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ABSTRACT
In this paper, we propose the detection of land use and land cover
changes from satellite imagery taken in Richard Toll. The Senegal
River Valley, particularly the region encompassing Richard Toll,
presents a significant research interest due to the prevalence of ex-
tensive agro-industrial activities. These activities induce profound
alterations in the vegetative landscape, particularly evident upon
their initiation or during expansion phases. Concurrently, these
regions are obligated to reconcile the exigencies of pastoral sus-
tainability. The identification of land use modifications through
change detection in these areas is crucial for the prognostication
and management of potential socio-environmental conflicts. Our
approach is based on Deep Learning models applied to the analysis
of satellite images, falling within the field of remote sensing where
we automate the process of satellite images segmentation before
tackling the generation of changes map. The methodology begins
with the collection of geospatial-temporal data, 3-channel images
taken at different points in time and in different spaces, of the area
of interest via Google Earth Pro. The study region is divided into
eight distinct classes, including cultivated fields, uncultivated fields,
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land, water, buildings, roads, football fields and vegetation. U-Net
and FCN-8 deep learning architectures are used to achieve that
goal by generating the segmented masks in order to highlight the
changes areas by creating changes map during a post-process. We
compare these two models and opt for the U-Net model, which
offers the best performances.
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1 INTRODUCTION
This study delves into the pivotal role of change detection in the
realm of satellite imagery analysis, particularly in the context of
mitigating and anticipating social tensions between agricultural
and pastoral communities. The crux of our research is centered on
identifying shifts in land use patterns, which are often precursors to
conflict between farmers and herders over resource allocation. By
pinpointing these changes, especially in regions where agricultural
expansion or intensification intersects with traditional pastoral
routes, we aim to provide early warnings and facilitate timely inter-
ventions. However, detecting these changes is just the initial step.
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It’s imperative to also consider the diverse forms of support and
assistance required by the impacted populations. This entails devis-
ing strategies not only to mitigate immediate disputes but also to
ensure sustainable coexistence and resource sharing. Through this
approach, we aspire to contribute towards a more harmonious bal-
ance between agricultural development and pastoral needs, thereby
fostering socio-environmental resilience in these sensitive regions.

The comparison between traditional pixel-based classification
methods [6, 17, 18, 20] and newer object-based methods for Land
Use/Land Cover (LULC) classification were sometime used [9, 12,
13, 15, 29]. However, the shift towards Deep Learning is preferred
for its ability to maintain semantic information and automate the
process [5, 14, 22, 23]. The adopted method involves the application
of deep learning techniques for classifying geospatial-temporal
satellite images within the field of remote sensing.

Therefore, our study is based on the innovative approaches in-
cludes careful geospatial-temporal data collection in the Richard
Toll region using Google Earth Pro software. The areas of interest
is divided into eight distinct classes: cultivated fields, uncultivated
fields, land, water, buildings, roads, football fields, and vegetation,
aligning with the GGW objectives for promoting sustainable land
use and land cover.

The remainder of this paper unfolds as follows. Section 2 un-
dertakes an exploration of related works within the field, offering
a comprehensive contextual backdrop for our research. Section 3
meticulously elucidates the methodologies that constitute the data
acquisition strategy step, the deep learning methods adopted, fine-
tuning strategy and process to detect change land cover changes.
Section 4 unveil the results derived from the outlined methodolo-
gies, coupled with an exhaustive analysis and subsequent discussion
in Section 5, in order to provide a nuanced understanding of the
implications and contributions of our research. Finally, we conclude
and present some research perspectives in Section 6.

2 RELATEDWORKS

In this section, we examine existing literature related to the
detection of land use and land cover changes using deep learn-
ing techniques. Increasing attention is being directed towards the
utilization of deep learning techniques for generating land cover
change maps. A substantial body of research is dedicated to explor-
ing the application of deep learning in this context.

