Characterization of adaptation mechanisms in sorghum using a multi-reference back-cross nested association mapping design and envirotyping

Vincent Garin, Chiaka Diallo, Mohamed Lamine Tekete, Korotimi Thera, Baptiste Guitton, Karim Dagno, Abdoulaye G. Diallo, Mamoutou Kouressy, Willmar Leiser, Fred Rattunde, Ibrahima Sissoko, Aboubacar Toure, Baloua Nebie, Moussa Samake, Jana Kholova, Julien Frouin, David Pot, Michel Vaksmann, Eva Weltzien, Niaba Teme, and Jean-Francois Rami

Sorghum in the 21st Century Global Sorghum Conference

Resiliency and Sustainability in the Face of Climate Change

2023 Montpellier, France

IER

Niaba Teme, Mohamed Lamine Tekete, Korotimi Thera, Karim Dagno, Abdoulaye G. Diallo, Mamoutou Kouressy

CIRAD

Baptiste Guitton, David Pot, Julien Frouin, Michel Vaksmann, Jean-Francois Rami

ICRISAT (Mali)

Eva Weltzien (Wisconcin University), Chiaka Diallo (Intitut polytechnique rural), Willmar Leiser (KWS), Fred Rattunde (Wisconcin University), Ibrahima Sissoko, Aboubacar Toure, Baloua Nebie (CIMMYT)

ICRISAT (Inde)

Jana Kholova

USTTB

Moussa Samake

The challenge of the genotype by environment (GxE) interaction

Plants, especially sorghum are experiencing strong GxE interaction.

Sorghum shows a wide range of adaptation (plasticity).

GxE is a challenge for breeders, especially in the context of marker assisted selection

How to meet the demand of farmers that experience extremely diverse cultivation conditions?

-> Advanced genetic resources + Envirotyping + statistical methodology + decision support tools

Advanced genetic resources: West and Central Africa (WCA) BCNAM population

WCA-BCNAM populations: 41 crosses between central parent Grinkan, Kenin-Keni, and Lata3 (N=3901) and 24 donors parents with a wide diversity of traits.

Envirotyping: Multi-environment phenotyping

Multi-environments characteristics:

Four testing sites: Sotuba, Cinzana, Samanko, Kolombada

Two sowing dates (Sot, Cin): End june, End July

Location	Cumulated rain season [mm]	Temperature [°C]	Photoperiod (June) [h]	Photoperiod (July) [h]
Sotuba	570 – 851	27	12.3	12
Cinzana	338 – 708	28.5	12.15	11.95
Samanko	967	27.5	12.3	
Kolombada	438	26.7	12.3	

Trait: Flag leaf, plant height, number of internodes, average internode length, peduncle length, panicle length, yield

Envirotyping: 15 environmental covariates (EC)

Category	EC	Unit	Observed/ inferred	Sum/mean
Atmospheric	cumulated rain	mm	obs	sum
	humidity	%	obs	mean
	vapour pressure deficit	kPa	inf	mean
	slope of saturation VP curve	kPa/d	inf	mean
	potential evapotranspiration	mm/day	inf	mean
	deficit by precipitation	mm/day	inf	mean
Temperature	minimum temperature	d	obs	mean
	maximum temperature	d	obs	mean
	temperature range	d	obs	mean
	cumulated degree day	dd	obs	sum
	T effect on radiation use efficiency	0-1	inf	mean
Radiation	cumulated hour of sun	h	obs	sum
	photoperiod	h	inf	mean
	solar radiation	MJ/m^2/day	inf	sum
Photothermal	Photothermal (photoperiod * DD)	h*dd	obs	sum

EnvRtype: Costa-Neto et al. (2020) Nasapower: Sparks (2018) Statistical methodology: MPP-ME QTL detection model

We assumed that each parent carries a different allele at the QTL position that can have a different effect in each environment (N_par x N_Env effect) estimated compared to reference (central parent).

