spatiotemporal
Variability of Millet FCover

Figs. 7 and 10 illustrate the ability of the S2-UAV FCover
to depict the spatiotemporal variability of millet FCover. The
analysis of the temporal profiles [see Figs. 7(b) and (c), and 10]
showed a clear temporal pattern linked to the state of pearl millet
development that matched the one observed with the UAV-based
FCover (see Fig. 5). In the early season, when the vegetation
cover is low and homogeneous, a normal distribution of FCover
values was observed, with maximal values of approximately
10%. Then, it is followed by the core of the growing season
(15 August, 2021 and 25 August, 2021), corresponding to an
increase in the FCover values and a unimodal distribution. The
peak of the growing season was reached on approximately 4
September, 2021, with FCover values of approximately 60%,
followed by a decrease in FCover values toward the end of the
cropping season but with a more heterogeneous distribution of
FCover values. This heterogeneous pattern corresponds to the
transition between the maximum of the growing phase and the
maturation phase and was probably due to three simultaneous
events, the fall of some millet leaves, the change in color of some
leaves from green to yellow and the peak of weed development.
For that analysis, the timing of acquisition was defined based
on the schedule of S2 acquisition to obtain information every
10 days and hence to be able to capture the phenological devel-
opment of the millet crop. Our results highlighted that the high
repetition rate of the S2 constellation (i.e., ten days per satellite
and five days in combination) is highly valuable to increase
the chance of having a clear view during the key phenological
stages of millet development. Conversely, analysis at the plot
level [see Fig. 7(b) and (c)] and landscape level also showed
high spatial heterogeneity within fields toward the end of the
cropping season. This has already been shown for millet yield at
harvest at the plot scale using UAV images [24] and landscape
level using satellite images [33] over our study area and has
been mainly explained by the presence of F. albida and, more
broadly, the composition and structurate of the tree layers at the
landscape scale. In addition, it has been demonstrated for various
crops, including millet, that the spatial variability of weed dis-
tribution can affect the crop yield at the field scale and that this
effect is not constant throughout the field, as weeds develop as
patches [102].

D. Limits of the Study

While new satellite such as S2 have been designed for global
mapping of canopy variables such as FCover, the moderate