In [11], Ebel et al. have developed a multimodal Siamese archi-
tecture for change detection. The network consists of two encoder
branches for each sensor and a decoder part integrating the func-
tionalities of the previous layers. Each encoder branch processes
the bitemporal signal of its corresponding modality. samples, SAR
and multispectral optics, in two passes. The extracted features are
transmitted over skip connections in a U-Net like mode then con-
catenated.

A high-performing change detection algorithm using a U-Net
architecture on High-Resolution Multi-Spectral (HRMS) images has
been proposed in [33]. They enhanced the algorithm with a low-
complexity pan-sharpening method, enabling joint use of panchro-
matic and multi-spectral images. The feature-level U-Net model
included a subtraction network for extracting dynamic difference

(DI) images for low-level and high-level features. Results demon-
strated superior performance with an average F-1 score of 0.62, a
percent correct classification (PCC) of 98.78%, and a kappa coeffi-
cient of 61.60% for test datasets. However, potential limitations, like
dependence on HRMS data and variations in image quality, may
affect performance in different scenarios.

In [30], the author investigates the use of Convolutional Neu-
ral Networks (CNN) for land cover classification from very high-
resolutionmultispectral orthorectified images. Leveraging the abun-
dance of Very High Resolution (VHR) data, the study addresses
challenges related to varying appearances of land features due to
factors like shooting time, sensor settings, image processing, and
geographic context. The importance of testing classifier generaliz-
ability on unseen datasets is emphasized. Results indicate promis-
ing use of CNN for land cover classification, achieving an average
accuracy rate of 96% on the UC Merced dataset with 5-fold cross-
validation. The model’s generalization capability is demonstrated
on unrelated VHR images beyond the initial training data. Address-
ing limitations, the study acknowledges the challenge of obtaining
large labeled datasets for deep learning in land cover classification.
Techniques like "refinement learning" for reusing trained networks
on other tasks are explored. Variability in land feature appearances
is recognized as another complexity in classification [30].

In [8], Sentinel-2 time series data from the European Space
Agency (ESA) were utilized for land cover classification. The data,
covering the 2017-2018 agronomic year, included multispectral im-
ages in 13 bands with varying spatial resolutions. Fourteen features
were extracted from 30 time steps, and field data from the Ministry
of Agriculture were used for model training and testing. A Bidi-
rectional Long-Short-Term Memory (BiLSTM) network with two
layers and a softmax output layer was employed. The 2-BiLSTM
model’s mask exhibited a spatial distribution of land cover classes
aligning with Spain’s Parcel Identification System (LPIS). Identified
categories included fruit trees, arable land, rice crops, and natural
vegetation. The model achieved an overall accuracy of 98.7% against
the test set, outperforming other segmentationmodels. Precision, re-
call, and F-1 scores varied for each class, with notable performance
on natural vegetation but slightly lower discriminatory power for
permanent crops compared to annual crops [8].

In [4], researchers proposed a non-overlapping grid-based ap-
proach to train FCN-8 with VGG-16 weights for segmenting satel-
lite images into forest, built-up areas, agricultural land, and water
classes. FCN-8 utilizes discriminative features learned by the lower
resolution encoder, projecting them into higher resolution pixel
space for dense classification. The Gaofen-2 dataset, comprising
150 images from over 60 Chinese cities, was used for experimenta-
tion. The proposed approach significantly outperformed eCognition
software, achieving an average accuracy of 91.0% and an average
intersection over union (IoU) of 0.84. In contrast, eCognition soft-
ware attained an average accuracy of 74.0% and an average IoU of
0.60. While FCN-8 demonstrated superior performance, limitations
included boundary errors between land cover classes, analyzed
in detail. Model performance relies on satellite image quality and
resolution, with lower quality images potentially affecting accuracy.
Geographic diversity in the studied regions can also impact model
performance [4].
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Figure 1: Some satellite images collected from the Richard
Toll region

3 METHODS
In this section, we outline our study’s methodology, covering the
acquisition, annotation, augmentation, and preprocessing of three-
channel satellite images. We discuss model selection for segmenta-
tion of images where a label is given to each pixel of an image [16],
fine-tuning [21], and creation of change maps. Strategies for ad-
dressing data limitations and imbalance are detailed. A comparative
analysis of chosen models provides insights into their precision.