Statistical methodology: Variance covariance structure

(Set of gene act differently in each E)

 σ_g^2

 $\sigma_{g_{jj'}}^2$

Statistical methodology: QTLxEC model

$$\underline{y_{icj}} = env_j + cross_{cj} + x_{ip} * \beta_{pj} + \underline{GE_{icj}} + \underline{e_{icj}}(2)$$

$$\Box$$
QTL term
$$x_{ip} * (\beta_p + EC_e * S_p + l_{pe})$$

Bp: parental allele main effect across environment

ECe: value of the environmental covariate in environment E

Sp: Sensitivity of the parental QTL allelic effect to the EC

a) Estimation of the QTL allele sensitivity to the EC

b) Projection of the QTL effect given new EC values

mppR: Multi-Parent Population QTL Analysis

Analysis of experimental multi-parent populations to detect regions of the genome (called quantitative trait loci, QTLs) influencing phenotypic traits measured in unique and multiple environments. The population must be composed of crosses between a set of at least three parents (e.g. factorial design, 'diallel', or nested association mapping). The functions cover data processing, QTL detection, and results visualization. The implemented methodology is described in Garin, Wimmer, Mezmouk, Malosetti and van Eeuwijk (2017) < $\frac{doi:10.1007/s00122-020-03621-0}{017-2923-3}$ as well as in Garin, Malosetti and van Eeuwijk (2020) < $\frac{doi:10.1007/s00122-020-03621-0}{017-2923-3}$.

Version:	1.4.0
Depends:	R (≥ 3.1.0)
Imports:	<u>dplyr</u> , <u>ggplot2</u> , graphics, grDevices, <u>igraph</u> , <u>Matrix</u> , methods, <u>nlme</u> , parallel, <u>qtl</u> , stats, utils
Suggests:	knitr, rmarkdown, testthat
Published:	2023-01-05
Author:	Vincent Garin 🝈 [aut, cre], Valentin Wimmer [aut], Dietrich Borchardt [ctb, dtc], Fred van Eeuwijk [ctb, ths], Marcos Malosetti [ctb, ths]
Maintainer:	Vincent Garin <vincent.garin6 at="" gmail.com=""></vincent.garin6>
BugReports:	https://github.com/vincentgarin/mppR/issues
License:	<u>GPL-3</u>
URL:	https://github.com/vincentgarin/mppR
NeedsCompilation	: no
Citation:	mppR citation info
Materials:	<u>README NEWS</u>
CRAN checks:	mppR results
Documentation:	
Reference manual:	<u>mppR.pdf</u>
Vignettes:	QTL detection in multiparental populations characterized in multiple environments
	mppR: An R Package for QTL Analysis in Multi-parent Populations

	FLAG	РН	NODE_N	NODE_L	PED	PAN	GWGH	YIELD
Grinkan 2012	6 (48.9)	3 (48)	4 (17.6)	2 (47.1)	6 (31.2)	5 (8.5)	3 (13.5)	3 (5.4)
Grinkan 2013	4 (32.1)	4 (44.5)	1 (9.6)	2 (42.6)	2 (21.1)	1 (4.6)	0	2 (7.3)
Kenin-Keni 2012	6 (53.4)	2 (9.6)	2 (16.8)	3 (18.8)	3 (14.3)	2 (5.2)	2 (7.9)	1 (3.9)
Kenin-Keni 2013	2 (35.5)	2 (12.7)	2 (22.3)	0	2 (16.9)	1 (5.8)	0	1 (5.9)
Lata3	4 (50.3)	2 (20.1)	2 (13.7)	1 (11)	2 (10.2)	0	6 (30.4)	4 (14.3)

Good explanation (R2) of FLAG, PH, NODE_N and PED. Less QTL and lower R2 for PAN and YIELD.

Results – Large QTL effect with candidate genes

QTL ID	trait	chr	range [cM]	range [<u>Mbp</u>]	R2	OxE range	<u>Npar</u>	Candidate genes
Q_FL_3_78	FLAG	3	77.34-78.36	5.11-5.15	17.1	[-123; 144] [dd]	24	Elf3, SbCN12
Q_FL_6_3	FLAG	6	1.49-2.94	0.04-0.08	19.4	[-178; 130] [dd]	24	Ma6
Q_FL_6_38	FLAG	6	36.32-39.4	4.04-4.12	6.3	[-192; -27] [dd]	19	Ma1
Q_FL_9_105	FLAG	9	103.7-106.7	5.46-5.54	2.7	[-40;91] [dd]	23	SbFL9.1
Q_PH_7_76	PH	7	74.28-76.69	5.47-5.52	21.9	[-37; 69] [cm]	20	qHT7.1, (Dw3)
Q_PH_7_106	PH	7	102-108.3	5.94-6.07	7.6	[-14;58] [cm]	15	Dw3
Q_NN_3_78	NODE_N	3	78.13-78.75	5.14-5.17	9.3	[-1.8;2.1] [n]	16	Elf3, SbCN12
Q_NN_6_2	NODE_N	6	1.49-2.73	0.04-0.08	7.9	[-2.6;1.8] [n]	19	Ma6
Q_NL_7_78	NODE_L	7	76.29-79.59	5.51-5.58	29.9	[-0.1;4.2] [cm]	16	qHT7.1, (Dw3)
Q_NL_7_98	NODE_L	7	96.1-100.7	5.83-5.91	11.8	[-5.8-4.2] [cm]	8	Dw3
Q_PED_7_78	PED	7	74.8-82.1	54.84-56.26	12.6	[-8; 10] [cm]	24	qHT7.1, (Dw3)