spatial resolution (i.e., 10 m) they offered remains adapted to ho-
mogeneous agricultural landscape but still fails to reproduce the
intrafield variability of the vegetation development observed in
smallholder farming systems. Meanwhile, subcentimeter UAV
images have been successfully used in heterogeneous agricul-
tural landscape of smallholder farming systems for crop cover
monitoring (e.g., [36]). In this study, UAV-based FCover images
were used as an alternative to ground data to train satellite data
and examine pearl millet FCover over our study area. In line
with other studies (e.g. [35], [44], [45]), our results have shown
the high potential of UAV-based FCover to scale-up FCover
estimation in complex agricultural landscapes instead of using
traditional field data that are more time-consuming to obtain.
However, the accuracy of our approach is tightly dependent on
the accuracy of the FCover derived from UAV images. First, the
quality of the UAV-based FCover depends on the method used
to compute the FCover. In that analysis, a threshold approach
based on the ExGI was used to obtain a binary classification
of millet-nonmillet pixels. However, even if the threshold has
been carefully adjusted according to the date of acquisition, it
might still be difficult to discriminate pure vegetation pixels due
to high spatial variability within and between fields. That is why
an alternative approach is to use machine learning algorithms
to derive the FCover from UAV images because of their larger
ability to account for large observed variations than the threshold
approach [47]. The weeds within the fields, particularly those
present at the end of the growing season, can also lead to a mixed
signal and an overestimation of the millet FCover with UAV
images. The ExGI is based on the visible-RGB channels that are
limited in discriminating between small differences in the colors
or shapes of plants. That is why some studies recommended
using hyperspectral sensors to overcome those issues and be able
to discriminate weeds [103]. Due to the different shapes between
crops and weeds (weeds forming generally large continuous
patches), Hall et al. [35] also recommended using object-based
segmentation to discriminate maize from weeds. At the end
of the cropping season during the senescence phase, we can
also expect an underestimation of UAV-based FCover since
nonphotosynthetic vegetation cannot be discriminated by the
green vegetation index used [44], [104]. Second, the quality of
the UAV-based FCover also depends on the spatial resolution
of the data, as shown by [44]. In this study, a grid of 3m
× 3m was chosen as an intermediate resolution between the
UAV resolution and S2 resolution since it corresponds to the
spatial resolution of PlanetScope images that are now available
worldwide and which can be considered an alternative sensor
to map FCover over a large scale. However, the aggregation
of the data from a finer spatial resolution to a coarser spatial
resolution leads to a spatial effect called the modifiable area unit
problem (MAUP) by geographers. One way of coping with this
issue is to rely on the aggregation of UAV-based FCover over
different grid sizes to examine the (in)stability of the relation-
ships for different spatial resolutions [105]. However, since the
RF algorithm we used relies on bootstrapping (i.e., successively
randomly removing several pixels from the analysis), we can
assume that we limited the influence of MAUP by stabilizing the
relationships. Last, the quality of the UAV processing workflow
can also have an influence on the S2-UAV FCover estimation,
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particularly linked to coregistration errors between UAV images
and S2 images. These coregistration errors are mainly due to
uncertainty in the GNSS positioning for both Sentinel and UAV
images and in the coregistration step to align the UAV images
across the different dates. Very few studies have considered these
satellite UAV image coregistration issues when combining the
two sources of information. Recently [45] proposed solving the
issue of the spatial offset of both sensors by translating it into an
optimization problem and hence allowing the identification of
the optimal coalignment between S2 images and UAV images.
Despite these potential limitations, the good agreement found
using an independent dataset for 2022 suggests that the method-
ological framework proposed here is already robust for millet
FCover estimation in the F. albida parkland. Future studies must
be conducted to solve the aforementioned uncertainties related to
UAV image processing, UAV-S2 coregistration and UAV-based
FCover estimation.

V. CONCLUSION

Mapping the FCover of staple food crops such as pearl millet
at the field and landscape scales is a crucial step toward the
improvement of crop productivity monitoring in smallholder
heterogeneous agricultural landscapes such as in F. albida agro-
forestry parklands. The improvements made in terms of spatial,
temporal and spectral resolution by the S2 constellation have
opened new opportunities for crop monitoring at the landscape
scale but failed so far to properly capture the within-field vari-
ability typical of smallholder agricultural landscapes. In this
study, we assumed that the combination of low-cost UAV data
and freely available satellite data, such as S2 can play an impor-
tant role in refining crop monitoring in SSA. Our main objective
was to propose an original methodological framework using
UAV images and S2 data for estimating millet FCover using the
example of a F. albida parkland in 2021 and 2022. UAV-based
FCover over a 3 m × 3 m grid was used as ground observation
for the upscaling of millet FCover at the landscape scale with
S2 data. Six UAV and S2 images were acquired at different
times of the millet growing season for our study area. After
benchmarking different modeling approaches, the resulting best
model was able to catch 73% of the UAV-FCover variability
in validation in 2021 and 2022. In particular, we demonstrated
that 1) the use of the full-time series allowed us to improve the
FCover estimation over the cropping season compared with a
date-based approach, and 2) satellite sensors such as S2 had
good potential for estimating the spatiotemporal variability of
crop FCover when associated with UAV images in smallholder
agricultural landscapes. The results of this study show that
combining UAV and satellite sensors can be a valuable tool to
map crop FCover in heterogeneous agricultural landscapes, such
as the Senegalese F. albida parklands. Thus, we recommend
that users rely on UAV images as an alternative to ground
data in such complex environments for FCover monitoring.
However, the robustness of our approach needs to be tested
under various smallholder agricultural landscapes with different
crops and practices, especially at higher crop development, such
as occuring in well fertilized and/or irrigated fields. To that

end, the applicability of our approach to new agricultural land-
scapes can be tested by analyzing the “Area of Applicability”
as suggested by Meyer and Pebesma [106] when predictions
are made for heterogeneous areas and with limited field data
as it is most of the time the case in smallholder agricultural
landscapes.
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