3.1 Dataset Acquisition
In building our dataset for the Great Green Wall initiative, we
strategically focused on gathering satellite images from Richard
Toll in Senegal, a key agricultural hub known for vast sugar cane
fields. This region’s significance in agriculture makes it ideal for
studying the initiative’s impact.

The collected satellite imagery, obtained at various resolutions
using Google Earth Pro, offers valuable insights into land use and
vegetation patterns (see Fig 1). This diverse dataset enhances the
versatility of our research for robust analysis in subsequent stages.

3.2 Dataset Annotation
In the data preparation process, after initial image collection, our
crucial step involves annotating images using Labelme, a versa-
tile tool [19]. Labelme simplifies the process, allowing us to draw
polygons, assign labels, and capture information.

(a) Colors of classes (b) Satellite images annotation

Figure 2: Illustration of the annotation process

This annotated dataset, as illustrated in Fig. 2b, is essential for
training and evaluating our deep learning algorithms. A Python

script, coupled with Labelme’s JSON file, aids in creating masks
representing the labels.

3.3 Dataset Augmentation
To diversify our dataset, TensorFlow’s ImageDataGenerator ap-
plied controlled transformations like rotation, shifts, shearing, zoom-
ing, and flips. Integrated seamlessly into our workflow, this tool ef-
ficiently expands the dataset, enhancing our deep learning model’s
effectiveness. It overcomes small dataset limitations, promoting
generalization to unseen data—an essential aspect for our research
success.

3.4 Dataset Preprocessing
In preprocessing step, we address image size and shape with re-
sizing and cropping for uniformity. Images are read, converted to
RGB, and resized. The « patchify function » divides resized im-
ages into patches for further analysis. Similarly, mask images are
resized appropriately. Processed image and mask patches are col-
lected for subsequent research. Data scaling normalizes pixel values
for consistency and aids model convergence during training. This
preprocessing pipeline ensures dataset formatting and standardiza-
tion [2]. To do this, we evaluate the normalized value Xnormalized
of pixel image following by Eq 1.

Xnormalized =
X − Xmin

Xmax − Xmin
(1)

Here,X is the all set of image pixel,Xnormalized is the normalized
value of X, and Xmin and Xmax are the minimum and maximum
values in the set of image pixel.

3.5 Deep Learning Adopted Models
For our study, we have opted for two state-of-the-art Convolu-
tional Neural Network (CNN) architectures tailored for semantic
segmentation tasks:

3.5.1 U-Net with Inception ResNetV2 Encoder. Our initial
model draws inspiration from the highly acclaimed U-Net archi-
tecture, a stalwart in the field of semantic segmentation [28]. This
model, as shown in Fig. 3, leverages the formidable Inception ResNetV2
as its encoder, creating a potent combination of two state-of-the-art
architectures. U-Net is widely acknowledged for its proficiency
in capturing intricate spatial features, particularly well-suited for
tasks that demand precise delineation of object boundaries.

Figure 3: U-Net architecture with Inception resnetv2 as en-
coder
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The choice of Inception ResNetV2 as the encoder brings addi-
tional strength to our model. Inception ResNetV2 is renowned for
its capability to extract hierarchical features, allowing it to discern
both local details and global contextual information. This synergy
between U-Net and Inception ResNetV2 results in a robust architec-
ture that excels in understanding the complex relationships within
an image.

By seamlessly integrating the strengths of U-Net and Inception
ResNetV2, our model is poised to tackle segmentation tasks with a
heightened level of accuracy and efficiency. The Fig 3 illustrates the
overall architecture, showcasing the effective collaboration between
U-Net’s specialized segmentation capabilities and the feature-rich
hierarchical extraction prowess of Inception ResNetV2

3.5.2 FCN-8 with VGG19 Encoder. Our second model embraces
the Full Convolutional Network (FCN-8) [4], a powerful architec-
ture designed for end-to-end pixel-wise predictions. Enhancing its
capabilities, we’ve equipped FCN-8 with a VGG19 encoder, a proven
and effective feature extractor that complements the architecture
seamlessly (refer to Fig 4). VGG19, known for its simplicity and effi-
ciency, lays a solid foundation for robust feature extraction, setting
the stage for precise segmentation tasks.