Large QTL effect with underlying candidate genes for FLAG and PH

Results – Complex genetic pattern at large effect QTL positions

Parental QTL allelic effects are modulated by genetic background and environment

Decision support tools – R shiny application for interactive QTL effect database

Description: Search for QTL p	Description: Search for QTL positions in the database using		icance	[-log10(p-val	ue)]					GR2013 Flag leaf - chr:6 cM:2.91 (S6_838602)			
trait, chromosome, and position be subsetted according to R2 v	i information. QTL effect can also alue		chr	hn	cM	logn av	loan min	loon max	16-	EC	Kalaban	E361	
Select a trait		QTL FLAG 6 3	6.00	758633.94	2.60	47.20	15.90	96.50	14	DAS: 9-28	B = 4.863	B = 11.737	
Flag leaf appearance	•	QTL_FLAG_6_38	6.00	40649927.66	37.30	28.90	7.50	65.70	12- E		Server and		
Select chromosome(s)									18:	DAS: 61-80	B = 0.815	B = 1.772	
6		QTL R2									Server Start	A The second	
Select physical boundaries		QTL	chr	bp	сМ	R2_av	R2_min	R2_max	10-		hand	hand	
Lower boundary [bp]	Upper boundary [bp]	QTL_FLAG_6_3	6.00	758633.94	2.60	19.40	14.40	24.00	10-	DAS: 58-77	B = 9.61	B = 13.485	
0	10000000	QTL_FLAG_6_38	6.00	40649927.66	37.30	6.30	2.20	11.10	lat 14			3	
or Genetic boundaries Lower boundary [cM]	Upper boundary [cM]								12- F 18:			and and	
0	1000	QTL range of ad	ditive e	effects					14 - Q	DAS: 64-83	B = -0.589	~ >	
Filter by		QTL	chr	bp	сМ	Eff_min	Eff_max		12-			hard	
Physical distance Constitution distance		QTL_FLAG_6_3	6.00	758633.94	2.60	-178.51	130.16		18-		\sim	\sim	
 Genetic distance 		QTL_FLAG_6_38	6.00	40649927.66	37.30	-191.67	26.98		14- 14	DAS: 15-34	B = -106.52	{ }	
Optional filter by R2 value [0-10 minimum R2 value	[00]								12- 40			hard	
0		List of unique QTL po QTL_FLAG_6_3 QTL	sition th FLAG_	at can be copied _6_38	to get ext	ra informatio	on about the C	QTL effect and the G	10-	-12.5 -10.0 -7.5 -5.0 -2.5	12.5 -10.0 -7.5 -5.0 -2.5 long	12.5 -10.0 -7.5 -5.0 -2.5	

Search

https://github.com/vincentgarin/SQE

[dd]

-50 -100 -150 -200 -250

logpval

3.0
3.5
4.0
4.5

The last mile – Integrating better farmers needs and context

Tricot experiment (van Etten et al. 2019) for sorghum participatory variety selection with 200 farmers from 20 villages of the Adilabad district (India)

The last mile – Integrating better farmers needs and context

ExM constraint selection

Farmer variety preference

Trait selection	
General appreciation	•
Soil type	
Black	-
Soil quality	
Good - Very good	•
Irrigation	
Overall	•
Fertilisation	
Fertilisation	-

ExM constraint selection

Trait selection	
General appreciation	•
Soil type	
Overall	-
Soil quality	
Poor - Medium	-
Irrigation	
Overall	•
Fertilisation	
Overall	-

Conclusion – Better integration of developed technologies and farmers need

Costa-Neto, G., Galli, G., Carvalho, H. F., Crossa, J., & Fritsche-Neto, R. (2021). EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. *G3*, *11*(4), jkab040

Sparks, A. H. (2018). nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. *Journal of Open Source Software*, *3*(30), 1035.

Van Etten, J., Beza, E., Calderer, L., Van Duijvendijk, K., Fadda, C., Fantahun, B., ... & Zimmerer, K. S. (2019). First experiences with a novel farmer citizen science approach: crowdsourcing participatory variety selection through on-farm triadic comparisons of technologies (tricot). *Experimental Agriculture*, *55*(S1), 275-296.