Figure 4: FCN-8 architecture with VGG19 as encoder

The ’8’ in FCN-8 means the upsampling factor, a crucial aspect
that empowers the network to generate finely detailed segmenta-
tion maps. This architecture excels in capturing intricate informa-
tion spanning the entirety of the input image. Its ability to maintain
spatial details makes FCN-8 particularly well-suited for tasks that
demand nuanced pixel-wise predictions.

In selecting these models, we strike a balance between advanced
feature extraction and efficient segmentation. The distinctive ar-
chitectures of U-Net and FCN-8 make them invaluable candidates
for our research study. By incorporating these models, we aim to
delve into a comprehensive exploration and comparison of their
performance within the unique context of our dataset and research
objectives.

3.6 Training
In this section, we present how our adopted approaches are trained
and different parameters that were used in order to do this.

Firstly, we randomly initialized the parameters of U-Net [28] and
FCN-8 [4]. We proceeded to train them by using the Adam opti-
mizer that is a widely used optimizer in deep learning, combining
the benefits of 𝑆𝐺𝐷 and 𝑅𝑀𝑆𝑝𝑟𝑜𝑝 by automatically adjusting the
learning rate for each parameter, enabling fast convergence and

better adaptation to complex loss landscapes [3]. The learning rate
is fixed to 0.001 for the beginning. The activation function used
in all the layers of both models was Rectified Linear Unit (𝑅𝑒𝐿𝑈 )
(see Eq 3) except the outputs layers of both where a 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 func-
tion (see Eq 2) was used to get a probability distribution of output
classes [7, 10, 27].

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖 ) =
𝑒𝑥𝑖∑
𝑗
𝑒𝑥 𝑗

(2)

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) (3)

As we have unbalanced classes, we choose 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 (see Eq 4)
and 𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠 (see Eq 5) and we sum them in order to use their total
(see Eq 6) as loss function (𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 ) to overcome the unbalanced
problems [31].

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 =
2 ·𝑇𝑃

2 ·𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)

Where𝑇𝑃 represents the True Positives, 𝐹𝑃 represents the False
Positives 𝐹𝑁 represents the False negatives [31].

𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠 = −(1 − 𝑦)𝛾 · log(𝑦) (5)

Where 𝑦 is the probability predicted by the model for the target
class, 𝛾 is a modulation parameter that can be adjusted [31].

𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 = 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 + 𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠 (6)

3.7 Fine-Tuning Strategy
Following the initial training phase, we employ a fine-tuning strat-
egy to enhance the performance and adapt themodels to the specifics
of our dataset. The fine-tuning process involves a targeted adjust-
ment of the model’s weights, focusing on layers close to the input
and output [21].

For both the U-Net with Inception ResNetV2 [28] and FCN-8
with VGG19 [4] models, we adopt a two-pronged approach:

3.7.1 Blocking Layers Close to the Input. In the initial stages of
fine-tuning, we freeze or « block » layers close to the input. By
preserving the knowledge encoded in these early layers, we ensure
that the models retain their ability to extract fundamental features
from the input data. This step is crucial for maintaining the models’
understanding of low-level patterns and structures present in the
images.

3.7.2 Updating Layers Close to the Output. Concurrently, we selec-
tively update and fine-tune layers closer to the output. This targeted
adjustment allows the models to adapt to the specific character-
istics of our dataset, learning high-level representations that are
more tailored to the nuances present in our segmentation task. By
updating these layers, the models can refine their predictions and
optimize performance for our specific context.

The fine-tuning process strikes a balance between leveraging pre-
trained knowledge and adapting to the intricacies of our data. This
iterative approach contributes to the models’ ability to generalize
well and achieve superior segmentation results on our particular
dataset.
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3.8 Assessing the Reliability of Deep Learning
Models

After completing the crucial preprocessing and training, the next
step involves evaluating the model’s performance on the test set.
Performance metrics are crucial for this assessment, and for our
case, we adopted metrics [25] such as:

• Precision measures a model’s ability to correctly identify
positive examples among all examples identified as positive.
It is calculated by dividing the number of true positives by
the sum of true positives and false positives [25] (see Eq. 7).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

• Recall measures a model’s ability to identify all real-world
positive examples. It is calculated by dividing the number
of correctly identified positive examples by the sum of true
positives and false negatives [25] (see Eq. 8).

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8)

• F1-Score is a metric that combines both precision and recall
into a single measure using the harmonic mean. It is use-
ful when finding a balance between precision and recall is
desired [25].

F1-Score =
2 · Precision · Recall
Precision + Recall

(9)

• The Kappa coefficient measures the agreement between the
model predictions and the actual classes, taking chance into
account. 𝑃𝑜 is the observed agreement proportion, and 𝑃𝑒 is
the expected agreement proportion by chance [32].

𝜅 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
(10)

• For the evaluation in each epoch, we use𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (see Eq 11)
that measures the total proportion of correct predictions
among all predictions [1] where 𝑇𝑁 is the True Negative
and the rest is already define upper.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11)

• Furthermore, we use the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 coefficient (see Eq 12) that
measures the similarity between two sets using set intersec-
tion and union [24].

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(12)

3.9 Process to Detect Changes in Images
After assessing and selecting the best-performing model based on
metrics, this section outlines the detailed methodology employed
for visualizing temporal changes in images. The approach involves
a pixel-wise comparison using specially generated masks from the
chosen deep learning model. These masks pinpoint the exact areas
of change and quantify the alterations, allowing for a nuanced
analysis while retaining semantic information.

3.9.1 Quantification of Changes between Two Dates. As we con-
sider that the area is divided into eight distinct classes: cultivated
fields, uncultivated fields, land, water, buildings, roads, football
fields, and vegetation. Let𝑀𝑖date(i) be the set of all classes of an im-
age, 𝑖 the index of each mask in 𝑑𝑎𝑡𝑒 (𝑖) such that 𝑑𝑎𝑡𝑒 (𝑖) a period
where image was taken.

Let 𝐶 be a subset of the mask𝑀𝑖date(i) . For every class 𝑐 in 𝐶 and
every pixel 𝑝 in𝑀𝑖date(i) , the percentage at the date 𝑖 (𝑑𝑎𝑡𝑒 (𝑖)), noted
as Percentdate(𝑖 ) (𝑐), is defined as the ratio of the sum of pixels
belonging to class 𝐶 to the sum of all pixels in𝑀 .

Percentdate(i) (𝑐) =

∑
𝑝∈𝐶

𝑝∑
𝑝∈𝑀𝑖date(i)

𝑝
× 100 (13)

Therefore, the process quantifies the pixel distribution for each
class in masks captured at different periods, by evaluating the vari-
ation of each class following Eq 14. This enables understanding the
direction of changes between two dates, indicating whether a class
increases or decreases during that period.

𝐷𝑖 𝑓 𝑓% (𝑐) = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑑𝑎𝑡𝑒 (2) (𝑐) − Percentdate(1) (𝑐) (14)

3.9.2 Highlighting Areas that Have Changed. The first step in the
process involves creating a changes map using Eq 15. This equation
calculates the absolute difference between the number of pixels for
each class in two predicted masks, resulting in a map that highlights
areas with significant alterations.

Mask_Diff(𝑀2date(2) , 𝑀1date(1) ) = |𝑀2date(2) −𝑀1date(1) | (15)

Eq 15 provides a pixel-wise representation of changes, facilitating
a detailed understanding of modifications in land cover classes
between compared periods. The changes map is then superposed
onto the last real image to precisely visualize changed areas.

Table 1: Global metrics

Metrics Accuracy Jaccard Kappa
UNET 96% 92.55% 94.98%
FCN8 91% 84% 88.55%

Table 2: Performances of deep learning models in the confu-
sion matrix.

Models TP TN FP FN
UNET 96.10% 99.44% 3.89% 0.55%
FCN8 91.15% 98.73% 8.84% 1.26%
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Figure 5: Image segmentation with models in January 2022 and November 2023

4 RESULTS
In this section, we present the results of our study on bothmodels. In
Table 3, we have the classification report of models which highlights
the metrics such as the precision, the recall and the F1-score that is
harmonic mean of both metrics, of each class of our study.

We have organized the global metrics in the Table 1 for both
models such as the accuracy that is a measure of the overall correct-
ness of a classification model, the jaccard coefficient that measures
the similarity between two sets by calculating the ratio of the size
of their intersection to the size of their union. and the kappa coeffi-
cient that measures the level of agreement between two raters or,

in the context of classification, between predicted and actual labels.
It accounts for the possibility of agreement occurring by chance.

In Table 2, we have the performances of deep learning models
in the confusion matrix.

We collect two images respectively in january 2022 and novem-
ber 2023 with 8192x4930 resolution from Google Earth Pro. And we
make the segmentation of images by using two models (U-NET and
FCN-8) in order to have the segmented images with the different cat-
egories within the images for finally make the comparison between
both masks to get the difference map. We can see for both models
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Table 3: Classification report of models

Metrics Precision Recall F1-score
Classes/Models U-Net | FCN-8 U-Net | FCN-8 U-Net | FCN-8

Land 0.95 | 0.85 0.93 | 0.88 0.94 | 0.87
Vegetation 0.92 | 0.89 0.96 | 0.87 0.94 | 0.88
Building 0.95 | 0.91 0.97 | 0.91 0.96 | 0.91
Road 0.93 | 0.73 0.97 | 0.78 0.95 | 0.75
Water 0.97 | 0.92 0.95 | 0.86 0.96 | 0.89

Cultivated field 0.98 | 0.97 0.97 | 0.94 0.98 | 0.95
Uncultivated field 0.97 | 0.94 0.99 | 0.94 0.98 | 0.94
Football field 0.96 | 0.96 0.98 | 0.97 0.97 | 0.96

the result of the segmentation over the two images respectively in
2022 and 2023 in Fig 5.

Based on the metrics illustrated in Tables 1, 2 and 3, we note
that the U-NET is better for our case so we adopt it to continue the
study.

To delve deeper into the analysis, we employ Eq 13 to quantify
all classes, obtaining the distribution of each class across different
years. This evolution is comprehensively depicted in Table 4, Fig 6,
and Fig 7. In Fig 7(a), the distribution is visually presented through
a histogram, illustrating the nuanced changes in each class between
the years 2022 and 2023.We evaluate the difference in attendance
rates for each class between the two respective years (See Eq 14),
providing a graphical representation of the rate of changes. In
Fig 6, we have the absolute representation of rate of change and we
see that the most representative change concerns the uncultivated
field with 39.8% of rate of change and less representative is the
road with 0.1%. Fig 7(b) provides a visual representation of the
rate of change, where negative values for classes such as land,
water, cultivated field, and football field indicate a decrease from
2022 to 2023. Conversely, positive values for classes like building,
vegetation, and uncultivated field mean an increase during the same
period.

We get the segmented images that gives us the semantic of each
class, we use the segmented images that are the predicted masks
for both different times to create the difference map by doing the
difference between them in order to highlight only the changes
areas where the white pixels represents the changes and the black
pixels represents the non-changes.

After getting the difference map we create the changes map by
superposing the white pixels in the difference map with the last
image taken like in november 2023. By doing that we achieve to
create a changes map where we can see the areas that have changed
and are represented by white pixels as we can notice it in the Fig 8

Figure 6: The rate of change in classes between 2022 and 2023

5 DISCUSSION
Our study, centered on evaluating the effectiveness of U-Net and
FCN-8 for land cover change detection, stands at the intersection of
cutting-edge deep learning techniques and the evolving landscape
of remote sensing applications. As we dissect the findings, it’s
pivotal to contextualize our work within the broader spectrum of
existing studies, bringing to light both similarities and distinctions.

The stellar performance of our chosen models, evidenced by high
accuracy rates of 96% and 91% for U-Net and FCN-8, respectively,
sets a strong foundation for practical applications. The Jaccard and
Kappa coefficients further validate the robustness of these models,
emphasizing their ability to discern intricate land cover changes
with accuracy.
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(a) Frequency distributions of classes according to the years (b) The rate of change between 2022 and 2023 with directions

Figure 7: Classes distribution between 2022 and 2023

Table 4: Frequency distribution table from U-NET masks
generated.

Classes/Year 2023 2022
Building 6.6% 5.86%
Land 43.16% 48.4%
Road 0.03% 0.06%

Vegetation 6.74% 5.56%
Water 0.81% 1.46%

Cultivated Field 26.8% 30.06%
Uncultivated Field 15.55% 8.11%
Football Field 0.31% 0.48%

The granular insights provided by the confusion matrix amplify
our confidence in the models. With high true positive and true neg-
ative rates and minimal false positives and false negatives, U-Net
and FCN-8 showcase reliability in classifying positive and negative
instances. This bodes well for real-world scenarios, where preci-
sion is paramount in domains like urban planning, environmental
monitoring, and agricultural management.

Comparing our approach with existing studies reveals a diverse
tapestry of methodologies in land cover change detection.

Multimodal Siamese Architecture vs. UNET and FCN8:
The first study, leveraging a multimodal Siamese architecture, un-
derscores the adaptability of models to different datasets. In con-
trast, our choice of U-Net and FCN-8 demonstrates comparable
efficacy, revealing the versatility of architectures in capturing com-
plex changes across varied scenarios.

HRMS Images with Pan-Sharpening vs. VHR Multispec-
tral Orthorectified Images: The second study excels with HRMS
images and pan-sharpening, whereas the third study emphasizes
Very High-Resolution (VHR) multispectral orthorectified images.
Our work aligns with the latter, emphasizing the need to validate
classifier generalizability on diverse datasets, acknowledging the
nuances introduced by varying image qualities.

BiLSTM for Sentinel-2 Time Series Data vs. FCN-8 with
VGG-16Weights: The fourth study’s use of BiLSTM for Sentinel-2
time series data and the fifth study’s proposition of FCN-8 with
VGG-16 weights add richness to the methodological palette. Our
alignment with the latter study signals the potential of FCN-8 with
VGG-19 in achieving accurate land cover classifications across di-
verse scenarios.

While U-Net exhibits superior performance compared to FCN-
8 in land cover classification, these comparative insights unveil
the nuanced strengths of each model within the dynamic land-
scape of land cover change detection. Our study, therefore, not
only contributes valuable performance metrics but also deepens
our understanding of the diverse approaches available for tackling
this complex challenge.

6 CONCLUSION AND FUTUREWORKS
The study is conducted to detect land use and land cover changes,
with a specific focus on mitigating and anticipating social tensions
between agricultural and pastoral communities. We delved into
the segmentation of the different areas by using two models of
deep learning which are U-NET and FCN-8 in order to automate
the process and to keep semantic of areas. We notice that the U-
NET model is better for our case and is more accurate than FCN-8
and we choose to continue the study with it. After, we make the
comparison between two generated masks from U-net model of
images taken in different periods to highlight the changes areas
and we create changes map by superposing the difference map to
the last taken image. We also quantify the rate of changes by using
some graphical representations based on the distributions of our
different classes in two different dates. The performance of models
can be due to how good is the annotation which is an important
step for this study. The limitation is the fastidious annotation due
the supervised learning and the material resources.
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Figure 8: Description of the process for obtaining the change map.

This research can be extended to be align with the objectives of the
Great Green Wall (GGW) project [26], aiming to address environmen-
tal challenges and promote sustainable land management practices
across the region.

As future works, we plan to continue the study by using others
images that have more channels to make the model stronger and we
can pass from the detection of changes to the prediction of changes
by using the distribution data and some techniques of machine
learning to know in advance the areas which will probably change
in some years.
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